Outcome are predestined consequences of the possession of the mysterious genetic predisposition. Each chapter gives a reliable and mostly comprehensive review of the background and recent research in its field. But is there an indication of progress towards understanding the central issue— the nature of the gene?

No edited book can be comprehensive but I missed contributions in epidemiology and structural brain studies. Why does the condition persist at high and (as the WHO studies suggest) approximately constant incidence, in spite of the well-known fertility disadvantage? What is the meaning of the now well-established, but much argued about, ventricular and cortical anomalies?

To my mind a chapter that approaches the right solution is that by Early who concludes that patients with schizophrenia have a variety of metabolic and behavioural features suggestive of impairment of left hemisphere dysfunction. But he then goes on to a "dopamine hemideciciency" model, which I believe was ruled out by the work of ourselves and others on post-mortem brain tissue 15 years ago.

My answer to Cromwell's question of what to do until the geneticist arrives is that we should look hard at the genetic and functional implications of cerebral asymmetry. As M Annett and MC Corballis (neither in the author index here) have emphasised, the functional separation of the hemispheres may be the evolutionary development that distinguishes the species homo sapiens from its primate precursors. One year ago I presented the hypothesis that psychosis represents a component of diversity generated by the process of mate selection acting on a gene (the "right shift factor" or cerebral dominance gene) that allows the two hemispheres to develop at different rates. To date only two publications (both by me) have referred to that Lancet paper of mine. But I think the general viewpoint that the genetics of cerebral asymmetry and psychosis are in some way related is the key to progress in our understanding of the origins, processes and outcome of schizophrenia. Somehow we need to get to the central issue and this paper is probably only one answer. But for reviews of what has been going on in a number of fields of psychophysiological, psychological and treatment research in the past decade or so this book is a reliable guide.

T J CROW


Does schizophrenia research progress? Here is a handsome volume that is described as developing within the Clinical Psychology Graduate Training Programme of the University of Kansas. The range of contributions is wide and although the emphasis is on psychology and functional analysis there is a useful chapter on Modern Diagnostic Criteria and Models of Transmission by P McGuffin and MC O’Donavan and a chapter by one of the editors (Cromwell) on "Things to do before the geneticist arrives". The "Origins" referred to in the title, therefore are assumed to be genetic. Processes and clinical neuropsychology. Areas covered span the spectrum from simple pen-and-paper neuropsychological tests to high-tech fields such as evoked potentials and cerebral blood flow imaging.

Given the rapid advances in cognitive neuropsychology, it is not surprising that the book, written in 1986, is showing its age in this field. The chapter on memory suffers particularly in this respect. More "neurological" research areas such as evoked potentials, electroencephalography and electromyography are covered in standard fashion. Given recent developments, the section on regional cerebral blood flow is least useful. Only Xenon studies are covered; there is no mention of SPECT, and PET is mentioned only briefly.

The book fulfils its purpose of providing a broad introduction to current neuropsychological research areas. Although dated, it will be of use in directing researchers to more definitive articles. It is less successful in its second aim of providing researchers with an account of recent advances in their area. Although an individual might consult it only occasionally, libraries in need of updating would find such institutes may find it a useful investment.

JOHN GREENE


Since the first edition of this book in 1979, single fibre electromyography (SFEMG) has become an established technique for the investigation of neuromuscular junction disorders by clinical neurophysiologists and neurologists. In this new edition, the authors show how the technique has been used to study the spatial organisation of motor units in neurogenic and myopathic disorders, the analysis of firing pattern, action-potential amplitude and conduction and propagation velocity, and velocity recovery function. Spike triggering techniques are also reviewed.

The format of this book is very similar to the first edition, but much of the text is new and the updated illustrations have made it unnecessary to retain the original atlas of recordings. There is a useful appendix of normal values, an inclusive reference list of more than 360 publications and a new section on scanning EMG. The chief value of the book for clinicians is the way it demonstrates the relationship between physiology and the application and interpretation of the technique. It will be useful for those who use SFEMG chiefly for the diagnosis of neuromuscular transmission disorders and for those who want to apply the technique more widely (for example, between steroid myopathy and relapse, for example). It is also useful as a basic text for research purposes. In short, it is an excellent and concise book for anyone with these interests and I am sure that it will remain the standard text for clinicians new to the field of SFEMG and for those who wish to update themselves.

SIMON BONIFACE