Cerebral MRI performed six months after onset of symptoms showing areas with decreased signal intensity on TW1 in both cerebellar hemispheres.

more than 3 SD below the expected level. Comparing his test results with age and education corrected norms, he showed specific dysfunctions regarding speed of information processing, motor speed, visuomotor coordination, and tactual-perceptual functions. On these tests he performed between 2 SD and 4 SD below the expected level. There was also a discrepancy between verbal and non-verbal intellectual capacity with a pronounced decrease on the performance IQ score of 64 compared with his verbal IQ of 89. The motor tests and some of the sensory-perceptual tests showed a left-right discrepancy of more than 1 SD with right-hand performance better than the left. On tests for verbal intellectual functions, memory, and other higher cortical functions, he performed within the normal range.

The rehabilitation therapy was terminated after four months. At this time his general functioning was moderately improved, but objective signs on neurological examination were essentially unchanged. Re-examination 24 months after the onset of neurological symptoms showed unchanged clinical findings on neurological examination, whereas cerebral MRI showed regression of the cerebellar changes. Neuropsychological re-examination showed some improvement, with a Halstead impairment index of 0–6, an improvement of 1.5 SD from the initial examination. The improvement was most obvious in time and motor dependent tests, but was also evident in tests for non-verbal cognition and sensory perceptual functions. The left-right discrepancy seen initially on some tests was now less obvious.

The clinical and radiological findings in our patient are consistent with the previously reported cases of leucoencephalopathy after inhalation of heroin.1,2 Unlike most of the reported patients however, our patient managed to terminate his drug misuse and was accessible for follow up examinations. In the previously reported cases there has been a symmetric hypodensity of both cerebellar hemispheres on cerebral CT; in some cases CT also has shown hypodensity of cerebral white matter. Neuropathological studies have shown oedema of the cerebral and cerebellar white matter, and to a lesser degree also of the grey matter. This condition has been termed spongiform leucoencephalopathy because microscopic investigations have shown that the myelin sheaths were swollen and vacuolated, and some were totally destroyed. The axons were spared.2,4

Spongiform leucoencephalopathy after inhalation of heroin pyrolysat is a rare complication, and so far only 56 cases have been reported in Europe and Asia. Of these, more than 50% were in South East Asia, where this mode of heroin intake is common, the condition has never been reported. In Europe it seems that when it occurs several cases are reported in an epidemic. It has therefore been suggested that the aetiology, which is still unknown, is related to the heroin batch and could perhaps be a toxic effect of one or more of the heroin additives.

In our case we were however able to obtain any sample of the heroin batch used by the patient for analysis. This has, however, been done in other reports, and none of the common heroin additives detected, such as caffeine, phenobarbital, methaqualone, procaine, piracetam, and lignocaine, is known to cause this kind of encephalopathy.1

Spongiform leucoencephalopathy has so far been almost entirely related to inhalation of heroin. One reason may be that the dose acquired by direct inhalation is much greater than the doses obtained by smoking or sniffing. Another explanation is that the process of heating creates a new compound from either the heroin or one of the additives, and which in turn causes the leucoencephalopathy. Because this leucoencephalopathy tends to occur as small epidemics it seems more likely that it is related to one of the irregularly occurring additives. Other modes of heroin intake do not seem to be associated with this condition. It is possible that in the case of a two and a half year old boy recently reported.7 In this case the mode of intake was unknown, but inhalation was considered improbable. With this exception it therefore seems that inhalation is essential for the development of this state.

The heroin inhaled by our patient originated, according to his own statement, mainly from the same batch. He shared the heroin with a friend, who usually required greater doses than our patient to reach the same effect. The girlfriend never developed any symptoms and showed normal findings on neurological examination. This suggests that the aetiology is not only related to toxicity of the heroin or its additives, but also to an individual disposition.

Severe neuropsychological deficits are seldom seen in ordinary opiate abuse. A previous study of seven patients receiving injections of high doses of pharmaceutical heroin for an average of 32 years, showed normal or no cerebral CT abnormalities and only slight cognitive impairment in terms of reduced verbal memory function and speed of information processing.8 To our knowledge none of the previously reported cases of spongiform encephalopathy after inhalation of heroin have been neuropsychologically examined. Our patient had pronounced neuropsychological impairment not typically seen in heroin addicts.4 In south-east Asia impaired motor and coordination problems are fully consistent with the cerebellar abnormalities seen on MRI, the cognitive and sensory-perceptual deficits are less in the cerebral origin, and the verbal performance discrepancy and the neuropsychological test profile might indicate a relatively more severe affection of the right hemisphere. The sensory perceptual and cognitive deficits could be explained by affection of cerebral white matter.

E GULOWSEN CELUS
Department of Neurology, Ullevål Hospital, Norway
S ANDERSSON
Sammen Rehabilitation Hospital, Norway
Correspondence to: Dr Elisabeth Gulowsen Celus, Department of Neurology, Ullevål Hospital, 0137 Oslo, Norway.


Sixth nerve palsy from a CNS lesion in chronic inflammatory demyelinating polyneuropathy

Evidence of demyelination of the CNS has been found in half of the patients with chronic inflammatory demyelinating polyneuropathy (CIDP) as shown by MRI, but only a few patients have shown evidence of CNS involvement.1 Sometimes a relapsing multifocal course resembling multiple sclerosis precedes CIDP.2 Involvement of cranial nerves is uncommon in CIDP, but cranial nerve impairment may be the first manifestation.3 Although an immune attack on nerve myelin sheaths is a likely explanation, a central cause should also be considered. We report a patient with CIDP who developed unilateral sixth nerve palsy associated with a pontine white matter lesion.

In March 1993 a 48 year old man developed tingling in his hands and feet followed by progressive weakness of the legs leading to walking impairment after three weeks. In June severe weakness of all limbs was present; tactile, vibratory, and pain sensations were decreased in the hands and feet, and there was areflexia. Analysis of CSF showed a raised protein content of 1.0 g/l (normal <0.4). Nerve conduction studies fulfilled the criteria for CIDP. In the sural nerve biopsy some axonal degeneration was found with a normal density of myelinated fibres (6048/mm²); CD3 positive T lymphocytes were scattered throughout the biopsy. The patient recovered gradually after a five day course of intravenous immunoglobulin treatment (IVlg 0.4 g/kg/day). In November 1993 his condition seriously deteriorated, to improve again after treatment with IVlg. In both relapses there were increased concentrations of mutant T lymphocytes in the peripheral blood; values returned to normal during remission.4

In January 1995 he suddenly experienced diplopia while driving his car. Examination there was a complete paralysis of the left abducens nerve but no signs of a relapse.
of the neuropathy. After three months the diplopia had disappeared. The CSF showed 6 x 10^6 mononuclear cells and a protein content of 0.88 g/l; some oligoclonal bands were present, but the IgG index was normal. Brain MRI showed multiple abnormalities of periventricular white matter. tính có thể được giải thích sau khi tiếp cận quản trị, gây ra sự kích cỡ cho một số viêm não có chức năng phân giải

We thank Dr I. Jaap Kappelle for his comments.

Correspondence to: Dr Wokke.


Capture-recapture methods for precise measurement of the incidence and prevalence of stroke

Capture-recapture methods, originally developed for wildlife censuses, are increasingly being used in epidemiology to estimate the incidence and prevalence of disease in the population. The principle is that two or more censuses are taken, with the people or animals being identified and marked on each occasion, and knowledge of the degree of independence of these censuses is used to estimate the proportion of the total population that has been missed. This allows an estimate of the size of the total population under study. Capture-recapture results have been published for a wide range of medical conditions including myocardial infarction, but not yet for stroke. The method is attractive because maintaining a community based register that are "as complete as possible" is an expensive exercise.

Using the capture-recapture method, at least two independent sources of cases need to be identified. The number of cases that are common to both sources is calculated (m), as are also the total numbers of cases from the first and second samples (M and n respectively). An estimate of the total number of cases is given by the equation:

\[
N = \frac{(M + 1)(n + 1)}{(m + 1)} - 1
\]

LaPorte has used the capture-recapture method to estimate the number of cases of myocardial infarction in a female population in the Netherlands, with the myocardial infarction registry as the first source (M = 5832) and the hospital discharge index as the second source (n = 6582), and noted an overlap of m = 4746. The capture-recapture estimate of 8088 cases implies that 5% of the cases of myocardial infarction had been missed by both sources of notification. The fact that cases may be missing from both sources need not be an important drawback when the capture-recapture method is used, as the pattern of overlap allows these missing cases to be inferred.

In a preliminary analysis we have attempted to apply capture-recapture to a previously published study of the incidence of first time stroke among those aged under 75 years. The data was collected from three districts of south east England (two inner city and one rural) in 1989–91 and used notifications from hospital ward registers, general practitioners, rehabilitation staff, and death certificates. The main limitation was the lack of independence between sources of notification, which would be due partly to strokes of different degrees of severity being likely to be registered by the different sources. This is known as "variable catchability" from the corresponding situation in wildlife surveys, in which some categories of animal are more likely to be caught in one census than in another. An example of variable catchability is that the most serious strokes would most likely be registered only as death certificates, and the mildest strokes only as general practitioner or rehabilitation staff notifications.

Secondly, when planning a study in which capture-recapture methods are not intended, it is natural to encourage sources of notification to be complementary rather than over-lapping. For instance, in our study general practitioners were asked to record all cases of stroke but to take particular care to record those not admitted to hospital. A further difficulty, especially in inner city areas, is the high mobility of the overall population—that is, those people resident in the study districts and at risk of stroke. The overall annual population mobility in central London is estimated at 10% and this would be lower for the older people more likely to have a stroke.

Log linear modelling is now the most common statistical method for analysing capture-recapture data. It is flexible but does not allow for variable catchability, therefore the analysis should be stratified—that is, the different types of case (for example, mild, moderate, and severe) should be identified and separate estimates made of their respective sizes. Calculating confidence intervals for incidence estimates is not straightforward, but the "bootstrapping" computational technique has been used.

In our incidence study a total of 639 strokes were registered, representing a crude annual rate of 0.68 patients with first time stroke per 1000 population (aged under 75 years). The corresponding crude rate from the Oxfordshire Community Stroke Project, some 10 years earlier, was 0.93 with 95% confidence interval 0.82–1.04.

The capture-recapture estimate of the total number of strokes, obtained using log linear modelling, was 1999, corresponding to 2.13 cases per 1000 person-years. This rate is more than twice that of the Oxfordshire study and, considering the thor-
Sixth nerve palsy from a CNS lesion in chronic inflammatory demyelinating polyneuropathy.
J H Wokke, L H van den Berg and J P van Schaik

J Neurol Neurosurg Psychiatry 1996 60: 695-696
doi: 10.1136/jnnp.60.6.695

Updated information and services can be found at:
http://jnnp.bmj.com/content/60/6/695.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/