immune system, detection of inflammation, and serology testing for syphilis were normal. An EEG and visual, auditory, and somatosensory evoked potentials were normal. Brain and spinal cord MRI was normal. Analysis of CSF gave a protein content of 0.10 g/l with no pleocytosis and normal immunological findings. Three EMGs performed at two-year intervals (1985, 1987, and 1989) showed no evidence of denervation. A muscle biopsy performed in 1985 was normal. In June 1993, after 17 years of evolution, the patient's condition was stationary.

Mills described eight cases of a very slowly advancing form of hemiplegia beginning usually in the extremity of a lower limb, then spreading up to the homolateral upper limb.1-5 Five more cases were published between 1927 and 1951.6-8 In those 13 and in our two cases pyramidal signs were always seen on the side of hemiplegia and often bilaterally (seven of 15 cases). A moderate atrophy without fasciculations is common (six of 15). The palsy can involve the face (five of 15). Sensory disturbances are usually absent but in a few cases (three of 15) paresthesias have been noted. The manifestations very gradually worsen. Progression is more often ascending (13 of 15) than descending (two of 15). Involvement of the side of the body has been reported in advanced stages (five of 15). A family history of the syndrome was not noted in any of the cases. The clinical picture presented by our two patients is identical to that described by Mills.1 After an 18 and 17 year duration of development all manifestations were still unilateral except for increased tendon reflexes in case 2.

Mills' syndrome is supposedly due to primary degeneration of the corticospinal pyramidal pathways. Pathological examination has been performed in only one case:2 the results showed non-specific, staged, irregular lesions of the pyramidal tracts predominate on one side at the level of the spinal cord and in the brainstem. The motor cortex was not involved; Betz cells were normal.

The scarcity of case reports and the availability of only one case confirmed by necropsy raise doubt as to the authenticity of this syndrome. Moreover, many reports date back to times when diagnostic methods did not allow reliable differential diagnosis. In this regard it should be said that ascending hemiplegia with Mills' syndrome-like features could be due to a variety of causes—for example, brain tumours, abnormalities of the cervical spine or cervical-occipital junction, small lacunar infarctions, pontine lesions, multiple sclerosis, or early stage amyotrophic lateral sclerosis. In our two cases the very slow progression of symptoms and the absence of any peripheral motor neuron involvement are inconsistent with amyotrophic lateral sclerosis. Similarly brain MRI, CSF examination, and evoked potentials in both cases ruled out multiple sclerosis. Finally, compression of the cervical spinal cord was not found.

Mills' syndrome could be considered as a variant of primary lateral sclerosis, which is characterised by a pure upper motor neuron syndrome related to a bilateral degeneration of the pyramidal tracts. Several cases of primary lateral sclerosis have been documented after elimination of all other causes of spastic syndromes.9-10 Pringle et al11 proposed clinical and laboratory diagnostic criteria for primary lateral sclerosis: all of these are present in our two cases except for negative Lyme disease and HTLV-I serologies which have not been tested. But Pringle et al12 specified that these tests have to be done in endemic areas only and the south east of France is not such an area. Thus we propose that Mills' syndrome should be considered as the hemiplegic form of primary lateral sclerosis. We hope that this report will incite others to publish similar findings. More cases documented with current diagnostic technology will allow the confirmation or otherwise of the nosological authenticity of Mills' syndrome.

JEAN-LOUIS GASTAUT
FABRICE BARTOLOMEI
Service de Neurologie,
Hôpital de Sainte-Marqueute,
Marseille, France

Correspondence to: Dr Gastaut, Service de Neurologie, Hôpital de Sainte-Marqueute, BP 29, 13274 Marseille Cedex 09, France

Seperation of voluntary and limbic activation of facial and respiratory muscles in ventral pontine infarction

Selective paralysis of voluntary as opposed to limbically activated respiration has been described in a lesion affecting the ventral pons. We report a case in which we have also observed the activation of separate pathways serving voluntary and emotionally influenced facial expression as well as respiration.

A 27 year old white man developed sudden neck pain spreading to the right side of the face associated with deafness in the right ear and profuse vomiting. Two hours later he developed difficulty in walking, sonorous breathing, and episodes of shaking of all four limbs without loss of consciousness.

He was unable to communicate and held his teeth clenched. On admission to hospital he developed a transient (10 minutes) left hemiplegia followed three hours later by a complete right hemiplegia. Two hours later he became tetraplegic. Subsequent examination showed that he was responsive and alert: eye movements were full, volitional movements of the jaw, face, palate and tongue were absent but spontaneous and volitional blinking was preserved. He was unable to cough or take and hold his breath to command but spontaneous respiratory rhythm was preserved: he tended to obstruct his upper airway but when this was alleviated by intubation and, later, a tracheostomy, ventilation was adequate. He had an increase in extensor limb tone and the tendon reflexes were brisk with extensor plantar responses. Sensory testing was normal. General examination was unremarkable.

Magnetic resonance imaging showed an area of infarction in the right side of the pons extending inferiorly across the midline (Figs 1 and 2). Cerebral angiography showed filling of the posterior inferior cerebellar arteries bilaterally but no contrast entered the basilar artery supporting the diagnosis of occlusion of the basilar artery. Clotting studies, other blood investigations, and echocardiography were normal.

Five days after the onset of the illness the patient was self ventilating via a tracheostomy when awake or asleep, with normal oxygen saturations and PaCO2. The respira-

Figure 1 T2 weighted axial MRI at the level of the pons showing an area of increased signal in the ventral aspect of the pons extending across the midline to the left.

Figure 2 T1 weighted midline sagittal MRI showing a low signal area in the ventral pons.
Screening for cognitive dysfunction in neurodegenerative illness

The current profusion of clinical trials of antideementia compounds adds renewed urgency for accurate patient screening. There are a number of brief assessment instruments for use by the clinician to aid in the determination of dementia or other cognitive dysfunction. All scales may not, however, be equivalent or interchangeable. We have investigated the equivalence of two particularly frequently used scales (mini-mental state examination and the Mattis dementia rating scale) in three clinically demented populations: a Huntington's disease group (n = 13), and a Parkinson's disease group (n = 10). The Mattis scale and mini-mental examination were strongly correlated in the Alzheimer's disease sample (r = 0.78), but not in the Huntington's disease group (r = 0.15) or the Parkinson's disease group (r = 0.15). Further investigation of the subscales in each test yielded a possible explanation for these discrepancies. The tests comprise sets of subscales, each of which assesses function in a different domain of cognitive function. The only common domain covered by both tests is attention and memory. If these are the only domains of interest, then either test will suffice. Both functions are affected in Alzheimer's disease, which may underlie the strong correlation between the two tests in this group. Due to subcortical influences in Huntington's disease and Parkinson's disease, however, frontal lobe dysfunction tends to be a prominent part of the clinical presentation. Only the Mattis dementia rating scale assesses lobe function in its conceptualisation, and initiation and perseveration subscales. In our samples, these two subscales were sensitive to overall dementia severity in the Huntington's disease group and the Parkinson's disease group, but not in the Alzheimer's disease group. No subtest scores on the mini-mental state exam achieved this level of sensitivity to subcortical dementia. Therefore, when integrity of the corticobulbar and frontal lobe may be of concern, the Mattis dementia rating scale seems to be the most appropriate screening tool to use.

Role of the pulvinar in ideomotor praxis

The production of learned skilled movements (praxis) is mediated by a modular network of cortical and subcortical structures that may include the thalamus. We report a patient with a left medial occipital, inferior temporal, and pulvinar infarct who showed a bilateral ideomotor limb apraxia. We attribute her apraxia to the pulvinar lesion.

The patient was a 76-year-old, right-handed woman who had a left posterior cerebral artery embolic infarct. We followed up the patient from five to the end of 17 months after the stroke during which time her examination did not change. On examination she had a right homonymous hemianopia and mild increase of reflexes on the right with normal strength and sensation. She was fully oriented except to year. She produced fluent agrammatic speech with preserved auditory comprehension and repetition, had amnesia, colour anomia, acalculia, a lexical agraphia, and read by a letter by letter strategy. Her figure copying was apraxic. Oral praxis was normal. She showed an ideomotor limb apraxia bilaterally.

Magnetic resonance imaging of the brain with horizontal, coronal, and sagittal slices was performed at five months after the stroke (figure). The stroke involved the left medial occipital lobe, inferiorposterior temporal lobe, and the pulvinar nucleus of the thalamus.

We tested the patient with several sections of the Florida apraxia battery. She was able to recognise all tools (for example, hammer, scissors) used in testing.

She was given the name of each of 20 tools (transitive gestures) and 10 intransitive gestures (meaningful gestures that do not involve tool use—for example, salute) and asked to demonstrate the appropriate gesture. She was asked to use her left hand to perform all requested gestures and, subsequently, to use her right hand. Error types included content errors (the correct movement but for the wrong tool), temporal errors, spatial errors (errors in the movement, relation of the hand to the tool, or the

We are grateful to Dr Owain Gibby (Royal Gwent Hospital) for permission to report a patient under his care and to Mr M Stouthamer (Lang Fung Neurology Laboratory, Llandough Hospital, Cardiff) for assistance with respiratory recordings.
Separation of voluntary and limbic activation of facial and respiratory muscles in ventral pontine infarction.

K Dawson, M D Hourihan, C M Wiles and J C Chawla

J Neurol Neurosurg Psychiatry 1994 57: 1281-1282
doi: 10.1136/jnnp.57.10.1281

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/10/1281.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/