A recent report from the UK-TIA Study Group\(^1\) presented 11 cases of intracranial tumours among 2449 patients with transient ischaemic attacks or minor strokes. Occasional cases of small cerebral haematomas have been found in patients with minor strokes,\(^1\) but only exceptionally in patients with transient ischaemic attacks.\(^3\) In review of a CT scan of 284 cases with transient ischaemic attacks\(^5\) five patients had a mass lesion; none a brain haematoma.

We present the results of a prospective CT scan study of 175 patients (63 with transient ischaemic attacks and 112 with minor deficits lasting longer than 24 hours) recruited in the emergency rooms of two general hospitals. In every case, the CT scan (CX Tomoscan, Philips) was performed within the first week of the clinical event (with a mean delay of 13 (SD 24) hours). The mean age of the patients was 68 (8-5) years; 132 events were located in the carotid artery territory, 38 in the vertebrabasilar territory and five were of uncertain location. The CT scan was normal in 114 patients. Low density areas compatible with infarction were present in 56. Non-ischaemic causes of the presenting symptoms were found in three minor cases of stroke—namely; a brain tumour, compatible with an extensive hemispheric malignant glioma, meningioma biopsy features, a small occipital haematoma; and a medium sized basal ganglia haematoma (associated with an ipsilateral subdural haematoma). All three patients were over 60 and had at least one vascular risk factor. In one of the cases of transient ischaemic attack a mass located on the clivus (compatible by CT features with a meningioma) was considered to have caused cerebral symptoms through compression of the basilar artery. Also surgically related to the symptoms could have been a minor stroke case with a thombosed middle cerebral artery bifurcation aneurysm, demonstrated by MRI angiography.

The number of cases in our study is insufficient to support definite conclusions. The yield of CT scan for the detection of non-ischaemic causes (such as cerebellar and subdural haematoma and brain tumour) in minor strokes (cases with symptoms lasting longer than 24 hours) was 2-7% (95% CI 0 to 5-7) and in transient ischaemic attacks the yield was 1-6% (95% CI 0 to 4 7).

Sumatriptan and giant cell arteritis

We have proposed a unified theory that suggests that migraine is essentially driven from the central nervous system and entrains the trigeminal innervation of the cranial vessels to form one of the clinical expressions of the disease.\(^7\) The transition into clinical practice of the novel antimigraine compound sumatriptan, a serotonin (5-HT) agonist, has provided a tool to understand further the underlying mechanisms of this disease. Its action as a vasoconstrictor and its inhibition of neurogenic inflammation in experimental animals has been cited by various groups as evidence for either the vascular or neurogenic inflammatory theories of migraine respectively. A patient was recently admitted to our institution with giant cell arteritis and headache not responsive to sumatriptan. Her lack of response casts some doubt on the neurogenic inflammatory theory of migraine.

The patient is a 68 year old woman who had a 10 day history of right sided temporal and frontal headache. The headache had spread from a small region above the eye to involve most of the right side of the head and she had noticed some increasing tenderness of the scalp muscles. The headache became more severe with time and had some pounding exacerbations but no associated features of migraine. Eight days into the illness she attended her general practitioner and was given sumatriptan (100 mg) orally as a single dose, which did not reduce the headache. She had no other history, particularly of regular headaches, and there was no relevant family history. Physical examination was unremarkable except for tenderness of the temporal arteries bilaterally.

The erythrocyte sedimentation rate (ESR) at this time was 110 mm/h. She was treated with high dose steroids with complete remission of the headache and general malaise and a drop in the ESR by the next day. A temporal artery biopsy showed pronounced inflammatory changes.

The patient had a clinical presentation of temporal arteritis that responded to steroids and she has remained well on steroids. She had no response to sumatrapitan despite some side effects from the drug, notably nausea and mild neck and arm discomfort typical of that reported in trials.\(^2\)

Practitioners should be watchful for secondary headache and in the elderly temporal arthritis should be considered.

Administration of a cranial vasoconstrictor to patients with inflamed narrowed vessels with the propensity to thrombose must be avoided absolutely. Sumatriptan is not a bedside test for migraine; it must not replace the careful history and should only be given to patients with a positive diagnosis in appropriate circumstances.

Sumatriptan and giant cell arteritis.

P J Goadsby

J Neurol Neurosurg Psychiatry 1994 57: 660
doi: 10.1136/jnnp.57.5.660

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/5/660.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/