Hatred of the hemiparetic limbs (misoplegia) in a 10 year old child

Injury to the right parietal region in adults may cause disorders of visuospatial ability in drawing and construction, neglect of the left side of space, denial of left hemiparesis (anosognosia), and sometimes an active hatred of the paralysed limb (misoplegia), occasionally associated with a personalisation of the limb (calling it "the nuisance") or attempting to injure the paralysed left limbs.1,2 Although misoplegia is reputed to be fairly common,3 it seems not to have been reported in adults since the classic work of Critchley.4

These neuropsychological signs have been far less often reported in children. There have been reports of left neglect and extinction in children,1,5 together with reports of general tendency in children with head injury to deny their deficit. However, there seem to be no previous reports of anosognosia proper, or misoplegia, in children in relation to the classic picture of right parietal neuropsychological deficits.

A 10 year old right handed boy, with no previous neurological history of note, had an episode of acute loss of consciousness (Glasgow Coma Scale score 6) after a spontaneous intracerebral haemorrhage. Brain CT showed a lesion in the deep white matter and basal ganglia of the right temporoparietal region (figure). He had a dense left hemiparesis with reduced sensation, hemianopia, and a tendency to ignore things on the left side (for example, failing to dress his left limbs). His mother reported that he seemed to have regressed emotionally (for example, he had episodes of weeping, tantrums, and impulsive behaviour). He had become more self centred, often feeling that he had been "left out." His physiotherapist and occupational therapist reported that it was impossible to please him, as he found their treatment "wrong" or "faulty." This was dramatically different from his prehospital state, where he was described as a normal and emotionally stable child. Corroborating accounts of his change in behaviour were reported by his school teachers, although they noted no decline in his general intellectual abilities, and he returned to his old class at school.

His mother reported that everything was "a laugh", and that you could not hold a conversation with him (although his serious side "came back" when he was "in trouble"). His physiotherapist reported that he avoided conversations about this hemiparesis, "as if it wasn't there," and instead talked exclusively about other things. In an early physiotherapy session he insisted that he could run, but soon tripped and fell as a result of his hemiparesis. He had been a member of a football team and maintained that he would be able to return to the team, but he was clearly unable to play and was not selected. He then asserted that the team was inferior, and promised to find a better team. Both his physiotherapist and occupational therapist reported that it was difficult to gain his cooperation in therapy because of his denial of deficit. However, apart from anosognosia, he showed no other delusional beliefs.

In sharp contrast with this denial of deficit, his family, physiotherapist, and occupational therapist also reported that he held some unusual attitudes towards his left side. He was afraid to hurt his left limbs, often saying that he would "hate" them, blamed them, and wanted to get rid of them. In the acute period in hospital he once actually threw himself out of his bed, on to his left side, in an attempt to injure his left arm and leg. He would often bend the fingers of his left hand backwards, attempting to break them. Both his mother and his physiotherapist reported him as saying that he "would rather destroy it, he couldn't use it." They also reported that he expressed a desire that his left side might be replaced, with that of his mother.

He was assessed by us three months after the cerebrovascular accident, at which stage the left hemianopia and hemiparesis were still present, although the paraparesis had improved slightly so that he could now walk (with typical circumduction in gait). His left arm had recovered proximal movement, but he still had very poor control over his hand and finger movements. During our assessment his speech was entirely normal, as was his recent memory and recognition of well known faces. However, he performed poorly on drawing and constructional tasks (the block design subtest of the WISC-III, scaled score 5), showing some features of constructional dyspraxia, as well as occasionally omitting components on the left. He showed further features of hemispatial neglect—missing some words on the left in reading, choosing items well towards the true contralesional side (mean line length 9.7 cm, mean bisec tion position 59.7% from the left) and omitting items on the left in a figure cancellation task (Bell test, 11 of 16 targets identified in the left hemispace, 17 of 17 in the right).

At this stage he was anosognosic for his hemiparesis and neglect, but was aware that his drawing and constructional abilities seemed poor. Although he agreed that his left arm was "not the same" as before the injury, he denied that it caused him any disability. Asked directly to judge whether he might be able to use his arm to open a door, he said that this would not be true even if it were possible. When challenged to do this, he found it impossible, and solved the problem by using his right (good) hand to wrap the fingers of the left hand around the handle, and then pulled the door open using his body.

As regards the misoplegia, he said that he hated his arm and leg because he couldn't use them, and that he wanted to break them. He believed that, if the bones were broken, "they must grow back and you have to do it all again," and he would miraculously heal. Concerning his wish to have the left side replaced with that of his mother he confirmed that he had, quite naturally, asked her to do this.

This patient therefore showed the classic pattern of neuropsychological deficits seen after right parietal lesion in adults: misoplegia, anosognosia, left hemiparesis, and constructional apraxia.1,2 The case seems to be the first in which misoplegia has been reported in a child. It has been suggested that signs of denial of deficit are common in all children after severe brain injury, but the clinical significance of this is of relevance to be able to differentiate between different forms of denial of illness. A pattern of neuropsychological deficit known to be associated with anosognosia, involving signs such as left neglect, visuospatial errors, and constructional apraxia, would be a suitable marker in making a distinction between anosognosia as part of a right parietal syndrome, and denial of deficit (for example, as part of a frontal syndrome, or as a purely psychogenic defence mechanism).

The nature of the misoplegia in this case seems to be largely the same as in adults,1,2 in that it involved a hatred for the left limbs, and a desire to injure them. In one respect, however, his attitude was different from that of misoplegic adults, in that he expressed a desire for the limbs to be "replaced", and it is surprising that his mother was chosen as the source of the exchanged body parts.

Another interesting feature of the case is the finding that anosognosia and misoplegia coexisted in one patient. This is surprising given that they reflect polar opposites in attitude to the disabled limbs. However, we noted during our assessment that anosognosia and misoplegia were never present simultaneously. Rather he often switched between hating the left limb and denying his hemiparesis.

We thank Emily Le Marie and Jannette Bell for their reports on this patient, and Professor Christine Temple for her assistance with the literature on neglect in children.

Avron Moss
Child and Family Community Services,
Royal London Hospital,
Whittington, London E1 1BB, England
Valproate induced encephalopathy treated with carnitine in an adult

Hepatotoxicity due to valproate often necessitates discontinuation of the drug. We report a patient with unstable epilepsy in whom valproate was an irreplaceable component of anticonvulsant treatment. Hepatic encephalopathy was reversed and remission controlled by combining carnitine supplementation with an essentially unchanged valproate schedule. A 35 year old previously healthy woman developed status epilepticus after varicella encephalitis initially requiring mechanical ventilation and phenobarbitone concentrations of over 100 mg/l with phenytoin to maintain seizure control. Phenytoin was discontinued due to rash and replaced by carbamazepine, which was subsequently withdrawn due to abnormal liver function tests and sedation. Valproate was initiated in combination with phenobarbital. Isolated generalised breakthrough seizures sometimes associated with urinary tract infections continued during a period of rehabilitation.

Thirteen months after her initial illness, she was again admitted after three days of increasing confusion, drowsiness, and tremulousness without seizure activity. On examination, delirium with asterixis raised the clinical suspicion of hepatic encephalopathy. Liver function tests including white blood count and liver function tests were normal, and anticonvulsant concentrations were therapeutic (phenobarbital 34.2 mg/l, valproate 83 mg/l). Serum ammonia on admission was 43 mmol/l (normal < 33 mmol/l), rising to 215 mmol/l by the next morning. Serum free carnitine was 7.6 mmol/l (normal 19.0–60.0 mmol/l) and total carnitine 15.4 mmol/l (normal 30.0–73.0 mmol/l). Phenobarbital was maintained and valproate decreased from 3 g to 2.75 g a day with supplemental L-carnitine added (330 mg four times daily). The delirium and asterixis resolved over the next three days permitting discharge on the fourth hospital day with normal serum ammonia (25 mmol/l) and therapeutic valproate concentrations (93 mmol/l).

Valproate has been shown to cause reduced serum carnitine concentrations and hyperammonaemia in certain children when compared with the administration of other anticonvulsants. However, not all patients on valproate induced hepatotoxicity is carnitine related. Children at greatest risk are those receiving a multidrug anticonvulsant regimen. The condition usually develops within a few months of starting valproate.

Carnitine supplementation has been used to prevent hepatotoxicity and hyperammonaemia considered at increased risk due to suspected mitochrondrial disorder, malnutrition, mental retardation, high dose valproate treatment, or a history of hepatotoxicity to the valproate.1 Therapeutic use of carnitine has also been reported to reverse this hepatotoxicity in children despite continued valproate.

Less is known about the relation between valproate induced hepatotoxicity and carnitine deficiency in adults. Reduced free carnitine concentrations have been reported in 76–5% of adults receiving anticonvulsant drug regimens including valproate compared with 21.5% of adults on schedules without valproate.2 Coma from valproate induced carnitine deficiency in adults is reported to respond rapidly to discontinuation of the drug.3

This case shows that certain adults receiving valproate are, like children, at risk for carnitine deficiency and hyperammonaemia with its clinical accompaniment. The incidence among encephalopathy in children on valproate is unknown. This patient further illustrates that identification and correction of a drug induced deficiency may allow continuation of treatment without disturbing control of an unstable seizure disorder. Much as folate is used in chronic phenytoin administration, supplemental carnitine should be considered in adult patients with epilepsy at risk for hyperammonaemia.

References

Increased serum neopterin concentrations in a patient with Creutzfeldt-Jakob disease

Spongiform encephalopathies or prion disease affect both humans and animals. The human transmissible spongiform encephalopathies include Kuru, Creutzfeldt-Jakob disease, and the Gerstmann- Straussler-Scheinker syndrome (GSS), and familial forms; all these diseases are associated with the accumulation of β-pleated amyloid protein in the brain.4 Besides genetic abnormalities, epidemiological studies disclosed that a transmissible agent is involved in the spread of Creutzfeldt-Jakob disease, and small virus-like particles considered at increased risk due to suspected mitochondrial disorder, malnutrition, mental retardation, high dose valproate treatment, or a history of hepatotoxicity to the valproate.5 Therapeutic use of carnitine has also been reported to reverse this hepatotoxicity in children despite continued valproate.6

A 35 year old woman, with a history of Creutzfeldt-Jakob disease, presented with an episode of dementia. She has been followed up at the Neurology Centre, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.

Correspondence to: Dr D Beversdorf, Department of Neurology, University of Florida College of Medicine, 1600 Archer Road, Gainesville, FL 32610, USA.

References

Increased serum neopterin concentrations in a patient with Creutzfeldt-Jakob disease

Spongiform encephalopathies or prion disease affect both humans and animals. The human transmissible spongiform encephalopathies include Kuru, Creutzfeldt-Jakob disease, and the Gerstmann- Straussler-Scheinker syndrome (GSS), and familial forms; all these diseases are associated with the accumulation of β-pleated amyloid protein in the brain.4 Besides genetic abnormalities, epidemiological studies disclosed that a transmissible agent is involved in the spread of Creutzfeldt-Jakob disease, and small virus-like particles considered at increased risk due to suspected mitochondrial disorder, malnutrition, mental retardation, high dose valproate treatment, or a history of hepatotoxicity to the valproate.5 Therapeutic use of carnitine has also been reported to reverse this hepatotoxicity in children despite continued valproate.6

A 35 year old woman, with a history of Creutzfeldt-Jakob disease, presented with an episode of dementia. She has been followed up at the Neurology Centre, Department of Neurology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.

Correspondence to: Dr D Beversdorf, Department of Neurology, University of Florida College of Medicine, 1600 Archer Road, Gainesville, FL 32610, USA.

References

Hatred of the hemiparetic limbs (misoplegia) in a 10 year old child.

A D Moss and O H Turnbull

J Neural Neurosurg Psychiatry 1996 61: 210-211
doi: 10.1136/jnnp.61.2.210

Updated information and services can be found at:
http://jnnp.bmj.com/content/61/2/210.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/