Thalamic stimulation for severe action tremor after lesion of the superior cerebellar peduncle

We read with interest the report by Geny et al concerning chronic high frequency thalamic stimulation in a patient with severe action tremor.¹ The postural and kinetic tremor was caused by a bleeding into a cavernous angioma located in the ipsilateral superior cerebellar peduncle. Although such tremors have been attributed repeatedly to cerebellar outflow lesions, neuropathological and neuroradiological confirmation has been lacking. This case nicely demonstrates such a clinicopathological correlation.

We recently identified lesions of the dentatothalamic pathways by MRI in 22 of 25 patients with severe kinetic post-traumatic tremor.² We agree with the point that these tremors are particularly resistant to medical treatment and that functional stereotactic surgery should be considered for their treatment. We take issue, however, with the conclusion that thalamic stimulation "should be suggested to patients with this type of tremor".³ So far, the question whether thalamic or thalamic stimulation is more advantageous in patients with supratentorial tremor has not been settled. Disadvantages of deep brain stimulation include higher costs, limitations imposed by the hardware, the need of replacement of the batteries, and the natural resistance to being implanted to a foreign body. We suggest refraining from decisive statements, particularly in patients with kinetic proximal tremors. Benabid et al have found satisfactory improvement after chronic thalamic stimulation in only 18% of their patients with proximal kinetic tremor.⁴ It is unclear whether differences in response of the tremors might be for technical reasons, that is, the use of a monopolar versus a quadripolar electrode for continuous high frequency stimulation. Only very few patients with severe proximal tremor have been reported to respond favourably to thalamic stimulation.⁵ The published findings on follow up do not exceed 2-5 years. We still would consider stereotactic thalamotomy as a valuable choice of treatment.

We recently published the long term results of a series of 35 patients with severe kinetic post-traumatic tremor who underwent stereotactic surgery in which lesions were placed in the basal ovoentral thalamus and the zona incerta.⁶ On a 10-5 year mean long term follow up persistent improvement was noted in 88% of the patients with abolition of pronounced reduction of the tremor in 65%. It should be considered that thalamotomy in such patients may worsen pre-existing dysthria. It is unclear as to whether chronic high frequency stimulation would be advantageous concerning this side effect. Dysthria might be induced by stimulation and it has been seen in 15% of predisposed patients with different types of tremor in larger series during stimulation.⁷ Although this side effect is "reversible" by turning off the stimulator, it definitely interferes with possible improvement. We also want to mention that thalamic lesions to control kinetic tremor do not necessarily have to be large. The mean size of the cogulative lesions in the zona incerta and the basal ovoentral thalamus for kinetic post-traumatic tremor was 18 mm³ on long term MR examinations.⁸ Further controlled studies are needed before definite conclusions about the indications, merits, and drawbacks of alternative methods such as chronic thalamic stimulation and thalamotomy can be made, for patients with such rare conditions.

JOACHIM K KRAUSS
Department of Neurosurgery,
Baylor College of Medicine,
Texas, USA
FRITZ MUNDINGER
Department of Functional and Stereotactic Neurosurgery,
St. Josef-Krankenhaus,
Freiburg, Germany

Correspondence to: Priv Doz Dr Joachim K Krauss, Department of Neurosurgery, Baylor College of Medicine, 6500 Fannin, Suite 944, Houston, TX 77030, USA.

Geny replies:
I appreciate the comments of Krauss and Mundinger. Their letter merits consideration.

We agree that differences in response of the tremors might be for technical reasons, that is, the use of a monopolar versus a quadripolar electrode for continuous high frequency stimulation. Only very few patients with severe proximal tremor have been reported to respond favourably to thalamic stimulation. The published findings on follow up do not exceed 2-5 years. We still would consider stereotactic thalamotomy as a valuable choice of treatment. We recently published the long term results of a series of 35 patients with severe kinetic post-traumatic tremor who underwent stereotactic surgery in which lesions were placed in the basal ovoentral thalamus and the zona incerta. On a 10-5 year mean long term follow up persistent improvement was noted in 88% of the patients with abolition of pronounced reduction of the tremor in 65%. It should be considered that thalamotomy in such patients may worsen pre-existing dysthria. It is unclear as to whether chronic high frequency stimulation would be advantageous concerning this side effect. Dysthria might be induced by stimulation and it has been seen in 15% of predisposed patients with different types of tremor in larger series during stimulation. Although this side effect is "reversible" by turning off the stimulator, it definitely interferes with possible improvement. We also want to mention that thalamic lesions to control kinetic tremor do not necessarily have to be large. The mean size of the cogulative lesions in the zona incerta and the basal ovoentral thalamus for kinetic post-traumatic tremor was 18 mm³ on long term MR examinations. Further controlled studies are needed before definite conclusions about the indications, merits, and drawbacks of alternative methods such as chronic thalamic stimulation and thalamotomy can be made, for patients with such rare conditions.

COHEN C, Genius Service de neurologie,
Centre Hospitalier,
F-64046 PAU, France

Structural and functional changes in patients with motor neuron disease

I read with interest the letter of Cooper et al concerning structural or pathological changes in patients with motor neuron disease. However, I do not think that patients with this disease have normal frontal cortices. I previously studied cases with motor neuron disease with dementia and without dementia and showed that the relationship between reduced isotope uptake in the frontal lobe and neuropathological changes characterised by a moderate degree of neuron degeneration, invasions of reactive astrocytes, and mild spongiotic states between the second and third layers in the frontal, temporal, and central cortices. These neuropathological changes have been reported previously and our results are in line with these from a neuroimaging point of view. These neuropathological changes were mild in patients with motor neuron disease without dementia and severe in patients with motor neuron disease with dementia. I, therefore, think that certain neuropathological and functional deficits exist even in the early stage of the disease process and these progress to neuropsychological deficits in patients with dementia. Certainly, this should be prospectively tested, but I think that cognitive deficits in patients with motor neuron disease are caused by evident structural and pathological changes.

KAZUO ABE
Department of Neurology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565, Japan
4 Davidson C. Amyotrophic lateral sclerosis.
Matters arising

Cooper et al reply: Dr Abe is making essentially the same point as we do. In those papers that he cites in which the pathological findings are described, the presence of extramotor cortical pathology in motor neuron disease is confined to patients in whom dementia had been clinically evident during life. It is well recognised that a proportion of patients with motor neuron disease without clinically evident dementia will show deficits in "frontal lobe" tasks when subjected to detailed neuropsychological tests, and may also demonstrate frontal cortical hypometabolism on functional imaging. If prospective studies confirm that the extramotor frontal cortex is normal and without deficits, then this would suggest that the observed functional deficits are secondary to disease elsewhere.

F N Cooper
Department of Neurology, Hope Hospital, Salford M6 BHD, UK
D A MANN
M Siddons
Pathological Sciences, University of Manchester, Oxford Road, Manchester M13, UK

Correspondence to: Dr Cooper.

NOTICE

World Federation of Neurosurgeries: awards to young neurosurgeons

The World Federation of Neurosurgeries will give five awards to young neurosurgeons for the best papers submitted for presentation at the Xth International Congress of Neurosurgical Surgery to be held in Amsterdam, The Netherlands on 6-11 July 1997. This will be open to all neurosurgeons born after 31 December 1961. Each award will consist of an honorarium of US $1500, and complete waiver of registration fees along with accommodation for the Congress. The papers will be judged by a committee and must contain original, unpublished work on basic research or clinical studies related to neurosurgery.

Young neurosurgeons should submit eight copies of the manuscript (not more than 10 double spaced typewritten pages exclusive of figures and tables) to:
Albert L Rhoton Jr, MD, Chairman
WFNS Young Neurosurgeons Committee, Department of Neurological Surgery, University of Florida Medical Center, PO Box 100265; 1600 SW Archer Road, Gainesville, Florida 32610-0265.

The submission should be accompanied by a supporting letter from the head of the candidate's neurosurgical department. The last date for submission is 1 October 1996.

BOOK REVIEWS

All titles reviewed here are available from the BMJ Bookshop, PO Box 295, London WC1H 9TE. Prices include postage in the United Kingdom and for members of the British Forces Overseas, but overseas customers should add £2 per item for postage and packing. Payment can be made by cheque in sterling drawn on a United Kingdom bank, or by credit card (Mastercard, Visa or American Express) stating card number, expiry date, and your full name.

Positive motor phenomena are well known to all practising physicians—the Jacksonian fit, chorea and indeed most movement disorders are examples of such phenomena. However, fewer clinicians will be aware of negative motor phenomena, which form the theme of this book, although most of us will have experience, when entering the twilight zone of lecture induced somnolence! Perhaps the most classic examples of negative motor phenomena are asterixis and postanoxic myoclonus—both of which are characterised by periods of CNS inhibition of muscular activity. In addition there are other conditions that clearly belong under this rubric of negative motor phenomena but which are not included in this book, such as the cortical spread of foci of hypoperfusion. If this is ignored, it is not possible to accommodate in this definition, for example hyperekplexia and freezing in Parkinson’s disease.

This book approaches the subject of negative motor phenomena via five major sections, beginning with clinical syndromes and then moving through the possible mechanisms according to anatomical locus (cortex, brainstem, and spinal cord). Before finally discussing the pharmacology and treatment of tonic seizures and myoclonus. The book then concludes with a final chapter by James Lance which is a superb précis of all these sections. Thus the book starts and finishes in the clinical domain having travelled up and down the pathways of clinical research, much of which depends on the use of magnetic stimulation and the back averaging of EEGs relating to corticospinal movement. Although this approach with these sectional topics is clearly useful, an alternative and perhaps more preferable format would have been to start with anatomy before discussing the physiology and the clinical pathology of the relevant motor systems. This approach has the merit of defining the anatomical substrate which facilitates our understanding of the normal physiology of the motor networks that ultimately underlie the CNS driven negative motor phenomena. Thus having defined the anatomy and physiology, the clinical conditions characteristic of negative motor phenomena can be discussed and the unnecessary separation of topics, as occurs in this book, can be avoided.

However, despite my reservations on the structure of the book, the content is quite outstanding, with many chapters serving to summarise complex topics with great clarity. Such examples include the chapters on the startle phenomena (Peter Brown) and possible spinal cord mechanisms of negative motor phenomena (Peter Ashby). These two chapters further highlight another strength of this book, namely its ability to discuss clinical, neurophysiological and experimental neuroscience in equal depth and with equal authority. Occasionally chapters end in a disappointing fashion when no summary is given whilst some are rather too speculative and others tend to be repetitive.

Overall this book is to be recommended, as it is well-written with much to excite and inspire the neurologist and neurosurgeon alike, not least with an interest in movement disorders. For example neurologists may be surprised to know that asterixis, whilst being seen most commonly in metabolic encephalopathies, can also be seen with focal lesions on a number of CNS sites, whilst neurosurgeons may be disappointed to hear that there are at least 26 distinct reticulospinal nucleus or nucleus that project to the spinal cord. Finally though I come back to what I really admire about this book and that is its unashamed use of experimental data and clinical findings in a combined effort to understand not simply how the CNS can generate negative motor phenomena but also in the pathological state, but how this is achieved or not achieved in the normal physiological situation.

ROGER BARKER

We all know that strokes are common, even those working in neurology units where they are a relative rarity. We all know that serious treatments for stroke are on the way but the cry of those looking after stroke patients is “When, oh when, is all this fancy science going to make the slightest difference to our patients?” Well, it must be agreed that the problem is considerably more difficult than finding a cure for tuberculosis, which took leprosy over, and the clinicians need to be patient. We can still be optimistic after reading these three books that the considerable knowledge being acquired about the processes of stroke, since it was recognised that cerebral infarction is a process and not an event, will bring forth clinical fruit. In the United Kingdom the big hurdle after that will be the logistics to bring the resultant
Structural and functional changes in patients with motor neuron disease.

K Abe

J Neurol Neurosurg Psychiatry 1996 61: 234-235
doi: 10.1136/jnnp.61.2.234-b

Updated information and services can be found at:
http://jnnp.bmj.com/content/61/2/234.3.citation

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/