Tumour necrosis factor-α and other cytokines in Guillain-Barré syndrome

A R Exley, N Smith, J B Winer

Abstract
The efficacy of plasma exchange implicates myelinotoxic humoral factors in the pathogenesis of Guillain-Barré syndrome. Candidate factors include autoantibodies to peripheral nerve myelin, which are not unique to Guillain-Barré syndrome; and cytokines such as tumour necrosis factor-α (TNF-α) which are T cell/macrophage products. Plasma cytokine concentrations were determined in 26 patients with Guillain-Barré syndrome undergoing plasma exchange, 25 with other acute neurological diseases, and 40 healthy controls. Raised TNF-α concentrations (>25 pg/ml) were found in seven of 26 patients with Guillain-Barré syndrome v none of 23 disease controls (p = 0.001). The peak grade of clinical deficit correlated with TNF-α concentrations (r = 0.6, p < 0.01). There was no significant difference between interleukin-1β or interferon-γ concentrations in patients and disease controls. The data suggest that TNF-α may be a critical factor in the pathogenesis of Guillain-Barré syndrome.

Patients and methods
Stored plasma samples from 26 patients with Guillain-Barré syndrome undergoing plasma exchange who fulfilled standard diagnostic criteria; 25 patients with other acute neurological diseases including myasthenia gravis, polymyositis, neuropathy associated with malignant disease, stroke, and lumbar canal stenosis; and 40 healthy controls were analysed. Plasma concentrations of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ) were determined by enzyme immunoassay with kits from Medgenix, Immunotech, and Genzyme respectively. Data were not normally distributed and were therefore analysed with standard non-parametric tests. The χ² test was used to compare the frequency of raised cytokine concentrations in patients and controls. Associations between raised cytokine concentrations and severity of disease were sought with Spearman rank correlation analysis.

Results
Plasma samples were obtained at a median of nine days (interquartile range 7–17 days) after the disease onset from the patients with Guillain-Barré syndrome. The severity of disease was graded according to an established scale employed in previous therapeutic trials. At the time of venepuncture four of the patients were able to walk (grade 2 or 3), 14 were bed bound (grade 4), and eight required assisted ventilation (grade 5). Cytokine concentrations in patients were only regarded as raised if they were higher than 95% of all healthy controls. With these criteria TNF-α concentrations were raised (>25 pg/ml) in seven of 26 patients with Guillain-Barré syndrome v none of 23 disease controls (χ² = 25 pg/ml, p < 0.001, fig 1). There was no significant difference between raised (>2–60 pg/ml) IL-1β concentrations (two of 26 patients with Guillain-Barré syndrome v none of 23 disease controls) and raised (>200 pg/ml) IFN-γ concentrations (11 of 26 patients with Guillain-Barré syndrome v seven of 26 disease controls). The peak grade of clinical deficit correlated with TNF-α concentrations (r = 0.6, p < 0.01, fig 2). There was no significant difference between patients with and without evidence of a preceding infection.

Clinical Immunology Laboratory, Department of Immunology, The Medical School, Edgbaston, Birmingham B15 2SZ, UK
A R Exley
N Smith
J B Winer

Correspondence to: Dr A R Exley

Received 13 December 1993 and in final revised form 28 February 1994
Accepted 8 March 1994
Figure 1 Plasma cytokine concentrations in patients with Guillain-Barré syndrome and neurological controls. Patients are shown by filled circles, disease controls by open circles.

Figure 2 Plasma TNF-α concentrations in patients with Guillain-Barré syndrome according to peak deficit.

Discussion
The efficacy of plasma exchange in Guillain-Barré syndrome has stimulated the search for autoantibodies to peripheral nerve myelin in these patients. Antibodies to gangliosides have been found most often but are detectable in only a minority of patients. The detection of these antibodies is not specific for Guillain-Barré syndrome and their presence correlates with axonal damage. These data suggest that such autoantibodies may be a secondary phenomenon after nerve damage. Alternative candidates for the humoral factor include cytokines such as TNF-α, which is derived from T cells and macrophages. Other products of activated T cells such as serum interleukin-2 (IL-2) and IL-2 receptor levels are raised in Guillain-Barré syndrome. Ultrastructural studies support this hypothesis as macrophages are closely apposed to demyelinated axons in necropsy material from patients with Guillain-Barré syndrome. TNF-α is a multifunctional, cytotoxic polypeptide that can induce myelin damage and necrosis of oligodendrocytes in vitro. Our data suggest that TNF-α may be a critical factor in the pathogenesis of Guillain-Barré syndrome as plasma TNF-α concentrations but neither IL-1β nor IFN-γ correlate with disease severity. Raised blood TNF-α concentrations were previously reported in isolated cases of Guillain-Barré syndrome used as disease controls and a recent study correlated raised serum TNF-α concentrations with more severe disease.

Possible mechanisms to explain a pathogenic role for TNF-α include a direct myelinotoxic effect of locally produced TNF-α and an indirect effect via the blood-nerve barrier. A breakdown of the blood-nerve barrier is a key feature of both Guillain-Barré syndrome and experimental allergic neuritis which may be critical in allowing activated T cells access into peripheral nerve. In experimental allergic neuritis demyelination only occurs when both damage to the blood-nerve barrier and activated T cells or their products are present. Preliminary studies identified mRNA for TNF-α in necropsy specimens of peripheral nerve from patients with Guillain-Barré syndrome. Sequential studies in experimental allergic neuritis have shown a temporal association between the detection of immunoreactive TNF-α and peripheral nerve demyelination. Longitudinal studies of TNF-α concentrations are needed to investigate the time course of changes in TNF-α concentrations and their relation to treatment with plasma exchange and γ-globulin. If TNF-α is important in the pathogenesis of Guillain-Barré syndrome it should be possible to show that concentrations of TNF-α, either locally in nerve or in plasma, fall with treatment. Because autoantibodies to TNF-α are detectable in some subjects it is possible that pooled γ-globulin is an effective treatment in Guillain-Barré syndrome because it contains anti-TNF-α activity.

This work was supported by a grant from the Arthur Thompson Trust. We thank Dr Boughton for help in obtaining plasma samples. These data were reported in part in abstract form at the Peripheral Nerve Study Group 11th Biennial meeting, Jakobsberg, Boppard, Germany, July 1993.

6 Prince JV. Acute idiopathic polyneuritis: an electron microscope study.
Lab Invest 1972;26:133-47.
7 Burke F, Nayler MS, Davies B, Ballwill FR. The cytokine wall chart.
8 Asbury AK. Diagnostic considerations in Guillain-Barré syndrome.
Detection of circulating tumor necrosis factor after endotoxin administration.
10 Ilyas AA, Willisson HJ, Quarles RH. Serum antibodies to gangliosides in Guillain-Barré syndrome.
11 Enders U, Karch H, Toyka KV, Michels M, et al. The spectrum of immune responses to
Campylobacter jejuni and glycoconjugates in Guillain-Barré syndrome and in
in other neuroimmunological disorders. *Ann Neurol* 1993;
34:136-44.
12 Yuki N, Yoshino H, Sato S, et al. Severe acute axonal
form of Guillain-Barré syndrome associated with IgG
13 Beutler B, Cerami A. The biology of cachectin/TNF—a
14 Hartung HP, Reiners K, Schmidt B, Stoll G, Toyka KV.
Serum interleukin-2 concentrations in Guillain-Barré
syndrome and chronic idiopathic demyelinating
polyradiculopathy; comparison with other neurological
diseases of presumed immunopathogenesis. *Ann Neurol*
15 Bansil S, Mithen FA, Cook SD, Sheffet A, Robowsky-
Kochan. Clinical correlation with serum soluble inter-
leukin-2 receptor levels in Guillain-Barré syndrome.
16 Selmai K, Raine CS. Tumor necrosis factor mediates
myelin and oligodendrocyte damage in vitro. *Ann Neurol*
17 Tsukada N, Miyagi K, Matsuda M, Yanagisawa N, Yone
K. Tumor necrosis factor and interleukin-1 in the CSF
and sera of patients with multiple sclerosis. *J Neurol Sci*
18 Sharief MK, McLean B, Thompson EJ. Elevated serum
teleport levels of tumor necrosis factor-a in Guillain-Barré
19 Spies JM, Westland KW, Bonner JG, Pollard JD.
Cytokines of activated T cells open the blood nerve bar-
rier. Peripheral Nerve Study Group, 11th biennial meet-
ing [abstracts]. Jakobsberg, Boppard, Germany: July
20 Griffin JW, Ho T, Wesselingh SL, Li CY, Asbury AK.
Immunopathology of the Guillain-Barré syndrome.
Peripheral Nerve Study Group 11th biennial meeting
[abstracts]. Jakobsberg, Boppard, Germany: July 1993,
21 Stoll G, Jung S, Jander S, et al. Tumor necrosis factor-
alpha in immune-mediated demyelination and
Wallerian degeneration of the rat peripheral nervous
22 Fomsgaard A, Svensson M, Bendtzen K. Auto-antibodies
to tumour necrosis factor-a in healthy humans and
patients with inflammatory diseases and Gram-negative
Tumour necrosis factor-alpha and other cytokines in Guillain-Barré syndrome.

A R Exley, N Smith and J B Winer

J Neurol Neurosurg Psychiatry 1994 57: 1118-1120
doi: 10.1136/jnnp.57.9.1118

Updated information and services can be found at:
http://jnnp.bmj.com/content/57/9/1118

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes