Experience with intravenous immunoglobulin in myasthenia gravis: a review

Gilles Edan, Frank Landgraf

Myasthenia gravis is an autoimmune disorder of neuromuscular transmission associated with a deficiency of acetylcholine receptors. Current therapies that influence the immune response include: thymectomy, corticosteroids, non steroid immunosuppression and plasmapheresis. The management of patients with myasthenia gravis, usually involves a combination of these therapies to produce an adequate response.1-3 Such a combination exposes the patient to a significant level of toxicity. However, treatment with intravenous immunoglobulin (IVIg) has shown less side effects and should therefore be considered a promising therapy in the treatment of myasthenia gravis.

IVIg has been studied in a number of trials over the past ten years. These open trials were non blind, uncontrolled and of limited value. Patient populations were small and heterogeneous for: previous treatment, inclusion criteria and duration of disease. We reviewed six open clinical trials4-9 (table) which used the same treatment schedule (0.4 gr/kg/d for five days) and attempted to draw some conclusions.

Overall the studies showed similar findings. A total of 76 patients were investigated, the majority of whom were severely affected. The percentage of positive responses was 70-100%, with a mean of 79%. Most patients were receiving concomitant medication which was held constant before and during IVIg treatment. A large majority were treated with corticosteroids, except for those in the study by Gajdos.6 The minority received azathioprine alone or with corticosteroids. Thymectomy was performed on most patients before IVIg treatment. Immunoglobulin was given during different clinical stages of the disease. In the series by Arsura8 and in Cosi’s study,4 patients were treated during an acute onset or in acute relapse. In Gajdos,4 Ippoliti1 and for part of Cosi’s6 series, the patients were treated with IVIg in a static phase of the disease that lasted from two to six months. There was no significant difference in improvement between chronic-static and acute cases, as improvement was observed in more than 70% of both groups. In the responding patients, there was an improvement within three weeks from the start of therapy. Four of the five patients of Gajdos et al improved significantly between days 10 and 15 and remained stable up to day 25. In the study by Ippoliti, six patients improved within three weeks and five remained so on day 60. In the study by Arsura, improvement began from one to nine days (median 4) after the start of IV Immunoglobulin therapy with sustained improvement lasting from 19 to 120 days (median 41). In the study by Cosi, a definite improvement was recorded at day six in 17 patients, at day 12 in 26 patients and persisted until day 60 in 21 patients. In the study by Evoli, eight patients showed a definite improvement that was seen within three to 20 days after the start of IVIg and lasted 30–120 days. It appears therefore that IVIg can produce a rapid improvement in symptoms, lasting for approximately 40–60 days.

Arsura et al10 administered repeated courses of intravenous immunoglobulin to nine patients at the onset of an exacerbation of generalised myasthenia gravis. These patients were selected because they had initially responded to IVIg. They received from two to five courses of IVIg each with a total of 23 courses. A satisfactory response was seen after 20 courses. Improvement in muscle strength began from one to seven days (median 4) after the start of IVIg and peaked at median day 8. Sustained improvement per course lasted a median of 90 days: 45 days for the first course, 180 days for the second and...
90 days for the third. Thus sustained improvements per patient lasted a median of 225 days.

The immediate adverse side effects of IVIg in these series were limited to minor symp-
toms such as, headaches, pedal oedema, or mild dyspnoea. These effects were seen in
less than 10% of patients and it was not neces-
sary to interrupt their treatment. Aspetic meningitis has recently been reported as a
complication of IVIg therapy in the treatment of myasthenia gravis.11

Since 1988, we have treated some of our
MG patients with IVIg. We have retro-
spectively selected 10 patients (seven men, three women, median age 53, two of them
with thymoma) who were treated at an early
stage of the disease (median six months), and
who were not taking concomitant immuno-
logical medication. We observed similar
responses to previous authors for this
homogenous group of patients. Seven of 10
patients showed marked improvement, which
occurred rapidly within one week and lasted
for six to 12 weeks whether the patient was in
an acute or stationary phase of the disease.

Our experience enables us to put forward
some positive and negative aspects of IVIg
treatment in MG. The negative aspects
include: the temporary nature of the
response, the high cost of the product, and
the injection of human blood and the accom-
panying risk of infection. However, the posi-
tive impact of IVIg therapy on MG are
evident in the high rate of response, rapid
onset of improvement, the lack of recognised
short- and long-term toxicity, the repro-
ducibility of the response (the temporary
nature of response may be overcome by using
repetitive courses) resulting in the reduc-
tion of corticosteroid therapy in the majority
of patients.

The mechanisms underlying clinical
improvement remains obscure, but those
that have been proposed include: competition
with AChR Ab for binding with AChR;8
prevention of the attachment of Fc receptor
positive inflammatory cells to AChR Ab
bound to motor end plate; an anti-idiotypic
effect,1214 and stimulation of suppression.

There are no firm guidelines for the use of
IVIg in MG.15 Controlled, blind studies are
needed to evaluate IVIg treatment in the dif-
ferent stages of MG and to compare IVIg
therapy with conventional treatment such as:
plasma exchange for thymectomy; and for
initiating oral steroid treatment. IVIg should
also be evaluated long term, for example in
tandem with thymectomy (as two and five
years are required to show its efficacy in 50
and 90% of patients respectively), in addition
to corticosteroid therapy, thereby allowing
for a reduction in the dose of corticosteroid.
Evaluation could also be carried out for the
use of IVIg as bridging treatment in the
period before the effect of immunosuppres-
sive agents become apparent.

1 Pascuzzi RM, Coslett HB, Johns TR. Long-term corti-
steroid treatment of myasthenia gravis: report of 116
2 Verma P, Oger J. Treatment of acquired autoimmune
myasthenia gravis: a topic review. Can J Neurol Sci
3 Drachman DB, McIntosh KR, Reim J, Balcer L.
Strategies for treatment of myasthenia gravis. Ann NY
4 Gadjos Ph, Ourin H, Elkharrat D, et al. High-dose intra-
venous immunoglobulin for myasthenia gravis. Lancet
5 Ippoliti G, Coni V, Piccolo G, Lombardi M, Mantegaz R.
High-dose intravenous immunoglobulin for myasthenia
6 Arsura EL, Bick A, Brunner NG, Namba T, Grob D.
High-dose intravenous immunoglobulin in the manage-
ment of myasthenia gravis. Arch Inter Med 1986;146:
1365–68.
7 Cook L, Howard JF, Folds JD. Immediate effects of intra-
venous IgG administration on peripheral blood B and T
cells and polymorphonuclear cells in patients with myas-
8 Cost V, Lombardi M, Piccolo G, Erbetta A. Treatment of
myasthenia gravis with high-dose intravenous immuno-
9 Evoli A, Barroccioni E, Palmisani MT, Provenzano C,
Tonali F. IgG Therapy in Myasthenia Gravis Patients.
10 Arsura EL, Bick A, Brunner NG, Grob D. Effects of
Repeated Doses of Intravenous Immunoglobulin in
11 Meiner Z, Ben-Hur T, River Y, Reches A. Aseptic
meningeal as complication of intravenous immuno-
oglobulin therapy for Myasthenia Gravis. J Neurol
12 Dwyer JM. Manipulating the Immune System with
13 Zweiman B. Theoretical Mechanisms by Which Immuno-
globulin Therapy Might Benefit Myasthenia Gravis.
14 Ferrero B, Durcell L, Cavalo R, Dutto A, Aimo G,
Pecchio F, Bergamasco B. Therapies of Excacerbation of
Myasthenia Gravis. The Mechanism of Action of Intravenous High-Dose Immunoglobulin Gans. NY
15 Arsura EL. Experience with Intravenous Immunoglobulin
in Myasthenia Gravis Clin Immunol Immunopathol 1989;