The occurrence of ATLL in a patient with HAM is extremely uncommon and has been described in only three other patients. 1,3

It has been shown that the viruses isolated from patients with HAM and ATLL are identical in their genomic composition. The HTLV-I carrier rate in controls has been estimated to be 15% in the general population in Japan, and 5% in the Caribbean. The lifetime risk of developing ATLL if infected with HTLV-I is 2% to 5% with an interval of about 30 years between acquiring the infection and developing symptoms. On the other hand the lifetime risk of developing HAM/TSP has been estimated to be 0-25%. Familial clustering of HAM and ATLL has been recognised but the occurrence of both the conditions in the same family is extremely uncommon. Shoji et al. 2 describe the case of a 37 year old Japanese female patient with HAM whose father had previously died of ATLL.

Why the two diseases, although caused by the same virus, do not occur in the same person, or for that matter in the same family, is not clear. The magnitude of the immune response in patients with HAM tends to be higher, as evidenced by the higher titres of the anti-HTLV-I antibodies in the serum as well as the CSF. By contrast the immune response in controls as well as in patients with ATLL. The degree of immune responsiveness is related to host genetic influences and the existence of HAM associated haplotypes and ATLL associated haplotypes has been suggested. Moreover, in vitro studies in patients with HAM have shown a high lymphocyte proliferation rate, spontaneously as well as in response to stimulation with HTLV-I virus gene products, compared with asymptomatic carriers or patients with ATLL. Also, the virus integration site into the host genome in HAM is random, whereas it integrates at a very specific locus in ATLL. The monoclonal integration of proviral DNA in ATLL consists of the long terminal repeat 5’3 ‘‘tax’’ gene, the product of which induces interleukin 2 receptor expression and T cell proliferation.

KUMAR RAJAMANI PF RUGMAN C S VAKIL
Departments of Neurology and Haematology, Royal Preston Hospital, Preston, UK

Correspondence to: Dr S D Vakil, Department of Neurology, Royal Preston Hospital, Preston PR2 4HT, UK

MATTERS ARISING

Magnetic resonance spectroscopic study of Parkinson's disease related to boxing

We read with interest the paper by Davie et al reporting a study of proton magnetic resonance spectroscopy (MRS) in three ex-boxers with Parkinsonism.1 They report a significant reduction in the absolute concentration of N-acetyl-aspartate (NAA) in the putamen and globus pallidus in the boxes with a Parkinsonian syndrome compared with patients with idiopathic Parkinson’s disease and controls. They speculate that the reduced NAA may result from neuronal loss in the corpus striatum secondary to head trauma. In support of this hypothesis reference is made to their previous study in which it was reported that NAA is reduced in the lentiform nucleus in patients with striatonigral and olivopontocerebellar variants of multiple system atrophy compared with patients with idiopathic Parkinson’s disease and controls.2

This interpretation may be too simplistic. We have recently carried out a pilot study using MRS in 10 patients with idiopathic Parkinson’s disease with motor response fluctuations on chronic levodopa treatment (satisfying the United Kingdom Brain Bank criteria for Parkinson’s disease, idiopathic Parkinson’s disease) and seven healthy age matched controls using a voxel size of 4 ml centred on the putamen and one cerebellar hemisphere.3 We found a consistent and striking reduction in NAA/creatine and NAA/choline ratios in the putamen in patients with idiopathic Parkinson’s disease but not in controls. The choline/creatine ratio between controls and idiopathic Parkinson’s disease patients, and the cerebellum were unchanged suggesting that the changes seen were due to changes in MR-visible NAA itself. Repeat studies in two patients three months later, with regions of interest centred on the putamen bilaterally, showed similar reductions in the observed NAA signal.

These findings contrast with the results reported by Davie et al and raise several questions about the importance of localised changes in brain NAA in idiopathic Parkinson’s disease and related disorders.4 Firstly, the exact positioning of the region of interest and voxel size are both likely to be crucial. The spectra analysed by Davie et al1 were obtained from a voxel centred on the globus pallidus and striatum, whereas ours was restricted to the putamen. Striatal pallidal degeneration is a feature of multiple system atrophy, but not (so far as is known) of idiopathic Parkinson’s disease.5 The findings of Davie et al thus may reflect the pathological changes in the pallidum rather than in the putamen. Certainly, it is not possible to conclude from the study of Davie et al1 that striatal NAA concentration is unchanged in idiopathic Parkinson’s disease compared with multiple system atrophy and other related disorders.

Similarly, in the study of Holshouser et al in which there were no significant differences in ‘‘striatal’’ NAA/choline ratios in patients with idiopathic Parkinson’s disease between 51 and 70 years of age (with controls), the region of interest was centred wholly on the globus pallidus, not in the putamen and a much larger voxel size (8 ml) was used.6 Furthermore, Holshouser et al suggested that choline in ipsilateral caudate in idiopathic Parkinson’s disease and controls were in the normal range and it is surprising, therefore, to note that they found significant reduction in NAA/choline and not NAA/creatine ratios in idiopathic Parkinson’s disease.7 Thus, at present conclusions on the relevance of changes in NAA concentration or NAA/creatine ratios in the ‘‘striatum’’ in idiopathic Parkinson’s disease, multiple system atrophy, and other neurodegenerative disorders such as progressive supranuclear palsy or parkinsonism in boxers are premature.8

Our finding of reduced NAA/creatine and NAA/choline ratios in Parkinson’s disease may reflect a functional change, loss of nigrostriatal dopamine terminals, or loss of intrinsic striatial neurons, or a combination of these factors. Diagnostic error is another possibility as the presence of parkinsonism of idiopathic Parkinson’s disease has an accuracy of 82% but the reduction in NAA/creatine ratios were consistent in most of our patients diagnosed with the disease.9 Further work is needed to establish the best paradigms for acquiring spectra in idiopathic Parkinson’s disease and related disorders to decide whether striatal (putaminal) NAA really is reduced, and to understand the limitations of proton magnetic resonance spectroscopy.

R. KAY CHAUDHURI
G. LEMMENS
S C R WILLIAMS
P N LEIGH
University Department of Neurology, Institute of Psychiatry and King’s College School of Medicine and Dentistry, Denmark Hill, London SE5 8AF, UK

Magnetic resonance spectroscopic study of parkinsonism related to boxing.

K R Chaudhuri, G Lemmens, S C Williams and P N Leigh

J Neurol Neurosurg Psychiatry 1995 59: 561-562
doi: 10.1136/jnnp.59.5.561

Updated information and services can be found at:
http://jnnp.bmj.com/content/59/5/561.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/