ceremonies in Fiji. Pharmacological preparations of kava are marketed in various European countries as mild anxiolytics (for example, Laitan or Kavasporal in Germany, Potter’s antigan tablets in the United Kingdom, Viocava in Switzerland, Mosario in Austria), and 547,000 units of preparations containing kava were sold in Germany during 1993. The basis of kava’s action has been attributed to a group of α-γ pyrones (dihydrokawain, kawa, dihydrokawain, methysticin, dihydromethysticin, yangonin, yangonin) present in the root extract of the kava plant, but little is known about the pharmacology of the kavalactone compounds.

We have recently seen four patients who developed clinical signs suggestive of central dopaminergic antagonism after exposure to various kava preparations.

Patient 1, a 28-year-old man, had a history of three episodes of acute dystonic reactions and exposure to promethazine (50 mg in 1983) and fluphenazine injections (1.5 mg in 1984). Each time biperiden (5 mg intravenously) had led to immediate and complete relief of symptoms. He denied further use of these drugs when he presented at our hospital with the complaint of an acute attack of involuntary neck extension with forceful upward deviation of his eyes, which had begun 90 minutes after the intake of the first dose of Laitan (100 mg kava extract) in 1986. The attack subsided spontaneously within about 40 minutes.

Patient 2, a 22-year-old woman, was prescribed Laitan (100 mg kava extract) because of anxiety and nervousness. Four hours after the first morning dose she experienced involuntary oral and lingual dyskinesia, tonic rotation of the head to the right, and painful twisting movements of the neck. After 45 minutes later 2.5 mg biperiden was given intravenously, and the dystonic reaction immediately subsided. There was no history of any other drug exposure during the preceding months.

Patient 3, an old woman, had experienced forceful involuntary oral and lingual dyskinesia of sudden onset after taking Kavasporal forte (150 mg kava extract) three times daily for four days because of anxiety. She was brought to the emergency room about one hour later, and 5 mg biperiden given intravenously immediately stopped the dyskinesia. The patient denied having taken any other medication during the preceding two weeks.

Patient 4, a 76-year-old lady, had first developed signs of idiopathic Parkinson’s disease at the age of 59. After eight years of levodopa treatment motor fluctuations and dyskinesia were becoming an increasing problem. When first seen she was taking 500 mg levodopa (plus 125 mg benzamide) per day and was experiencing motor bed-wetting in the early hours of the night. Haloperidol, 2 mg and stage III when “on” and stage V when “off”.

Kavasporal forte (150 mg kava extract) twice daily was prescribed by her general practitioner because of complaints of inner tension. Within 10 days she noted an increased duration of on/off periods. She returned to her normal baseline pattern within two days of discontinuing Kavasporal forte.

These case histories suggest that the sedative effects of kava might result from dopamine antagonistic properties of the extracts from the Piper methysticum plant. This possibility is also supported by clinical findings of beneficial effects of kava on schizophrenic symptoms in Australian Aborigines. Experimentally, kava extracts have been shown to antagonise stereotypies induced by apomorphine.4 We draw attention to the potential of extrapyramidal side effects of kava preparations and caution their use, particularly in elderly patients.

We hereby report abnormalities of lactate production only after muscular effort in asymptomatic carriers of LHON.

We studied 28 asymptomatic members of two unrelated Italian families with LHON. Family 1, with 14 members examined, had the np 11 778 mtDNA mutation only. Family 2 had the primary np 11 778 mutation plus the np 13 708 and 4216 secondary mutations. A control group of 30 normal volunteers was also studied. Serum lactate was measured immediately after 15 minutes of pedalling an electronically braked bicycle ergometer with the predicted heart rate, and 15 minutes after the end of exercise. Samples were collected without stasis in sodium fluoride containers and the plasma was immediately separated, frozen, and analysed (Lactate and DIMENSION, Bayer, Germany). No significant differences were found between carriers of family I and family II, whether carriers or non-carriers.

Our findings indicate that healthy carriers of 11 778 mtDNA mutations display abnor- mal lactate production only under conditions of muscular exertion. The lactate findings are thus in good agreement with our 31P-MRS studies of muscle again showing normal resting conditions but delayed recovery of phosphocreatine after effort in affected patients and asymptomatic LHON carriers alike. They imply that LHON should be considered a threshold character, and suggest that neurological dysfunction sets in when metabolic demands overcome the already impaired brain energy reserve.

To explain the preferential involvement of neural structures, it is interesting to note that, whereas normal skeletal muscle operates at a resting rate of 16–19% of its maximal velocity of ATP biosynthesis (Vmax, brain), brain resting rate of ATP synthesis is normally 55%, rising to 59–63% in LHON, much nearer to its maximal energy capacity, and thus also nearer to the theoretical threshold of energy failure. The reasons, however, for the preferential involvement of the optic nerve, although

Lactate concentrations (mean (SD)) mmol/l at rest, immediately after effort and 15 minutes after recovery in healthy carriers and non-carriers of LHON mtDNA mutation

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>After effort</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy carriers (n = 16)</td>
<td>0.99 (0.6)</td>
<td>2.63 (1.2)</td>
<td>1.62 (0.8)</td>
</tr>
<tr>
<td>Non-carriers (n = 12)</td>
<td>0.90 (0.4)</td>
<td>p<0.05</td>
<td>1.76 (1.0)</td>
</tr>
</tbody>
</table>

they may relate to the high frequency of the 11 778 mutant allele in the retinal cell layer and optic nerve,2 are still unclear.

P MONTAGNA
O PLAZZI
P CORTELLI
E LUGARESI
Institute of Neurology
P BARONI
Institute of Ophthalmology
M PIOCCI
Clinocchi!
S Orosio University,
Bologna, Italy
Correspondence to: Dr Pasquale Montagna, Clinica Neurologica Via Ugo Foscolo 7, 40123 Bologna, Italy.

Painless ischaemic lumbosacral plexopathy and aortic dissection

There is only one case report dealing with ischaemic lumbosacral plexopathy without simultaneous signs of limb ischaemia.1 We present a similar case characterised by the total absence of pain.

A 69 year old man suddenly developed a weakness and numbness of the right leg. He also complained of vague abdominal discomfort but no pain was felt in the leg. His risk factors included arterial hypertension and angina pectoris. He was not diabetic.

A neurological examination showed no pronounced global weakness (grade 0-2/5) of the right lower limb, including the hip flexors and the gluteal muscles. The knee jerk and the ankle jerk were abolished. Sensory disturbances were found below the L2 level on the right side. Light touch and proprioception were clearly impaired whereas sensation for pain and temperature was less diminished. The real denervation was noted and denervation was normal. Distal pulses were normal and there were no signs of muscle or skin necrosis. His CSF was normal. Aortic angiography showed a dissection extending from the origin of the descending thoracic aorta down to the bifurcation (type 3). The angiogram of iliac and femoral arteries showed distal arteries of lower limbs was normal.

An EMG taken two weeks later showed almost no voluntary motor unit potentials in the iliopsoas, quadriceps, glutei and thigh adductors muscles. Recruitment of motor unit was much reduced in other muscles of the right lower limb. Fibrillations and positive sharp waves were absent. Nerve conduction studies showed absent right sural and superficial peroneal sensory responses and low amplitude right posterior tibial and peroneal motor responses.

The patient had hypotensive treatment in the intensive care unit but dissection extended to the abdominal aorta causing haemopericardium and the patient died four weeks later. A necropsy was not performed.

Our patient probably had an acute ischaemic plexopathy. The sudden beginning of the clinical picture “like an apoplexy” was in favour of a vascular aetiology. The diagnosis of more distal neuropathies was not suspected as an angiogram of the extremities of the lower limbs was strictly normal. Ischaemic neuropathies are divided into those occurring with diseases affecting large arteries and those occurring without vascular lesions, such as diabetes, that affect small arteries. Acute ischaemia of peripheral nerves generally results from occlusion of a main proximal limb artery or from occlusion of many distal arteries. The rareness of such symptoms can be explained by the relative resistance of peripheral nerves to ischaemia. It results from their slight metabolic needs (oxygen requirement of human nerve = 0.3-0.5 ml/100 g) and from the speed of collateral formation, which provides a generous blood flow (43 ml/100 g/min).1

The nutrient arteries that supply peripheral nerves enter the epineurium and form a collateral vascular network of inter- and intraneuronal arteries along the length of the nerve, so that it is difficult to infarct a peripheral nerve. The intensity of nerve damage varies with the number of nutrient vessels, the availability of the collateral circulation, age of the nerve, and particularly duration of arterial occlusion.

The different fibres that constitute peripheral nerves seem to be altered selectively by ischaemia. In some studies, axons seem to affect the small fibres before the large ones and Schwann cells seem to be more resistant to axonia than axons. Nevertheless, opposite data are found in other studies, which suggest a greater vulnerability of large fibres.

Clinical features of ischaemic neuropathy are generally stereotyped.2 Sensory deficits are more frequent than motor deficits. In particular, signs of deep burning pain and neurological examination usually shows impairment of all sensory modalities or pattern of sensory loss that spares the large fibres. There are no signs of muscle necrosis. An EMG would show abnormalities consistent with axonal damage. Conduction blocks are unusual.

Such ischaemic lumbosacral plexopathies have been reported after aortobifemoral graft and aortofemoral bypass graft by resection of nutrient arteries, after use of an intra-aortic balloon, and after vasopasm caused by an injection of drugs into an infe-

Electroconvulsive therapy for the physical signs of Parkinson's disease without depressive disorder

Faber and Trimble1 have reviewed the reports on electroconvulsive therapy (ECT) in Parkinson's disease. We conducted a prospective open trial to evaluate the short term benefit of ECT on the physical signs of Parkinson's disease without major depressive disorder. This trial repeated measures time series design where all patients received a single baseline assessment before and two assessments after ECT; and were their own control group. Four sessions of ECT were given unilaterally to the non-dominant hemisphere over eight days. Approval for the study was given by the ethics committee, Royal Hobart Hospital and all patients gave written informed consent.

Fifteen patients (12 men) participated. Five failed to comply with all assessments and were therefore eliminated from the analyses. The remaining population (seven men and three women) had an average age of 64-8 years. The time since initial diagnosis of Parkinson's disease ranged from two months to 16 years. Most were severely
Abnormal lactate after effort in healthy carriers of Leber's hereditary optic neuropathy.
P Montagna, G Plazzi, P Cortelli, V Carelli, E Lugaresi, P Barboni and M Fiocchi

J Neurol Neurosurg Psychiatry 1995 58: 640-641
doi: 10.1136/jnnp.58.5.640

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/5/640.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/