the hypothesis that α2 agents affect frontal lobe function, and provides a rationale for the pharmacological treatment of frontal dysphasia. This preliminary report in a single patient awaits extension to a larger sample.

This research was supported by a Wellcome Trust Programme grant to Dr TW Robbins, BJ Evertt, and BJ Sahakian. We thank Dr GM Charlton for assistance with testing, Dr TW Robbins for critical reading of the manuscript, and Pierre Fabre Medicaments for the idazoxan.

BJ SAHAKIAN
JC COULL
JR HODGES

Departments of Experimental Psychology and Neurology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK

Correspondence to: Dr Hodges

5 Goldstein-Kace, Pit, Llidos MS, Gallager DW. Overlap of dopaminergic, adrenergic and serotonergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 1990;10:2125–38

Ictal language shift in a polyglot

There are a number of dysfunctions of language associated with epilepsy. During an episode usually associated with a temporal lobe focus patients may have loss of speech,1 dysphasia,2 or automatisms.3 A patient is described who speaks six languages and has automatisms in a number of these. The episode was a 49-year-old Indian woman with no history of major illness, loss of consciousness, or head trauma. The first episode began in 1980. She was speaking English and suddenly spoke a few words in Kannada, which were totally out of context. She did not remember what she said and had no change of consciousness associated with this. The patient was unwell at the time with a urinary tract infection. The second episode was in 1991, when she had an episode during which she shifted from Punjabi to English but did not remember the context. There have been four further episodes in the past year. On one occasion she was on a telephone speaking to a sister in Punjabi and said in Gujurati “I don’t know, there is nothing we have cooked.” She does not remember anything about this conversation but remembered and said previously and carried on with further conversation normally. On another occasion she again spoke in Gujurati “we don’t have clothes”. On a further occasion she switched from Gujurati to Urdu, saying “the closet is empty, there is nothing in the closet.” The conversation was continued for a short time by the sister, but the patient could not remember this. The last episode was while teaching in English, she spoke Punjabi. Some of these episodes have been observed by her mother who is fluent in all these languages and noticed that the patient had flinckering eyes and gulping.

The patient is a 39-year-old woman who was born in India and speaks English and Swahili commonly. She also learnt Gujurati as a child, is able to read and write Hindi, and speaks Urdu.

On examination the patient was alert and oriented. There were no abnormalities on neurological examination. An EEG showed bilateral temporal lobe spikes, more on the right, which were accentuated with over-breathing. A CT scan was normal. The patient was given 100 mg carbamazepine twice a day and no further episodes occurred during the ensuing four months.

A variety of speech disturbances may occur in patients with temporal lobe epilepsy. Dysphasia,4 or a dissociation seizures originating in the dominant hemisphere.5 Investigations to localise the disturbances have been made by stimulation studies.6 Speech automatisms have usually been seen in the focalised to the dominant lobe, although they are occasionally noted in the dominant hemispheres.

Much information exists on the speech disturbances in multilingual people with strokes. There are two main themes, one propounded by Ribot, who said that the first language to be acquired is the first to recover and the second to be spoken,6 and that the language most familiar and most often used, will return first.7 The emotional attachment to a language is also important.8 Recovery may be parallel, when all the languages recover at a similar rate, which is the most common, differential, or successive. The patient may even develop a foreign accent after a cerebral infarction. In a study of bilingual patients given stimulation there was no evidence or sites where naming is affected.9 There are only rare reports of language shift in epileptic patients. In a patient undergoing stimulation of the right temporal lobe,1 the patient said “I see a man” later followed by “I seem to lose my memory”. Another patient, who was a Polish and English speaker, had, as a seizure phenomenon the utterance “I beg your pardon” which occurred during a Polish conversation; this was also provoked by metrazol.10

The patient described here had speech automatism in a variety of Asian languages and English. It was reported to be a language problems in Chinese—English speakers with strokes but reports for Indian—English speakers are rare. One patient spoke Telugu, Kannada, Tamil, and English fluently, but after a stroke had pure alexia in Kannada and English.11

The mechanism for shift of languages is not clearly understood. It has been postulated that it is due to a lesion of the supramarginal gyrus, but this holds true in only rare cases. The switching of languages is probably more of a generalised than specific neural mechanism.12 Automatisms, as in our patient, are more localised to the temporal lobes and usually in the dominant hemisphere.

MARTIN S SCHWARTZ
Department of Neurology,
Ashinson Morley’s Hospital,
Cope Hill, Wimborne SW20 1NE, UK

References

Relief of trigeminal neuralgia by proparacaine

Two recent publications1 2 have reported the successful treatment of trigeminal neuralgia by the ophthalmic anaesthetic proparacaine hydrochloride 0.5% instilled in the eye of the affected side.

We tried this medication in 15 patients suffering from neuralgia involving one or two branches of the trigeminal nerve. In all these patients there was involvement of the second division of the nerve, whereas in eight, the first and second divisions were affected. The other four patients complained of pain in the distribution of the second and third divisions of the nerve. Eleven of 13 patients the neuralgia was idiopathic; all had been taking carbamazepine for a considerable time with partial or no response. One patient had a giant suprasellar aneurysm and another a large acoustical neuroma, both inoperable because of the patients’ advanced age and general condition.

The treatment consisted of instillation of two drops of proparacaine hydrochloride 0.5% in the eye of the affected side, in every case. A satisfactory effect was obtained in 13 patients with a clear cut improvement of symptoms allowing withdrawal or reduction of the daily dose of carbamazepine. In two patients (including a hospital physician) the medication stopped an attack of severe pain and this result is now permanent. Instillation was repeated in eight patients and twice in two patients to obtain a stable and lasting result. The observation period ranged between one and four months and no side effects were reported by the patients. One patient experienced no change in her symptoms after the initial instillation and refused a second attempt, and another patient was lost to follow up.

In accordance with the previous authors, we find it difficult to propose a mechanism by which a benzoic ester with topical anaesthetic effect produces lasting relief of neuralgia in the distribution of the divisions of the trigeminal nerve that is consistent with which the drug acts directly. Is it possible that some of the drug drained through the lacrimal duct in the nasal and oral cavities, was absorbed by the mucosa and the nerve endings of the second divisions of the nerve, and eventually reached the trigeminal nucleus via retrograde axonal transport?

1. VON OTTIS
Neurological Department,
‘Hygeia’ Hospital, Kifissias Ave and Erythrou Saxonou Street, 151 21 Athens, Greece

Relief of trigeminal neuralgia by proparacaine.

J Vassilouthis

J Neural Neurosurg Psychiatry 1994 57: 121
doi: 10.1136/jnnp.57.1.121-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/1/121.2.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/