CSF diversion in CSF fistulae

I read the article on benign intracranial hypertension as a cause of CSF rhinorhoea, by Clark et al, with great interest. It highlighted some of the difficulties associated with CSF diversion as the sole treatment of CSF dural fistulae. The medical literature shows that the incidence of symptomatic pneumocephalus in these patients is 17% and the rate of postshunt meningitis is 11%. Cases 1 and 4 of Clark et al showed that stoppage of CSF rhinorhoea is not a guarantee of healing of the underlying dural rent, because the dura in these patients is often very thin and the underlying bone is eroded. The recurrent rate of CSF rhinorhoea after CSF diversion was 42% (table); however, CSF diversion as a secondary procedure for recurrent CSF leakage has been advocated for many years and seems to be very successful in all cases of the repair; it carries very few complications compared to a shunting alone (table).

It seems, therefore, that the most appropriate course of action in patients with CSF fistula associated with benign intracranial hypertension is to drain the CSF perioperatively to facilitate intracranial dural repair of the cribriform plate and to continue the CSF drainage through a lumbar drain postoperatively for a few days. If the high CSF pressure persists after operation, a permanent CSF shunt should be inserted before the CSF leakage recurs.

M S ELJAMEL
Beaumont Hospital,
PO Box 1297, Dublin,
Ireland D09

P BULLOCK reply:
I thank Eljamel for his comments on our paper Benign intracranial hypertension: a cause of CSF rhinorhoea. He has in the past reviewed patients with a CSF leak from a wide range of aetiologies, and recognised the difficulties that are often experienced with lumboperitoneal shunts. The purpose of presenting our group of patients with malignant intracranial hypertension who had already undergone a lumboperitoneal shunt was to highlight the difficulties that are encountered with a high pressure CSF leak, and warn of the hazards that may be encountered at craniotomy. To the best of our knowledge this is the first time that this group of patients has been reported, and one would recommend a revision of Ommaya's original classification of high pressure CSF leaks to include patients with benign intracranial hypertension.

JEFFERSON E BULLOCK
Department of Neurosurgery,
The Maudsley Hospital,
Denmark Hill, London, UK

Summary of pooled data on CSF diversion in patients with CSF fistulae

<table>
<thead>
<tr>
<th>CSF diversion</th>
<th>Primary treatment</th>
<th>Secondary to dural repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>Recurrent CSF leakage</td>
<td>42%</td>
<td>8-6%</td>
</tr>
<tr>
<td>Symptomatic pneumocephalus</td>
<td>17%</td>
<td>9-6%</td>
</tr>
<tr>
<td>Postshunt meningitis</td>
<td>11%</td>
<td>2-8%</td>
</tr>
</tbody>
</table>

ever, a necessary requirement to achieve improvement in Parkinsonian signs as shown by the patient reported by Sellal et al. Chorea-ballism results when neuronal activity in the sensorimotor region of the globus pallidus medialis (GPM) falls below a given threshold due to reduction in the excitatory STN drives. In the parkinsonian state, the STN-GPM pathway is hyperactive and the inhibitory afferent activity to the GPM from the external pallidum and the striatum is reduced, resulting in exaggerated and abnormal neuronal firing in GPM. It is very likely that similar changes occur in the substantia nigra reticulata. Whether or not severe and permanent dyskinesia will result after an STN lesion probably depends on the degree of GPM neuronal activity shifting from a hyperactive (parkinsonism) to a near normal or hypotensive (chorea-ballism) state. According to experience with monkeys, the possibility of obtaining a favourable equilibrium and a good thera- peutic response by subthalamicotomy depends on two major factors: firstly, the degree of dopaminergic depletion that conditions the severity of parkinsonism and therefore, the level of GPM hyperactivity; secondly, the extent of the subthalamic lesion, which will determine the reduction in GPM neuronal firing.

The STN is probably the basal ganglia structure with the greatest capacity to modify basal ganglia output through its connections with the GPM, substantia nigra reticulata, and brain stem reticular formation (pedunculopontine, etc.). The variety of symptoms and signs of Parkinson's disease suggests the participation of many basal ganglia output pathways in the pathophysiology of parkinsonism. On balance, we think that the data now available are encouraging for further consideration of the STN as a surgical target in Parkinson's disease. J A OBSEO
J GURIDI
G LINAZASORO
E RAMOS
Movement Disorders and Functional Neurosurgery Unit,
Clinic Universitaria, Pamplona and Clinica Quirin,
San Sebastian, Spain

Correspondence to: Professor J A Obeso,
Departamento Neurologia y Neurocirugia,
Universidad de Navarra, Facultad de Medicina,
Apartado 192, 31080 Pamplona, Spain.

Inzelberg and Korczyn reply:
We thank Obeso et al for their comments on our communication. The patient described by us had been parkinsonian for several years before development of severe hemiballism and hemichorea-ballism into the subthalamic nucleus. Figure 1 shows the CT demonstrating the lesion (because of a printing error, a different figure appeared with the article). Obeso et al correctly emphasised the central role of the subthalamic nucleus, which is strategically placed to modulate the output of the basal ganglia. The subthalamic nucleus is hyperactive in Parkinson's disease, thus increasing the inhibitory output from the globus pallidus. Levodopa reverses this situation, resulting in dyskinesiae (fig 2). Lesions of the subthalamic nucleus, as in our patient and several others, abolish the excitatory drive from the subthalamic nucleus to the globus pallidus.
Hemiballism in Parkinson's disease.

J A Obeso, J Guridi, G Linazasoro and E Ramos

J Neurol Neurosurg Psychiatry 1995 58: 645-647
doi: 10.1136/jnnp.58.5.645-b

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/5/645.3.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/