CSF diversion in CSF fistulae

I read the article on benign intracranial hypertension as a cause of CSF rhinorhoea, by Clark et al, with great interest. It highlighted some of the difficulties associated with CSF diversion as the sole treatment of CSF dural fistule. The medical literature showed that the incidence of symptomatic pneumocephalus in these patients is 17% and the rate of postshunt meningitis is 11%. Cases 1 and 4 of Clark et al showed that stoppage of CSF rhinorhoea is not a guarantee of healing of the underlying dural rent, because the dura in these patients is often very thin and the underlying bone is eroded. The recurrent rate of CSF rhinorhoea after CSF diversion with surgical repair is 42% (table); however, CSF diversion as a secondary procedure for recurrent CSF leakage has been advocated for many years and seems to be very successful in allowing healing of the dural repair; it carries very few complications compared to shunting alone (table).

It seems, therefore, that the most appropriate course of action in patients with CSF fistule associated with benign intracranial hypertension is to drain the CSF perioperatively to facilitate intracranial dural repair of the cribriform plate and to continue the CSF drainage through a lumbar drain postoperatively for a few days. If the high CSF pressure persists after operation, a permanent CSF shunt should be inserted before the CSF leakage recurs.

M S Elijamel
Beaumont Hospital,
PO Box 1297, Dublin,
Ireland D89


P Bullock replies:
I thank Elijamel for his comments on our paper Benign intracranial hypertension: a cause of CSF rhinorhoea. He has in the past reviewed patients with a CSF leak from a wide range of aetiologies, and recognised the difficulties that are often experienced with lumboperitoneal shunts.

The purpose of presenting our group of patients with malignant intracranial hypertension who had already undergone a lumbo-peritoneal shunt was to highlight the difficulties that are encountered with a high pressure CSF leak, and warn of the hazards that may be encountered at craniotomy. To the best of our knowledge this is the first time that this group of patients has been reported, and one would recommend a revision of Ommaya's original classification of high pressure CSF leaks to include patients with benign intracranial hypertension.

PETER BULLOCK
Department of Neurosurgery,
The Maudsley Hospital,
Denmark Hill, London, UK

Hemiballism in Parkinson's disease

Two patients with Parkinson's disease who developed severe and persistent hemiballism with improvement of parkinsonian signs were recently reported independently by Vidakovic et al and Inzelberg and Korscyn in the August issue of the Journal. They add to two previously published cases showing the same combination. A transient hemichorea-Chimballism was found in 5% of patients with Parkinson's disease treated with stereotactic surgery and its severity occasionally gave rise to serious complications. Our own experience with a large number of monkeys treated with 1,2,3,6-tetrahydrodipryside to induce parkinsonism and submitted to subthalamo-mesy indicates that hemichorea-ballism is a common manifestation, despite which all animals showed considerable improvement in motor performance in the dyskinetic arm, confirming the previous experiences of Bergman et al and of Aziz et al. The occurrence of persistent and severe hemichorea-ballism after placing a lesion in the subthalamic nucleus (STN) is not, however, a necessary requirement to achieve improvement in parkinsonian signs as shown by the patient reported by Sellal et al. Chorea-ballism results when neuronal activity in the sensorimotor region of the globus pallidus medialis(GPM) falls below a given threshold due to reduction in the excitatory STN drives. In the parkinsonian state, the STN-GPM pathway is hyperactive and the inhibitory afferent activity to the GPM from the external pallidum and the striatum is reduced, resulting in exaggerated and abnormal neuronal firing in GPM. It is very likely that similar changes occur in the substantia nigra reticulata. Whether or not severe and permanent dyskinesia will result after an STN lesion probably depends on the degree of GPM neuronal activity shifting from a hyperactive (parkinsonism) to a near normal or hypokinetic (chorea-ballism) state. According to experience with monkeys, the possibility of obtaining a favourable equilibrium and a good thera-petic response by subthalamo-mesy depends on two major factors: firstly, the degree of dopaminergic depletion that conditions the severity of parkinsonism and therefore, the level of GPM hyperactivity; secondly, the extent of the subthalamic lesion, which will determine the reduction in GPM neuronal firing.

The STN is probably the basal ganglia structure with the greatest capacity to modify basal ganglia output through its connections with the GPM, substantia nigra reticulata, and brain stem reticular formation (pedunculopontine nucleus etc). The variety of symptoms and signs of Parkinson's disease suggests the participation of many basal ganglia output pathways in the pathophysiology of parkinsonism. On balance, we think that the data now available are encouraging for further consideration of the STN as a surgical target in Parkinson's disease.

JA OBESO
J GURIDI
G LINAZASORO
E RAMOS
Movement Disorders and Functional Neurosurgery Unit,
Clínica Universitaria, Pamplona and
Clinica Quirín,
San Sebastián, Spain

Correspondence to: Professor J A Obeso
Departamento de Neurología y Neurocirugía,
Universidad de Navarra, Facultad de Medicina,
Apartado 192, 31080 Pamplona, Spain.


Inzelberg and Korscyn reply:
We thank Obeso et al for their comments on our communication. The patient described by us had been parkinsonian for several years before developing a severe hemichorea-ballism into the subthalamic nucleus. Figure 1 shows the CT demonstrating the lesion (because of a printing error, a different figure was appeared with the article). Obeso et al correctly emphasised the central role of the subthalamic nucleus, which is strategically placed to modulate the output of the basal ganglia. The subthalamic nucleus is hyperactive in Parkinson's disease, thus increasing the inhibitory output from the globus pallidus. Levodopa reverses this situation, resulting in dyskinesias (fig 2); lesions of the subthalamic nucleus, as in our patient and several others,4,8 abolish the excitatory drive from the subthalamic nucleus to the globus pallidus.

Downloaded from http://jnnp.bmj.com/ on June 25, 2017 - Published by group.bmj.com
CSF diversion in CSF fistulae.

M S Eljamel

J Neurol Neurosurg Psychiatry 1995 58: 645
doi: 10.1136/jnnp.58.5.645

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/5/645.1.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/