LETTERS TO THE EDITOR

Recurrent confusion and ataxia triggered by pyrexia in a case of occult multiple sclerosis

It has long been known that an increase in body temperature may worsen reversibly the signs and symptoms of multiple sclerosis, probably by the production of conduction block in partially demyelinated nerve axons. We present the case of a man whom we believe has multiple sclerosis, who has a nine year history of brief episodes of profound neurological dysfunction, always in association with pyrexial illnesses. The unusual feature of this case is that, until recently, between these attacks our patient remained entirely well, and that there was no history suggesting episodes of acute demyelination.

A 44 year old man was admitted in May 1992 with a 12 hour history of recurrent confusion, blurring of vision, and ataxia, associated with a fever. On admission he was pyrexial at 39°C, but there were no signs of localised infection or any features of meningitis. He was drowsy and mildly confused. The cranial nerves were normal apart from bilateral failure of adduction with ataxic nystagmus of the abducting eyes typical of an internuclear ophthalmoplegia, down-going pupils and up-going nystagmus on up-gaze. There was a mild bilateral ptosis and a slight left upper motor neuron facial weakness. Bulbar function was intact. In the limbs power was normal, but tone was slightly increased generally and the reflexes were exaggerated, particularly on the left. The left plantar reflex was extensor, the right flexor. There was a pyramidal sign over the right biceps but no left. He was unable to walk unassisted. Sensation was normal. The only abnormal investigations were a noticeable peripheral leucocytosis (granulocyte count 11.6 x 10^9/l), and a raised C reactive protein concentration of 77 mg/l (normal range 0–10). Cerebrospinal fluid contained 1 white blood cell/mm^3, 0.21 g/l protein, and 4.7 mmol/l glucose.

The initial diagnosis was of a viral encephalitis, despite normal CSF and brain CT, and treatment was commenced with intravenous acyclovir and oral paracetamol for his fever. The next morning he was apyrexial and greatly improved. By the time of his discharge three days later the only abnormal neurological signs were a symptomatic bilateral internuclear ophthalmoplegia, an upgoing left plantar, and mild left limb ataxia, which were present when he was re-examined six months later.

It transpired that on several occasions over the past nine years he had become confused and ataxic while experiencing an otherwise mild pyrexial illness. In 1983 he developed a pneumonia of 39-3°C associated with confusion and ataxia and was admitted to hospital. A diagnosis of viral pneumonia was made and his condition improved dramatically when he was treated with paracetamol and ice packs. He left hospital 12 days later, fully recovered. In December 1988 he experienced a similar short lived episode of pyrexia, confusion, and ataxia, having developed a left lower lobe pneumonia, which responded to ampicillin. In December 1991 he developed an Escherichia coli urinary tract infection causing urinary frequency, urgency, and dysuria. He developed a pyrexia and again became confused and ataxic until antibiotic and antiinflammatory drugs were instituted.

Further analysis of the CSF collected on his admission showed the presence of oligoclonal IgG bands that were absent from plasma, although the CSF IgG/albumin ratio was normal at 0.20 (normal range 0.0–0.25). An MRI of the brain two days after his discharge showed the presence of multiple areas of increased signal intensity in the periventricular regions, the corpus callosum, the base of the fourth ventricle, the left cerebellar peduncle, and the lower medulla. The appearances were typical of widespread demyelination caused by multiple sclerosis. Repeat MRI five months later showed identical. Visual evoked responses recorded eight months after his admission were of grossly reduced latency.

In 1889, Uhthoff reported a transient reduction of visual acuity in patients with multiple sclerosis after exercise, and in 1937 Simons^

\[1\] noted a deterioration of muscle strength in 62% of episodes with multiple sclerosis when exposed to heat. Whether the effect of exercise is caused entirely by a concurrent rise in body temperature remains controversial, but it is likely that this plays an important part. Experiments on artificially demyelinated nerve fibres have shown that conduction block may be produced by small temperature rises.^

\[2\] This may explain the severe transient neurological dysfunctions induced in our patient by a variety of pyrexial illnesses over a period of nine years.

The unusual feature of our patient's history is the absence of any previous illness suggesting an episode of acute demyelination. The only similar case that we have identified in the literature is of a woman who was unable to walk for 3 weeks during a febrile illness at the age of 17, and then remained asymptomatic until developing overt multiple sclerosis 19 years later.^

\[3\] It is now well recognised that multiple sclerosis plaques are sometimes discovered at necropsy in patients with no untoward neurological history.^

\[4\] We believe that occult multiple sclerosis should be considered as an underlying diagnosis when pyrexia is accompanied by otherwise unexplained neurological signs and symptoms.

MC LAWRENCE
S BLUNT
T MATTHEWS
R RITCHIEFIELD
C KENNARD

Academic Unit of Neurosciences, Charing Cross and Westminster Medical School, Fulham Palace Road, London, W6 8RF, UK

Correspondence to: Professor C Kennard.

Hyperkalaemia mimicking acute Guillain-Barré syndrome

Severe electrolyte disturbances may mimic the Guillain-Barré syndrome. We report a patient with extreme hyperkalaemia who developed an acute flaccid tetraparesis showing the typical electrophysiological findings of acute Guillain-Barré syndrome. After normalisation of the potassium concentration by dialysis, all neurological symptoms gradually disappeared within two days.

The patient was a 36 year old woman who had malignant nephrosclerosis and chronic renal failure for three months. Within 24 hours she developed a severe asymmetric tetraparesis and painful dysaesthesia. Two grand mal seizures were also noted the day before admission.

On admission the patient was drowsy with symmetric tetraparesis, more pronounced in the legs (MRC 2/5) than in the arms (MRC 3/5), and areflexia. She complained of painful dysaesthesia on light touch. Vibration sense at the ankle was diminished bilaterally. Examination of cranial nerves was normal. There was no blurring of vision, no weakness of the respiratory muscles. The initial serum potassium concentration was very high (8.4–9.6 mmol/l normal <5.5 mmol/l)), and the sodium concentration was slightly reduced (132 mmol/l). The calcium concentration was normal (2.2–2.6 mmol/l). Creatinine was 16.6 mg/dl (normal <1.3 mg/dl), urea 113 mg/dl (normal <22 mg/dl). Blood pressure was increased (190/140 mm Hg). Cranial CAT and CSF were normal.

Initial nerve conduction studies showed markedly reduced and dispersed compound muscle action potential amplitudes, conduction block, reduced conduction velocities, and grossly prolonged distal motor latencies. Sural nerve action potentials were absent (table). Electromyography with concentric needle electrodes in weak muscles (hypotthenar, quadriceps, tibial anterior muscles) showed normal insertional activity and did not show pathological spontaneous activity. On voluntary activation, only few and normal looking motor units with amplitudes between 400 and 1100 μV could be activated. Motor units with amplitudes smaller than 400 μV were missing. Motor unit discharge rates did not exceed 16 Hz. The EEG showed a slowing with theta waves (5–6/Hz) without epileptic paroxysms. In the absence of cardiac dysfunction the ECG was characterised by tall, "tent shaped" T waves, decreased amplitude of the P waves, and widening of the QRS complex.

Haemodialysis was performed under intensive care monitoring. Within two days all neurological symptoms subsided completely. Electrophysiological testing after 10 days showed a complete remission of all

Downloaded from http://jnnp.bmj.com/ on June 23, 2017 - Published by group.bmj.com
Nerve conduction studies before and after normalisation of hyperkalaemia

<table>
<thead>
<tr>
<th>Sural nerve</th>
<th>Tibial nerve (motor)</th>
<th>Median nerve (motor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Velocity (m/s)</td>
<td>Latency (ms)</td>
</tr>
<tr>
<td>(μV)</td>
<td>(34°C)</td>
<td>(proximal/distal)</td>
</tr>
<tr>
<td>Day 1: K⁺</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8-4 mmol/l)</td>
<td>No response</td>
<td>No response</td>
</tr>
<tr>
<td></td>
<td>23-0</td>
<td>37-0</td>
</tr>
<tr>
<td>Normal findings</td>
<td>>10-0</td>
<td>>40-6</td>
</tr>
<tr>
<td>Amplitude (mV)</td>
<td>Velocity (m/s)</td>
<td>Latency (ms)</td>
</tr>
<tr>
<td>(proximal/distal)</td>
<td>(34°C)</td>
<td>(proximal/distal)</td>
</tr>
<tr>
<td>2-7/6-2</td>
<td>20-0</td>
<td>25-0/9-4</td>
</tr>
<tr>
<td>13/21.5</td>
<td>41-0</td>
<td>11-0/4-6</td>
</tr>
<tr>
<td>5-3 (distal)</td>
<td>>48-0</td>
<td><8-8/6</td>
</tr>
</tbody>
</table>

Abnormalities except slightly slowed conduction velocities (table). Needle EMG of hypothenar and quadriceps muscles showed normal recruitment, duration, and amplitude of motor unit action potentials. An EEG and ECG were in the normal range.

The clinical presentation of our patient with rapidly progressive tetraparesis, areflexia, and mild sensory symptoms would have been entirely consistent with the diagnosis of Guillain-Barré syndrome. This suggestion seemed confirmed by nerve conduction studies showing extremely delayed distal latencies, conduction block (median nerve), and delayed motor and sensory conduction velocities. Only the history of concurrent convulsions was suspicious, but this could have been explained by coincidental hypertensive encaphalopathy due to chronic renal disease.

Although slowly rising serum potassium concentrations are usually well tolerated, an acute increase in serum potassium can cause life-threatening cardiac complications. Only rarely are pronounced neuromuscular symptoms an initial feature of hyperkalaemia.1 Neurological symptoms that usually develop at serum concentrations higher than 8 mmol/l include dysaesthesia and weakness, sometimes presenting as Guillain-Barré syndrome.1,4 The respiratory musculature seems to be relatively well preserved1 as in our patient.

To our knowledge there are so far no reports on follow up nerve conduction studies of patients with hyperkalaemic paraparesis presenting with findings otherwise typical of Guillain-Barré syndrome. Our electrophysiological data reflect the progressive inexcitability of nerve fibres due to extracellular hyperkalaemia leading to multiple functional conduction delays and blocks and thus mimicking acute Guillain-Barré syndrome.

The fact that the sensory nerve action potential (tibial nerve) was initially absent whereas the EMG showed normal electrical innervation activity of muscles suggests that muscle fibres were much less influenced by hyperkalaemia than were nerve fibres. The predominance of medium size and larger motor units on EMG argues against a selective affection by hyperkalaemia of the largest and fastest conducting nerve fibres. Thus a homogeneous slowing of conduction in fibres of all sizes is most likely the cause of the slow conduction velocities seen here. Also, conduction failure was present in a substantial proportion of fibres on initial examination. Distal segments of the nerves seemed only marginally more affected than proximal sites. This suggests that conduction defects were diffuse rather than focal.

Recently, a case with hypokalaemia mimicking Guillain-Barré syndrome was reported.1 Electrophysiology in this case showed a predominant decrease of compound muscle action potentials whereas sensory nerve action potentials were preserved. Thus by contrast with the situation in hyperkalaemia, membrane depolarisation in hypokalaemia seemed to be more severely affected than nerve fibres.

Correspondence to: Dr Markus Naumann, Neurologische Universitätsklinik, J.W.-Schneider-Strasse 11, 97080 Würzburg, Germany

Botulinum toxin and sweating

Botulinum toxin A is widely used in the treatment of dystonic disorders. It acts by inhibiting the release of acetylcholine at the presynaptic level.1 The neuromuscular blockade it produces is irreversible and recovery occurs over about three months by resprouting of the axons and formation of new acetylcholine receptors.1 Both motor nerves to skeletal muscle and autonomic cholinergic fibres seem to be similarly blocked by the toxin.1 In addition to skeletal muscle paralysis, autonomic dysfunction is the rule in botulism, and objective autonomic function tests are abnormal, indicating both sympathetic and parasympathetic dysautonomia.1 Similar but minor abnormalities in autonomic tests have been reported after local injections of the toxin.1

Botulinum toxin has long been known to block postganglionic sympathetic cholinergic fibres to sweat glands in animals.1 Although it might be believed that botulinum toxin in humans, objective tests of sweating seem not to have been previously reported in patients with botulism or in those receiving local injections. We studied facial sweating in patients treated with botulinum toxin A injections for hemifacial spasm. Three patients, (two women and two men aged 69, 76, and 78 respectively) attending the botulinum toxin clinic for one, 1.5, and seven years respectively for treatment of hemifacial spasm agreed to participate in the study. All were receiving intermittent treatment with botulinum toxin A injections (60-120 mouse units; Dysport-Porton Products) around the orbit on the side of hemispasm. None of the patients was receiving anticholinergic drugs. In two of the patients, facial sweating was tested one week after the last injection session. In one patient the sweat test was performed three months after the previous injections and repeated one week after the last session of injections. Sweating was tested with Ponceau red dye and starch mixture. This is a pink powder that changes colour to bright red when wet.

The powder was dusted on to the face with cotton wool. Thermoregulatory sweating was induced by keeping the subjects with the eyes closed enveloped in polythene sheeting in a warm humid room. The room temperature was maintained at 32-35°C with an electric fan heater and humidity was maintained by boiling an electric kettle. Heating continued until facial sweating, as detected by the change of colour of the dye, was evident. This took 30 to 50 minutes. The distribution of sweating on the face was charted and photographed.

Facial sensation, pupil size, and reaction were normal in all three patients. Two of the patients had developed a mild ptosis as a side effect of previous injections. In all three patients there was an area of anhidrosis around the orbit including the upper part of the cheek and the side of the nose, the temple, the eyebrow, and the lower part of the forehead, on the side of the injection. The shape and size of the anhidrotic area was similar in all three patients (figure). In the one patient, the result of the sweat test was similar three months after previous treatment.

This brief study seems to provide strong evidence that sudomotor efferents are affected by botulinum toxin A. As in cholinergic neuromuscular transmission, diffusion of the toxin and inhibition of acetylcholine release from the presynaptic terminals of the sudomotor nerves seems to be the underlying mechanism producing anhidrosis after botulinum toxin A injections. A similar anhidrotic effect of the injected toxin was shown by Ambache in
Hyperkalaemia mimicking acute Guillain-Barré syndrome.

M Naumann, K Reiners, B Schalke and C Schneider

J Neural Neurosurg Psychiatry 1994 57: 1436-1437
doi: 10.1136/jnnp.57.11.1436-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/11/1436.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/