mmol/l), total bilirubin (1.59 mg/dl), \(\gamma \)-glutamyl transferase (73 U/L), and prothrombin time (1.37 international normalised ratio, normal values from 1.00 to 1.27). Examination of CSF one day after admission showed a raised CSF/serum albumin ratio (12.5), but no malignant cells were detected and glucose concentration; fluid was sterile on culture.

Oligoclonal IgG bands were absent in the CSF. A cranial CT on admission as well as bilateral carotid angiography three days after admission were normal. Five days after admission her mental state deteriorated. She was intubated and transferred to the neurology intensive care unit. On admission there she was comatose without reaction to painful stimuli. Oculocephalic responses were absent. The isocoric pupils had slight bilateral reaction to light. Corneal reflexes were symmetrical present. An EEG showed diffuse slowing. She had hypotension requiring fluid administration, dopamine, and noradrenaline. She had a fever (39°C) and a raised C-reactive protein concentration (13.9 mg/dL); antibiotic treatment (imipenem plus erythromycin) was initiated. Repeat cranial CT was normal.

Twenty four hours after admission at the intensive care unit she acutely developed bilateral dilated pupils and an altered mental state. Immediate CT showed severe intraventricular haemorrhage (figure, A). Coagulation studies (prothrombin time, partial thromboplastin time, platelet count) determined on the same day as well as the day before intraventricular haemorrhage were normal. The patient had no clinical signs of cutaneous or mucous bleeding. Despite immediate insertion of bilateral intraventricular drains the patient died 14 hours after admission.

At necropsy the brain weighed 1440 g and showed some arteriosclerosis of the great arteries at the base of the brain.

and cystectomy with construction of an ileal conduit were performed. Two and a half weeks before admission the patient developed a rectovaginal fistula; the rectum and sigmoid colon were resected and an end colostomy and another ileal conduit were constructed. Oesophagostomy, performed because of vomiting four days before admission, showed candidiasis of the oesophagus. Neurological examination showed that the patient was disorientated in time, had a right sided abducens paresis, horizontal gaze evoked nystagmus to the left, and a vertical gaze evoked nystagmus upward. The tendon reflexes were normal. She had no paresis of the extremities, but slight dysmetria of the arms and legs. There were no sensory abnormalities. Routine laboratory tests were normal except for serum glucose (243 mg/dL), potassium (2.4

Neuropathological studies in patients with Wernicke's encephalopathy have shown symmetrical lesions in the paraventricular regions of the thalamus and hypothalamus, in the mamillary bodies, periaqueductal region of the midbrain, floor of the fourth ventricle, and midline structures of the lateral ventricle. Histologically, the acute lesions were found in and around blood vessels. Hypertrophic endothelial cells, demyelination, loss of neuropil, proliferation of astrocytes, and microglial reaction; preservation of neurons have been reported in neuropathological studies. Periventricular haemorrhages, usually petechial in size, may be found in up to 20% of cases. Two patients were reported to have cases of extensive haemorrhagic brainstem lesions detected on necropsy.

Wernicke's encephalopathy remains a clinical diagnosis, because of the sensitivity of neuroimaging in this setting. Initial CT in our patient was normal. Haemorrhages due to Wernicke's encephalopathy detected on CT or MRI are seldom reported in the medical literature. In this report scattered haemorrhages in the thalami and posterior diencephalon in a patient with Wernicke-Korsakoff syndrome were shown by CT. In a case report a small haemorrhagic lesion adjacent to the body of the lateral ventricle was discovered on MRI. The severe intraventricular haemorrhage due to Wernicke's encephalopathy as seen in our patient raises the question of whether spontaneous bleeding of Wernicke's encephalopathy was accentuated by an associated coagulopathy. At the time of ventricular haemorrhage the data on clotting studies were normal. Moreover, the patient had not received anticoagulant agents.

HANS-WALTER PFISTER
FRIEDRICH VON ROSEN
Department of Neurology
Institute for Neuropathology
Karl-Bisel-Strasse 8
81377 Munich, Germany

Correspondence to: Professor Hans-Walter Pfister, Ludwig-Maximilians-University, Department of Neurology, Klinikum Großhadern, Marchioninistrasse 15, 81377 Munich, Germany.

Neuromyotonia in association with malignant hyperpyrexia

We report a case of neuromyotonia in a patient with malignant hyperpyrexia.

The patient, a 19 year old woman, had had several discrete episodes of muscular stiffness, including those referred to as the "dancing man" syndrome, with twitching of the hand and calf muscle. Episodes of calf muscle contracture and pain had occurred from the age of 5 with two severe episodes at the ages of 5 and 16.
Some of the episodes may have been associated with fever. A third severe episode occurred at an age of 19 weeks after normal vaginal delivery of a healthy child. She developed rapid onset of spasms affecting her legs and arms which progressed so that she had difficulty breathing and swallowing. She was also vomiting. Examination showed a temperature of 42°C with tachycardia and tachypnoea and generalised muscular spasm. Her creatinine kinase was raised at 740 IU/l for investigation for an infective source, including blood cultures, which were negative. A chest radiograph was normal and autoantibodies were negative. She responded well to treatment with intravenous dantrolene within one week and had no permanent neurological sequelae.

Further admissions to a general medical unit occurred two weeks after starting phenytoin, with rash, fever and generalised muscle stiffness, and two months later after starting trimethoprim for a urinary infection, with rash and muscle stiffness only. No further episodes have since occurred during treatment with carbamazepine.

In addition to the episodes of fever and muscle stiffness she has several years of twitching of the hand and calf muscles. No muscle spasm due to exertion or cold was described. Neurological examination showed an error of both calciuni and continuous twitching of the calves and forearms. Two sisters and her parents had no neuromuscular symptoms; none had ever received a general anaesthetic.

Sensory and motor nerve conduction studies and EMG were performed. The sensory (superficial peroneal and median) and motor (posterior tibial and median) distal latencies and conduction velocities were normal. The sensory nerve action potential amplitudes were normal as were the compound muscle action potential (CMAP) amplitudes recorded from the abductor pollicis brevis and abductor hallucis. The CMAP waveforms were followed by after discharges lasting for up to 50 seconds, which made accurate estimation of F wave latencies impossible. Concentric needle EMG of tibialis anterior and medial gastrocnemius showed repetitive spontaneous discharges of motor unit potentials at all sites sampled. This activity occurred irregularly in rhythmic bursts of 1–5 second bursts at high rates (50/200/s).

This patient has electrophysiologically established spontaneous and stimulus induced neuromyotonia without neuropathy with episodes of hyperpyrexia consistent with malignant hyperthermia.1 Patients with neuromyotonia may have increased sweating and feel unwell but we think that malignant hyperthermia has not previously been described. The underlying defect in neuromyotonia is likely to lie in the nerve cell membrane, and some patients may have potassium channel abnormalities.1 Malignant hyperthermia has been associated with muscle membrane disorders, and abnormalities in muscle ion channels have been described.2 We suggest an anomalous ion channel common to muscle and nerve as a possible mechanism from the association in this patient.

Correspondence to Dr Newman.

Arg296 to Cys296 polymorphism in exon 6 of cytochrome P-450-2D6 (CYP2D6) is not associated with multiple system atrophy

An allelic association between mutant alleles of the cytochrome P-450-2D6 (CYP2D6) and Parkinson’s disease has been shown by several groups.1 The analysed mutations lie in exon 4 and 5 of the CYP2D6 gene, homologous to the human metaboliser phenotype. Analysis of these mutant alleles among patients with multiple system atrophy showed no difference in the frequency of these alleles from that in control subjects.2

Our further polymorphism causing an amino acid change from Arg296 to Cys296 at the HhaI site in exon 6 of the CYP2D6 gene has been described.3 The frequency of this polymorphism, which is not associated with the poor metaboliser phenotype,4 was 26% among normal white subjects,5 but only 9% in Japanese control subjects.6 Recently, an association with the Arg296 to Cys296 polymorphism was observed in a small series of 10 Japanese patients with multiple system atrophy and it was suggested that this polymorphism may be a useful marker for susceptibility to the disease.7

We examined the frequency of this polymorphism in a larger series of 74 white patients with multiple system atrophy. The diagnosis was clinical in 59% and pathologically established in 41%, in whom frozen brain samples were analysed. The method for the detection of the polymorphism has been described elsewhere.8 Our results show a similar frequency of the mutant allele (48 of 148 total alleles) among the patients with multiple system atrophy to the published frequency among white control subjects (32% ± 26%; x² = 0.97, P = 0.32).

We conclude that, at least in white subjects, the HhaI polymorphism in exon 6 of the CYP2D6 gene is not associated with multiple system atrophy and is therefore not a useful marker for susceptibility to multiple system atrophy.

Financial support from the Deutsche Forschungsgemeinschaft (DFG) and the Parkinson’s Disease Society is gratefully acknowledged.

O BANDMANN G WENNING P F QUINN A E HARDING

Ataxic hemiparesis with bilateral leg ataxia from pontine infarct

Ataxic hemiparesis is a syndrome characterised by weakness and cerebellar-like ataxia on the same side of the body.1 A lesion resulting in ataxic hemiparesis must involve both the corticospinal fibres and the afferent or efferent cerebellar fibres in locations where the tracts are in close proximity. The afferent and efferent cerebellar fibres form a loop extending from the cerebral cortex through the pons and middle cerebellar peduncle to the cerebellar cortex and then extending from the dentate nucleus through the superior cerebellar peduncle, red nucleus, and thalamus back to the cerebral cortex. Ataxic hemiparesis associated with lesions in the corona radiata, thalamus, midbrain, and pons. Fisher and Cole first reported that a paramedian infarct of the basis pontis located at the junction of the upper one third of the pons with the lower two thirds could produce a contralateral ataxic hemiparesis.1 One of the major questions concerning pontine ataxic hemiparesis is why the limb ataxia is ipsilateral to the lesion and not bilateral.2 The corticopontine fibres terminate by synapsing with the pontine nuclei and most fibres then cross the midline to enter the contralateral middle cerebellar peduncle. A basis pontis infarct might thus be expected to produce bilateral limb ataxia because it would involve ipsilateral pontine nuclei and corticopontine fibres as well as pontocerebellar fibres that have crossed from the contralateral side. We report a case of a mid-pontine paramedian infarct with caudalateral extension resulting in ataxic hemiparesis with bilateral leg ataxia.

An 80 year old white man with a history of coronary artery disease suddenly noticed left sided weakness. On examination, he had
Neuromyotonia in association with malignant hyperpyrexia.

T D Griffiths, S Connolly, P K Newman and M C Bateson

J Neural Neurosurg Psychiatry 1995 59: 556-557
doi: 10.1136/jnnp.59.5.556