SHORT REPORT

ALκ amyloid in a solitary extradural lymphoma

D M Vigushin, P N Hawkins, J J Hsuan, N F Totty, M B Pepys

Abstract

A 68 year old man with a 10 year history of apparently benign IgMκ paraproteinaemia presented with dysarthria, left hemiparesis, and a sensory peripheral neuropathy. A calcified right temporo-parietal extradural mass was shown by scintigraphy with 123I-serum amyloid P component to contain amyloid. There were no extracranial amyloid deposits. Clinical improvement followed craniotomy and partial resection of tissue which consisted of amyloid and a mixed mononuclear cell infiltrate. The amyloid fibrils consisted of the framework region of the variable domain of monoclonal κκν immunoglobulin light chains. There was a prominent B-cell clonal immunoglobulin gene rearrangement in the tumour tissue, supporting a diagnosis of lymphoplasmacytic lymphoma, but no sign of systemic lymphoma. Neurological state, tumour volume, and quantity of amyloid have remained static for two years after treatment with chlorambucil.

(J Neurol Neurosurg Psychiatry 1994;57:751–754)

Intracranial amyloidoma is uncommon and cases have rarely been well characterised either clinically or biochemically. We report here the clinical course in a patient with a localised mass of ALκ-type amyloid1 in the skull vault, associated with an IgMκ-secreting lymphoplasmacytic lymphoma. Scintigraphy with 123I-serum amyloid P component (SAP) confirmed the predominant amyloid composition of the intracranial tumour, demonstrated that no systemic amyloid deposits were present, and was used prospectively to monitor tumour volume.

Case report

A 68 year old right handed man, with apparently benign macroglobulinaemia for 10 years, presented in 1988 with a slowly progressive left hemiparesis. Biopsy of a calcified extradural lesion adjacent to the right parietal bone contained amyloid, a moderately dense mixed mononuclear infiltrate, and necrotic bone fragments. A circulating monoclonal IgMκ paraprotein (6–7 g/l) was present but bone marrow aspirate was normal. No treatment was given.

Disability progressed and two years later there was a dense left hemiparesis, dysarthria, left visual and sensory inattention, and also severe proprioceptive loss, limb ataxia, and distal areflexia due to predominantly sensory symmetrical peripheral polyneuropathy affecting upper and lower limbs. Monoclonal κ chains were detected by immunofixation in concentrated urine but the serum IgMκ paraprotein concentration was unchanged and full blood count, erythrocyte sedimentation rate, serum biochemistry, polyclonal immunoglobulin concentrations, and skeletal radiographic survey were normal.

Causes of peripheral neuropathy other than macroglobulinaemia were excluded. Sensory action potentials were absent at both median nerves, the right ulnar, radial, and sural nerves; motor action potentials and sampling were consistent with severe demyelinating neuropathy and associated axonal loss. There was severe depletion of myelinated fibres in a sural nerve biopsy, but no amyloid, inflammatory infiltrate or connective tissue abnormality. Remaining fibres were all small diameter with thin myelin sheaths suggesting remyelination or regeneration; occasional regeneration clusters and some onion bulbs were present. There was no evidence of active fibre degeneration or demyelination, and no abnormal Schwann cells or axonal inclusions were seen. These results were all consistent with a macroglobulinaemia associated peripheral neuropathy.

A large extradural mass in relation to the right lateral convexity contained foci of calcification, and compressed the frontal and parietal lobes with inward displacement of the intact dura and distortion of the lateral ventricles (fig 1). Scintigraphy 24 hours after intravenous injection of 123I-SAP (200 MBq/100 μg)2-3 showed intense tracer uptake in the right frontoparietal region consistent with the extent of the tumour. Sagittal single photon computed tomography (SPECT) showed amyloid deposits extending anteriorly to the right temporal fossa and orbital plate. Whole body scans showed no evidence of systemic amyloid deposits (fig 2(A) and (B)).

A large extradural mass of friable yellow-grey tissue that extended deep to the inner skull plate was partly resected at craniotomy.
It consisted of amyloid with an infiltrate of small T and B lymphocytes, plasma cells without detectable immunoglobulin light chain restriction, and occasional mast cells. Immunoglobulin gene analysis by the Southern blot technique with a probe to the joining region of the heavy chain gene identified a prominent B-cell clonal rearrangement, supporting a diagnosis of lymphoplasmacytic lymphoma. There was, however, no clinical or radiological evidence of systemic lymphadenopathy, organomegaly, or soft tissue masses; and bone marrow aspirate, trephine biopsy, and immunoglobulin heavy chain gene analysis on DNA from peripheral blood and bone marrow were normal.

The hemiparesis substantially resolved within one week of surgery but proprioceptive loss and impaired vibration sense persisted in the lower limbs. By one month there was an improvement in verbal and performance IQ from 120 to 133 and 79 to 87 respectively, although a superficial crescent of residual tumour was seen in cranial CT. The paraprotein concentration fell from 5 g/l peripherally to 3 g/l after three months. Planar 123I-SAP scintigraphy showed only a thin border of tracer uptake in the right frontoparietal region but in sagittal SPECT the anterior tumour extension was unchanged and he was therefore treated with low dose oral chorambucil. Neurological state, paraprotein level, serial CT estimates of tumour volume, and quantitative 123I-SAP scintigraphic measurements of amyloid deposition remained unchanged over the next two years.

Characterisation of the amyloid fibril protein

HISTOLOGY

Amyloid was identified by Congo red staining; there was also specific immunohistochemical staining with antisera to SAP and \(\kappa \) light chains (Dakopatts a/s, Glostrup, Denmark) but not \(\lambda \) light chains (Dako) or a panel of other known amyloid fibril proteins.

ISOLATION OF AMYLOID FIBRILS

Amyloid fibrils isolated from tumour tissue were composed of subunit peptides forming a set of major bands of apparent M, \(\sim 14,000 \) in reduced sodium dodecyl sulphate (SDS) gradient polyacrylamide gel electrophoresis (PAGE).

IMMUNOBLOTTING

Reduced fibril subunit proteins separated by SDS-PAGE and semi dry electrophotblotted (Novablot, Pharmacia Biosystems, Milton Keynes, Bucks, UK) on to nitrocellulose membrane (Schleicher and Schull AG, Anderman and Co Ltd, Kingston-upon-Thames, Surrey, UK) were immunostained with rabbit antihuman \(\kappa \) light chain antibodies (Dako), horseradish peroxidase labelled affinity purified goat antirabbit IgG (Dako), and 3,3'-diaminobenzidine (Sigma Chemical Co Ltd, Poole, Dorset, UK), according to the Bio-Rad immunoblot protocol (Bio-Rad Labs Ltd, Hemel Hempstead, Herts, UK). All the \(\sim 14 \) kD bands stained immunospecifically.
Figure 3 N-terminal amino acid sequence of the framework 1 region of \(\kappa_N \) immunoglobulin light chain. Sequence of the first 24 residues obtained from the N-terminus of the amyloid fibril subunit peptide is emboldened.

AMYLOID FIBRIL SUBUNIT PEPTIDE SEQUENCE ANALYSIS

The major band at 14 kDa after reduced fibril subunit proteins had been separated by SDS-PAGE, electroblotted onto to Problott membrane (Applied Biosystems), and stained with Coomassie blue R250, was excised and sequenced on a modified Applied Biosystems 477A sequencer. The N-terminal sequence of the fibril subunits up to 24 cycles was identical to the framework 1 region of the \(\kappa_N \) immunoglobulin light chain (fig 3).

Discussion

Primary extranodal lymphoma accounts for only 1% of intracranial tumours. Most are monoclonal in origin, of B-cell lineage, and express surface or cytoplasmic immunoglobulins that can usually be demonstrated immunohistochemically. The demonstration of clonality is important in differentiating between a benign and malignant process. When malignant B-cells are abundant, a clonal B-cell population is often identified by restricted surface expression of immunoglobulin light chains. In cases where the number of malignant B-cells is small or in the presence of numerous reactive B or T lymphocytes, however, identification of the clone may not be possible by this method, as in our case.

We therefore used immunoglobulin gene rearrangement studies to identify a clonal B-cell population in the resected tumour tissue. The absence of a detectable clonal rearrangement in peripheral blood and bone marrow supported the clinical and radiological impression of an apparently localised lymphoma.

Systemic AL amyloidosis occurs in 5%–15% of patients with myeloma, and probably fewer patients with monoclonal gammopathy of undetermined significance (MGUS), especially those with IgM paraproteinaemia. The molecular mechanism by which certain monoclonal immunoglobulin light chains form amyloid fibrils, and the factors determining the anatomical site, extent, and clinical effects of amyloid deposition, is poorly understood. We are aware of only one previously reported case of primary intracranial lymphoma with massive focal amyloid deposition. Five cases of solitary intracranial plasmacytomas with localised amyloid deposits have been described and there are numerous reports of intracranial tumour-like focal amyloid deposits or amyloidomas; most were intracerebral and the histological features in all were similar: abundant amyloid deposition, a scanty mononuclear cell infiltrate and occasional giant cells.

Complete excision of resectable lesions was associated with a good prognosis, and recurrence did not occur within several years of follow up.

The present case was unique in that the nature and extent of the intracranial lesion were confirmed by SAP scintigraphy, and the identity of the amyloid fibril protein determined immunohistochemically was confirmed by amino acid sequencing. Whole body SAP imaging studies excluded systemic amyloidosis, and no amyloid was found in the sural nerve biopsy, the histology of which was compatible with macroglobulin associated damage.

Scintigraphy after injection of radiolabelled SAP is a sensitive, specific, and quantitative diagnostic procedure in amyloidosis. Its anatomical precision is enhanced by SPECT, which was notably more sensitive and informative than MRI in the present case. Serial SAP scintigraphy has shown no change in the residual amyloid mass during the two years after initiation of systemic chemotherapy.

Patients with monoclonal gammopathy in whom there is less than 30 g/l of circulating M-protein, especially if the GMU, fewer than 5% plasma cells in the bone marrow, normal serum albumin, and no anaemia, hypercalcaemia, renal insufficiency, or bone lesions are currently regarded as having MGUS, a more appropriate term than benign monoclonal gammopathy. In 430 patients at the Mayo Clinic with IgM monoclonal gammopathies, 56% were classified at presentation as MGUS, 7% lymphoma, 5% chronic lymphocytic leukaemia, 6% AL amyloidosis, and 14% as unclassified lymphoproliferative disease. Seventeen per cent of the MGUS group developed malignant lymphoid disease within five months to 22 years. Our patient falls into this category: he had an apparently benign IgMx paraprotein for 10 years before he presented with disease caused directly by the primary intracranial lymphoma, exacerbated by local AL amyloid deposition and by macroglobulinaemia associated, non-inflammatory, peripheral neuropathy.

This work was supported in part by Programme and Project grants to MBP from the MRC, The Welcome Trust, and Arthritis and Rheumatism Council. We thank Mr M Powell, Dr AJ Lees, and Dr G Sawle for referring the patient and for their neurological and neurosurgical management of the case. We thank Professor L Luzzatto for advice on management of the lymphoma and helpful comments on the manuscript.

AL kappa amyloid in a solitary extradural lymphoma.

D M Vigushin, P N Hawkins, J J Hsuan, N F Totty and M B Pepys

J Neurol Neurosurg Psychiatry 1994 57: 751-754
doi: 10.1136/jnnp.57.6.751

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/6/751

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/