SHORT REPORT

Depression in secondary epilepsy: relation to lesion laterality

Mario F Mendez, Jody L Taylor, Robert C Doss, Patricia Salguero

Abstract

Patients with epilepsy often have depressive disorders. This association may be particularly prominent in secondary epilepsy from a left hemisphere lesion. Among 1611 outpatients with epilepsy 272 patients were identified whose seizures originated from a structural brain lesion other than mesial temporal sclerosis. Sustained depressive disorders had occurred in 25 (9%) of these patients with secondary epilepsy. The depressed patients were compared with the remaining patients without depression with regard to location of lesion laterality and seizure variables. The only group difference was unilateral left hemisphere lesions in 58% of the patients with depression compared with only 21% of the non-depressed patients ($\chi^2 = 10.4$, $p = 0.006$). This finding supports the idea of a relation of depression with epileptogenic lesions in the left hemisphere.

(J Neurol Neurosurg Psychiatry 1994;57:232-233)

Depression is common in patients with epilepsy. Among such patients, depressive disorders are the most frequent reason for admission to hospitals for psychiatric illness and the main reason for taking psychotropic drugs. Although depression can be ictally related, most is interictal without a direct relation with seizures. The greater frequency of interictal depression among patients with epilepsy than among comparably disabled patients suggests a biological cause for depression rather than a psychosocial reaction to having a seizure disorder.

Based on EEG localisation, interictal depression may occur more often in those with epileptogenic foci in the left hemisphere. Localisation by EEG can be misleading, and identification of a causative structural lesion for epilepsy is a more accurate method of localisation. This study focused on patient with epilepsy and verifiable lesions known to be the source of their seizures. The study evaluated these patients for depressive disorders, lesion laterality, and location, and seizure variables.

Methods

Among all patients with epilepsy who attended a neurology clinic from 1984–92, those with a lesion on CT or MRI were identified. Patients with MRI findings suggestive of mesial temporal sclerosis were excluded because of reservations about the presence of this change in many patients. Patients with definite structural lesions determined to be the source of secondary epilepsy were included in the study. These patients were assessed for seizure type, auras, well localised EEG foci, and the use of barbiturate anticonvulsant drugs that could cause depression.

Among these patients with secondary epilepsy, we identified those with a history of interictal depressive disorders (excluding brief reactive depressions) previously diagnosed by a psychiatrist. All depressive disorders met DSM-III-R criteria for a sustained depressive illness not considered by the psychiatrist to be a direct consequence of psychosocial stressors or neurologically disabling.

Results

Out of 1611 outpatients in our epilepsy clinic, there were 272 patients with neuroimaged lesions, and a depression disorder occurred in 25 (9.2%; table). This “depression group” (15 women, 10 men; 44–7
Depression in secondary epilepsy: relation to lesion laterality

[SD 16-8)] years old; all right handed) did not differ from the remaining “non-depression group” (111 women, 136 men; 42-2 (15-7) years old) in sex and age.

The depression group had a significantly higher percentage of patients with left hemispheric lesions than the non-depression group (14 (58%) v 63 (21%); χ² = 10-4, p = 0.006).

There were no differences in right hemisphere lesions (3 (12%) v 69 (28%)) or in infrahemispheric localisation. Also, there were no significant differences between depression v non-depression groups in secondarily generalised tonic-clonic seizures (18 (72%) v 205 (83%)) complex partial seizures (10 (40%) v 72 (29%)), auras (7 (28%) v 51 (21%)), left temporal EEG foci (8 (32%) v 51 (21%)), right temporal EEG foci (5 (20%) v 50 (20%)), or the presence of barbiturate therapy (3 (12%) v 25 (10%).

Finally, although seizure frequency tended to be decreased during depressive episodes, the reported frequencies were not temporally accurate enough to be analysed separately.

Discussion

Several studies maintain that patients with epileptiform discharges lateralised to the left hemisphere have a specific predisposition to interictal depression.1,8,10 Our findings are consistent with this hypothesis and extend this observation to patients with secondary epilepsy, with lateralised structural lesions.

Depression is common among patients with epilepsy. Studies have shown up to a 75% incidence of depression in such patients,11 and heightened depressive traits in patients with epilepsy compared with normal controls.7,10 Although patients with epilepsy experience feelings of loss of control, stigmatisation, and other psychosocial difficulties, investigators report greater interictal depression among patients with seizures than among those with similar chronic disabilities.6,7 Furthermore, interictal depression is more common among patients whose seizures have a focal rather than a primarily generalised onset.11,12 These findings suggest that interictal depression is often biological rather than due to the psychosocial difficulties of having a seizure disorder.

Both a biological depression and epilepsy could result from a common hypometabolic lesion in the left hemisphere. Strokes and other hypometabolic brain lesions are especially likely to precipitate depression when they occur in the left hemisphere.15 Positron emission tomography studies show that even small, imperceptible epileptogenic foci are surrounded by extensive areas of “surround inhibition,”16 and this interictal hypometabolism may be even more prominent in those with depression.15 Moreover, hypometabolism in areas of the left hemisphere may characterise primary depressive disorders.16

We conclude that interictal depression in epilepsy can be an organic mental disorder related to the underlying lesion in the left hemisphere. Consistent with the laterality of emotions suggested by gelastic seizures in the left hemisphere and dyscrastic seizures in the right hemisphere,17 depression could follow relative right hemisphere prominence from left hemisphere hypometabolism. Future studies could explore this interhemispheric “thymic imbalance” theory as a cause for depression in epilepsy.

7 Standlee KF, Fenton GW. Psychiatric symptom profiles of patients with epilepsy: a controlled investigation. Psychol Med 1975;5:152-60.
Depression in secondary epilepsy: relation to lesion laterality.

M F Mendez, J L Taylor, R C Doss and P Salguero

J Neurol Neurosurg Psychiatry 1994 57: 232-233
doi: 10.1136/jnnp.57.2.232

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/2/232

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/