improvement in neurological symptoms, indicating that the cytomegalovirus infection was an active clinical disease. The etiology of Bickerstaff’s brainstem encephalitis is still unclear. A relation with herpes simplex virus infection has been noted, but no patients with Bickerstaff’s brainstem encephalitis associated with cytomegalovirus infection have been reported.

With regard to the pathogenesis of Bickerstaff’s brainstem encephalitis, an immune mechanism has been considered.1-3 The patient, the presence of serum anti-GQ1b antibody, which is common in Fisher’s syndrome,4 indicated that humoral autoimmune mechanisms, common to Fisher’s syndrome, function in the development of Bickerstaff’s brainstem encephalitis.1 The typical signs of meningoencephalitis—namely, fever at the onset of neurologic symptoms, meningeal irritation and CSF pleocytosis—and detection of cytomegalovirus DNA in the CSF may indicate the involvement of cytomegalovirus infection. Both cytomegalovirus infection and a post-infection autoimmune mechanism may have caused clinical symptoms in this patient.

This research was supported in part by grants in aid from the Uehara Memorial Foundation.

AKIHIRO KANZAKI
SEIICHI YABUKI
Department of Neuroradiology,
Kochi Municipal Central Hospital,
Kochi, Japan

NORIHIO YUKI
Department of Biochemistry,
Tokyo Medical and Dental University,
Tokyo, Japan

Correspondence to: Dr Akihiro Kanzaki,
Department of Neurology, Kochi Municipal Central Hospital,
2-7-3 Sakuracho, Kochi 780, Japan.

1. Bickerstaff ER. Brain stem encephalitis (Bickerstaff’s encephalitis). In: Vincken PJ, Bruyn GW, eds. Handboek van clinical neurolo.


Raymond syndrome (alternating abduc-
ent hemiplegia) caused by a small haematomata at the medial pontomesul-
dary junction

Raymond syndrome1 is characterised by ipsilateral abducens nerve palsy and contralateral hemiplegia. Pure Raymond syndrome is extremely rare, as many nuclei and fibres exist near the root fibres of the abducens nerve. This is the first report in which the precise localisation of a pure form of Raymond syndrome was determined by MRI.

A 39 year old man awoke with horizontal diplopia, especially on right lateral gaze. Five days later, a Hess chart examination performed at the University Hospital showed a paresis of the right lateral rectus muscle. On admission 19 days after onset, the patient showed a mild paresis of the right abducens nerve and a subtle weakness of his left leg with moderate hyper-reflexia in the left upper and lower limbs. The Babinski reflex was positive and the abdominal reflex was absent on the left side and the Babinski reflex was negative and the abdominal reflex was positive on the right side. No facial weakness or deviation of the tongue on protrusion was found. All other general and neurological examinations were normal. Routine blood and urine examinations were normal. Evaluations of short latency somatosensory evoked potentials to posterior thalamic nerve stimulation, branstorm auditory evoked potentials, and blink reflex proved normal. Head CT was normal, but a brain MRI done 31 days after onset showed two punctate high signal intensity spots surrounded by low signal intensity areas at the medial pontomesulndary junction on both the T1 and T2 weighted images (figure). Vertebral angiography showed no abnormality. Thus the lesion was probably produced by a haemorrhage from a cavernous haemangioma at the pontomesulndary junction.

Both Millard-Gubler syndrome (facial palsy and contralateral hemiplegia) and Raymond syndrome are well known to induce crossed paralysis due to a caudal pontine lesion. The pure form of either syndrome has, however, rarely been reported. The lesion producing the pure Millard-Gubler syndrome2 is located more laterally than seen in our patient, whereas that producing isolated abducens nerve palsy3 is located more dorsally. As the haemorrhage was restricted to the ventral and medial pons, our patient was considered to show pure Raymond syndrome.

MARIE SATAKE
JUN-ICHI KIBA
TAKESHI YAMADA
TAKURO KOYASHI
Department of Neurology,
National Institutes of Health,
Faculty of Medicine,
Kyushu University,
Fukuoka 812, Japan


Pupillary dilatation and arm weakness as negative ictal phenomena

Transient ictal hemiplegia is an uncommon feature of epileptic attacks that were classified by Gastaut and Broughton as unilateral atomic seizures. The present case was of particular interest because hemiplegia was accompanied by dilatation of the pupil on the side of the hemiplegia.

A boy aged 9 years had a history of episodic weakness of his left upper and lower limbs, sometimes preceded by a sensation like a dog paw palling on his face since the age of 5. His mother said that he would stare and his left arm then dropped limply to his side while his left leg became weak for about 10 to 40 seconds. During this time his left pupil dilated. In some episodes his left eyelid fluttered and the left side of his mouth turned up and his left arm and leg remained weak. The attacks increased in frequency until he was having two to eight each day, but subsided to once daily when carbamazepine treatment was started. There was no history of head injury or other relevant illness and no family history of epilepsy. His EEG showed an almost continuous sharp and slow wave discharge arising in the right parietal region. Brain CT was normal but MRI four years later showed a hyperintense area involving both grey and white matter in the right parietal lobe; there was no mass effect or evidence of blood products surrounding the lesion.

At the age of 13 he underwent cranio-
tomy and electrocorticography to confirm the presence of an epileptic focus in the area surrounding an atrrophic gyrus in his right parietal cortex. The abnormal area was then excised. The histology report (Dr W A Evans) concluded that "I find this lesion hard to classify. It is most likely a hamatoma, possibly of a similar nature to the focal dysplasia of the cerebral cortex described by Taylor et al."

There was no postoperative neurological deficit and he was free of seizures until eight months later when his carbamazepine dosage was reduced from 1000 mg to 400 mg daily. Three years after the carbamazepine dose was again reduced, when he had a recurrence of daily attacks of fluttering of his left eyelid and weakness of his left arm, but not the left leg, lasting 20 seconds. His EEG showed focal right parietal slow activity without epileptogenic features. Since then he has been subject to episodes about every 10 days with dilatation of the left pupil, weakness of the left arm, and some twitching of the left side of his face lasting about 10-20 seconds. He has never had any jerking or involuntary move-
m ment of his left arm.

Construction of the left pupil in association with hallucinations projected into the left visual field was reported as an ictal phenomenon by Lance and Smee and
Raymond syndrome (alternating abducent hemiplegia) caused by a small haematoma at the medial pontomedullary junction.

M Satake, J Kira, T Yamada and T Kobayashi

J Neurol Neurosurg Psychiatry 1995 58: 261
doi: 10.1136/jnnp.58.2.261

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/2/261.1.citation

These include:

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/