double-stranded DNA antibodies' prompted speculation to as whether such antibodies, or other autoantibodies described in scleroderma, might be found in patients with "idiopathic" HFA.

It has been suggested that lesions to the ipsilateral cervical sympathetic innervation, whether peripheral or central, may cause HFA. Moss and Crikelair reported a rat model of progressive HFA following cervical sympatheticotomy. However, autonomic function testing in patients with HFA may have produced conflicting results: although some patients have clear evidence of concomitant autonomic dysfunction (for example, ipsilateral Horner's syndrome) others give normal responses to standard tests of autonomic function. Nonetheless, Archambault and Fromm came to the conclusion that the sympathetic theory alone could explain most cases of HFA, even those without overt evidence of autonomic dysfunction, a position which seems less tenable today. Only indefinite pathological changes have been found in the cervical sympathetic ganglia in the few patients examined thoroughly at postmortem. Only evidence of autonomic dysfunction was found in our patient.

Facial trauma is a recognized antecedent of HFA (in up to a third of cases) but the mechanism (if there is one) by which it might produce this condition remain to be clarified. Much remains to be learned of the aetiology of this condition, which probably should not be regarded as a uniform syndrome. Its clinical heterogeneity probably reflects an underlying aetiological heterogeneity.

Sometimes cases probably reflect a developmental abnormality, possibly with a genetic basis. Other cases may form part of the clinical spectrum of scleroderma, and others still may result from involvement of the cervical sympathetic chain. The suggestion has also been made that cases with prominent neurological symptoms may result from a slow viral infection.

We thank Dr R C Hughes for permission to report his patient.

A J LARNER
D P BENNISON
Midland Centre for Neurology and Neurosurgery, Holme Lane, Smethwick, West Midlands B67 3JX, UK

Correspondence to: Dr Larner, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK.


Subarachnoid haemorrhage associated with MDMA abuse

Over recent years the use of 'ecstasy' (3, 4-methylenedioxymethamphetamine, MDMA), a synthetic amphetamine derivate, has become increasingly popular. In the United Kingdom organised abuse of 'ecstasy' often takes place at 'rave parties' involving several hundred participants in prolonged vigorous dancing.

MDMA is generally taken orally and in the only case that has been reported a peak plasma concentration of 0.106 mg/l was measured at two hours following a 50 mg oral dose (in a 74 kg adult male). The elimination half life in this case was estimated to be 7-6 hours with 65% of the dose excreted in the urine unchanged and 7% excreted as the metabolite methylendioxymethamphetamine (MDA) within three days. Whilst the potential for misuse has been recognised and it has been banned under UK legislation as a class 'A' drug since 1971, serious morbidity and mortality associated with MDMA has only recently been noted. Deaths following MDMA abuse have occurred in the presence of underlying pathology such as ischaemic heart disease, asthma and cardiac conduction defects but no predisposing cause is necessary; death has been reported due to ventricular fibrillation. In addition, significant morbidity has been noted including hyperthermia, disseminated intravascular coagulation and acute renal failure. Despite widespread abuse acute neurological complications from MDMA seem to be rare. Cocaine and amphetamine abuse are both well recognised causes of subarachnoid haemorrhage but we are unaware of any similar reports of subarachnoid haemorrhage associated with MDMA abuse.

A 25 year old female presented in the accident and emergency department at 11.20 am with a severe occipital headache of sudden onset at 6 am that morning. The headache was described as the "worst headache she had ever had" and was associated with vomiting. Between 00.30 and 05.00 she had taken 2 1/2 'ecstasy' tablets, while sitting at home with friends. Although the user was a 'regular user' and this amount was 'usual' for her, she denied the use of 'ecstasy' for the previous two months. There was no history of any other drug abuse and she had not consumed alcohol. Past medical history was unremarkable and there was no prescribed medication.

On clinical examination she was appyral, alert, orientated, and responding appropriately to verbal commands. Motor responses and eye opening were normal; she had meningism with a positive Kernig's sign on the right. Pupils were symmetrical and not dilated with normal direct and consensual reactions to light. A 120/60 mmHg with a regular heart rate of 80/min. The remainder of the physical examination was clinically normal as was her haematology and biochemistry. The MDMA plasma concentration measured at the National Poisons Unit, Guy's Hospital, was 0·21 mg/l 13-18 hours after ingestion and the analysis excluded the presence of other stimulant drugs.

She received 60 mg of dicyclomine orally as analgesia. A CT head scan was performed showing subarachnoid haemorrhage with blood in the sulci (fig 1a, b). Treatment was started with regular oral nimodipine 60 mg 4 hourly, before transfer to the regional neurosurgical centre. Carotid angiography revealed a left posterior communicating artery aneurysm (fig 2), which was subsequently clipped. Following surgery she made a complete recovery.

Figure 1 (A) (left) CT head without contrast showing blood in the cerebral sulci; (B) (right) CT head without contrast showing expansion of right lateral ventricle posteriorly.
We thank Dr Sheila for Unit, assay. number of presenting with a rent usage Subarachnoid haemorrhage. Such before weakening of the vessel was an aneurysm. MDMA, artery onsets of 'Ecstasy': 'Ecstasy' and adds in on 28 he gradually noted a deterioration in his baseball playing skills. At the age of 30 he began to have difficulty in walking down stairs, and has since had to use a hand rail. He also experienced difficulty with handwriting and manipulating small objects, and when watching baseball he frequently lost sight of the ball. He had no history of alcohol abuse. On admission on 12 March 1990, physical examination revealed a scaphoid skull, high arched palate and small auricles. Neurological examination showed that he was mentally alert and cooperative. The pupils were equal, round and reacted to light. He had horizontal fine ocular oscillation during fixation. When he closed his eyes abnormal ocular movements were noted together with an upward deviation of the eyes (Bell's phenomenon). The eyes showed frequent irregular rapid conjugate oscillations in all directions. He had saccadic pursuit eye movement and ocular dysmetria. He had moderate to severe limb and gait ataxia, and ataxic dysarthria. There was no muscle atrophy or weakness. Tendinous reflexes were normal and the plantar response was flexor. There were no involuntary movements, and no sensory nor autonomic disturbances.

Routine laboratory examinations for blood and urine showed nor as were thyroid function and lysosomal enzyme assays. Peripheral nerve conduction studies and needle electromyography of limb muscles were also normal. Brain CT and MRI showed no abnormality of the brain. EEG showed a frontal dominant θ waves during hyperventilation. Electro-oculographic findings were as follows: square-wave jerks were noted during visual fixation, and its amplitude and frequency were increased in darkness. On closing the eyes irregular sharp waves without an intersaccadic interval appeared horizontal as well as vertically (fig). These spontaneous abnormal eye movements persisted during the voluntary eye closure, decreased in drowsy state, and disappeared during sleep. Smooth eye tracking test revealed saccadic pursuit which overlapped the square wave jerks. Saccadic lactic and speed were normal. Optokinetic pattern test showed poor increase of slow phase of nystagmus in both directions. Caloric test showed normal and ocular response with normal visual suppression.

A 29 year old man, a brother of the patient we have described, had no subjective complaints and no history of alcohol abuse. He was mentally alert and the pupils were equally round and reacted to light. There was no limitation of eye movement and convergence was normal. Although there was no nystagmus, horizontal fine ocular oscillation was noted during fixation. On closing the eyes, abnormal irregular rapid conjugate oscillations in all directions were seen as in his brother. He had saccadic pursuit eye movement and ocular dysmetria. His speech was slightly dysarthric and

Opsoclonus showing only during eye closure in hereditary cerebellar ataxia

Opsoclonus is an abnormal eye movement characterised by a burst of saccades in all directions without an intersaccadic interval. Opsoclonus only during eye closure, and opsoclonus in hereditary cerebellar ataxia, as in our case, have not been previously described.

A 34 year old man complained of gait disturbance and difficulty with fine finger movements. At the age of 28 he gradually noted a deterioration in his baseball playing skills. At the age of 30 he began to have difficulty in walking down stairs, and has since had to use a hand rail. He also experienced difficulty with handwriting and manipulating small objects, and when watching baseball he frequently lost sight of the ball. He had no history of alcohol abuse. On admission on 12 March 1990, physical examination revealed a scaphoid skull, high arched palate and small auricles. Neurological examination showed that he was mentally alert and cooperative. The pupils were equal, round and reacted to light. He had horizontal fine ocular oscillation during fixation. When he closed his eyes abnormal ocular movements were noted together with an upward deviation of the eyes (Bell's phenomenon). The eyes showed frequent irregular rapid conjugate oscillations in all directions. He had saccadic pursuit eye movement and ocular dysmetria. He had moderate to severe limb and gait ataxia, and ataxic dysarthria. There was no muscle atrophy or weakness. Tendinous reflexes were normal and the plantar response was flexor. There were no involuntary movements, and no sensory nor autonomic disturbances.

Routine laboratory examinations for blood and urine showed nor as were thyroid function and lysosomal enzyme assays. Peripheral nerve conduction studies and needle electromyography of limb muscles were also normal. Brain CT and MRI showed no abnormality of the brain. EEG showed a frontal dominant θ waves during hyperventilation. Electro-oculographic findings were as follows: square-wave jerks were noted during visual fixation, and its amplitude and frequency were increased in darkness. On closing the eyes irregular sharp waves without an intersaccadic interval appeared horizontal as well as vertically (fig). These spontaneous abnormal eye movements persisted during the voluntary eye closure, decreased in drowsy state, and disappeared during sleep. Smooth eye tracking test revealed saccadic pursuit which overlapped the square wave jerks. Saccadic lactic and speed were normal. Optokinetic pattern test showed poor increase of slow phase of nystagmus in both directions. Caloric test showed normal and ocular response with normal visual suppression.

A 29 year old man, a brother of the patient we have described, had no subjective complaints and no history of alcohol abuse. He was mentally alert and the pupils were equally round and reacted to light. There was no limitation of eye movement and convergence was normal. Although there was no nystagmus, horizontal fine ocular oscillation was noted during fixation. On closing the eyes, abnormal irregular rapid conjugate oscillations in all directions were seen as in his brother. He had saccadic pursuit eye movement and ocular dysmetria. His speech was slightly dysarthric and
Subarachnoid haemorrhage associated with MDMA abuse.

J A Gledhill, D F Moore, D Bell and J A Henry

J Neural Neurosurg Psychiatry 1993 56: 1036-1037
doi: 10.1136/jnnp.56.9.1036

Updated information and services can be found at:
http://jnnp.bmj.com/content/56/9/1036.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/