ligated to the pMal vector. Plasmids were transformed into *Escherichia coli* DH5. Production of the recombinant fusion protein was induced with isopropyl-β-D-thiogalactopyranoside. The DH5 cells were sonicated and centrifuged, after which the supernatant was applied to an amyllose resin column and eluted with maltose to separate the Yo protein fused to the maltose binding protein (figure). For ELISA, the r-Yo was bound to immunoplates (0.5 μg/well). Non-specific binding was blocked with 2% milk-bufferedd saline (TBS) containing 0.5% skimmed milk. The patient's serum was then diluted 1:5000 with the blocking solution and immunostained with avidin-biotin-peroxidase. Absorbance at 495 nm was measured with a spectrophotometer. The normal and disease control samples consisted of serum samples taken from 10 healthy young adults, from 10 patients with spinocerebellar degeneration (mean age 56 (SD 11)), and from seven patients with gynaecological cancer without neurological symptoms. The mean ELISA absorbance of serum samples from the young adult controls was 0.080 (SD 0.023) and that from the disease controls, 0.082 (SD 0.046). The absorbance for the serum from the patient with PCP before treatment was 1.200. After three cycles of plasmapheresis, it rose to 1.764. On the basis of her clinical picture and the presence of the characteristic anti-Yo antibody, we did a test laparotomy with her informed consent because the conventional survey had found no tumour. A fallopian tube adenocarcinoma 1-5 cm in diameter was identified and successfully resected. Cancer chemotherapy was started 18 days after operation (cispain, adriamycin, cyclophosphamide, and 5-fluorouracil). Two more chemotherapy cycles were given at monthly intervals. The antibody titre of serum taken serially at various times during treatment and during the three year follow up period showed a gradual reduction to 0.401. Patients with PCP who had anti-Yo antibody have been found to have mostly breast or gynaecological cancers. More than half of these patients with PCP showed neurological symptoms only for several months, no underlying cancer being detected despite extensive surveys for malignancy. The detection of antineuronal antibodies, therefore, is important for the early detection of the underlying cancer. These autoantibodies can be detected from the staining distribution obtained by immunohistochemical means as well as by their molecular sizes on immunoblots. But, as there are many molecules of similar size, we constructed r-Yo to use as the ELISA antigen to group patients with PCP with an autoantibody that recognises the same molecule. In ELISA, our patient's serum and CSF both had a high titre for the anti-Yo antibody. This titre increased two weeks after plasmapheresis, indicative of rebound overproduction of the antibody. After tumour resection and subsequent anticancer chemotherapy, the patient's anti-Yo antibody titre gradually decreased. Her neurological symptoms showed mild improvement, suggesting that early tumour resection ameliorates neurological symptoms. Increases in antibody titre indicate the immunological state of the host, indirect evidence of tumour antigen stimulation. Therefore it is very important to follow up changes in specific antibodies in patients with PCP.

Painful paroxysmal dystonia associated with focal epileptic activity

Painful paroxysmal dystonia, a rare movement disorder, is characterised by recurrent episodes of brief, intensely painful unilateral abnormal posturing of one or two limbs associated with clonic movements or impairment of consciousness. The mechanism remains obscure, and most cases with identifiable causes have subcortical lesions, particularly in the brain stem, as in multiple sclerosis. Our patient had typical painful paroxysmal dystonia associated with cortical epileptic activity in the EEG. A 72 year old woman was admitted for the evaluation of recurrent painful dystonic posturing of her left extremities. These attacks were characterised by sudden unprovoked torsion of the head leftward, adduction of the left arm at the shoulder with flexion at the elbow and at the wrist and extension of the fingers, extension of the left knee, and plantar flexion of the left
foot and toes. During an episode, which lasted several seconds, the patient complained of sharp pain in the left extremities that could not be explained solely by the muscle contraction causing the dystonic posturing. There were no alteration of consciousness, loss of sphincter control, or clonic movements in the limbs. The attacks had started without obvious precipitating factors 10 days before admission and occurred with a frequency of 5–10 per day.

The patient reported that at the age of 22, she had experienced a single similar attack of "painful spasm" in her left extremities that had not been treated and had not recurred.

Mild depressive symptoms had been present since the age of 60, being treated with fluvoxamine and benzodiazepines intermittently. There was no family history of epilepsy or other neurological disorder.

Her intelectual general and neurological examination was unremarkable. Blood counts and serum biochemistry were normal. The routine EEG recording was normal. Following administration of the awake EEG, disclosed no abnormalities; during drowsiness and sleep an almost continuous focal epileptic activity was apparent in the right frontal-frontal-sagittal region (figure). Computed tomography with and without contrast and MRI of the brain were performed and showed mild symmetric brain atrophy without any evidence of focal structural lesion suggesting a chronic inflammatory demyelinating disease. Treatment with carbamazepine (200 mg three times daily) led to dramatic cessation of attacks and disappearance of the epileptic activity on the EEG.

Paroxysmal dystonia was previously described by different terms, such as painful tonic seizures and painful tonic spasm. It represents one of the distinct paroxysmal features of multiple sclerosis.1 Ephaptic activation of axons within demyelinated plaques or other structural lesion may be responsible for both motor and sensory components of the paroxysmal dystonia.2 Bennett3 attributed painful paroxysmal dystonia to the heterogeneous group of paroxysmal dyskinesias, stressing their non-epileptic character and emphasising their importance as a diagnostic and therapeutic problem. The most characteristic features of these fits are their painful nature and typical pattern of unilateral limb posturing.1 Both ictal and interictal EEGs were reported to be normal or showed non-specific changes1 supporting the non-epileptic origin of painful paroxysmal dystonia. By contrast, dystonic posturing may occur in epilepsy, albeit it is usually not painful.1

Paroxysmal pain associated with motor phenomena may also be a rare manifestation of epilepsy.10 It has been suggested that epileptic pain originates from the contralateral somatosensory cortex or thalamus.10 The motor component of painful epileptic seizures was reported to be represented by unilateral clonic or tonic-clonic convulsions with or without march, tonic deviation of the head and eyes, bilateral clonic movements of the extremities, generalised tonic-clonic convulsions, transient motor weakness without tonic extension, or "stiffening" of the arm or leg.10 Painful epileptic seizures with a characteristic pattern of unilateral posturing of the extremities meeting the criteria of painful paroxysmal dystonia to our knowledge have apparently never been described.

Our patient had typical unprovoked painful paroxysmal dystonia associated with focal cortical epileptic activity in the contralateral frontal-frontal-sagittal region. This approximately to the sensorimotor and supplementary motor region that, when activated, may result in postural changes.2 Although we have not obtained an ictal recording, the association of the clinical events with the seizure-related cortical focus in the EEG and the disappearance of both after carbamazepine treatment, suggest a causal relation between the electrographic phenomena and the body posturing their epileptic nature. They may represent a distinct type of painful paroxysmal dystonia of cortical epileptic origin.

F BOKSTEIN
MY NEUFELD
F MISPELAN
A D KORCZYNSKI

Department of Neurology,
Tel Aviv Medical Center,
Sackler Faculty of Medicine,
Tel Aviv University, Israel

Correspondence to: Dr Felix Bokstein, Department of Neurology, Tel Aviv Medical Center, Tel Aviv, 64239 Israel.

Treatment of spasmodic torticollis with intramuscular phenol injection

Phenol is a caustic agent that produces tissue destruction and has been used to weaken muscle in patients with spasticity by either nerve block, motor point block, or intramuscular neurolysis.1-5 Local muscle pain and tenderness but no systemic or long term side effects have been reported after such use. Only recently has the use of intramuscular phenol in the treatment of spasmodic torticollis been reported.6-8 We have used this agent in patients with spasmodic torticollis who have not responded well to intramuscular injections of botulinum toxin A (BTX). Both patients gave informed consent to participate in the trial with the approval of the Duke University Institutional Review Board.

The muscles responsible for abnormal head movements were determined by clinical examination and by EMG recordings made with a concentric EMG needle in the sternomastoid, splenius capitis, and other neck muscles involved in head turning. Phenol solution (1% weight/volume USP phenol crystals in sterile aqueous solution) was injected into the involved muscles with a recording monopolar injection electrode to determine that injections were made in muscle active in the abnormal movement. Injections were made at two to six sites in each muscle involved. Without muscle unit action potentials with sharply rising components were recorded, indicating that the needle tip was close to muscle fibres that were activated during the abnormal movement. Areas near major vessels or nerves were avoided. Three to four subsequent injections were given if improvement was incomplete as determined by the patient's symptoms and by examination. At each visit, examination of strength in the involved muscles and functional assessment of the patient's torticollis were recorded on videotape for comparison with examinations made before phenol treatment.

Patient 1 is a 53 year old man who has had torticollis since the age of 43. Medical treatment had produced no improvement. At the age of 48, he had shown moderate improvement with BTX injections but, after 18 months, the response diminished despite increasing doses. Muscles no longer developed weakness, atrophy, or denervation changes on EMG testing after BTX was injected. Antibody to botulinum could not be detected in the serum. He underwent selective peripheral denervation surgery when aged 50 and 51, with only mild improvement. Several months later, BTX injections were repeated with benefit.

He had tonic, uncontrollable turning of the head to the left with a phasic component and mild retrocollis before phenol injection. He maintained head posture in the midline with great difficulty while sitting. Standing and any attempt to talk, walk, or use his hands produced immediate uncontrollable head turning. He had constant pain in neck and intracranial pain.

Within 18 hours after the initial injection of 100 mg phenol into the left splenius capitis, splenius cervicis, and longissimus capitis muscles, he noted a fuller range of motion in the neck and mild improved head control while walking. The injected muscles were tender and oedematous but the neck and intracranial pain was considerably less. After subsequent injections he noted progressive improvement. After receiving a total dose of 500 mg of phenol over one month, he could walk, drive, or sit to eat even in public with only occasional involuntary head turning. Manoeuvres that previously had exacerbated the abnormal head movements now were performed with little or no difficulty. He estimated that pain was reduced by 90%. His only remaining complaint was mild intracranial pain and tenderness over the injected muscles lasting one to two days after each injection. The improvement was sustained for five months after the initial injection. He then experienced gradual worsening of head control and some return of pain. He has subsequently received phenol injections at intervals of six months to maintain improvement.

Patient 2 is a 43 year old white male physician who had onset of involuntary head turning to the left at the age of 33. Medical treatment produced intolerable side effects and no improvement. At the age of 41, he received BTX injections every three to four months with moderate improvement but symptoms of head turning and pain returned four to six weeks after each injection. After each BTX injection, he developed severe dysphagia that persisted for two weeks. Before phenol was injected, he had moderately severe torticollis that was greatly improved by public speaking and manual activities.

Eight hours after the initial injection of 120 mg phenol into the left splenius capitis, splenius cervicis, and longissimus capitis muscles, he noted improvement in neck
Painful paroxysmal dystonia associated with focal epileptic activity.

F Bokstein, M Y Neufeld, P Nisipeanu and A D Korczyn

J Neurol Neurosurg Psychiatry 1995 58: 257-258
doi: 10.1136/jnnp.58.2.257

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/2/257.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/