Hypothermia in multiple sclerosis

K D White, D J Scoones, P K Newman

Abstract

Five patients with clinically definite multiple sclerosis are reported who presented with acute relapses associated with hypothermia. Repeated episodes of hypothermia were seen in four. Thrombocytopenia was associated with the hypothermia in four patients. Further investigation disclosed a tendency to chronic hypothermia and suggested an altered thermoregulatory set point in one patient, when MRI, endocrine, and autonomic studies failed to localise a lesion in the hypothalamus, but subsequent necropsy showed hypothalamic lesions. In such patients a predisposition to altered thermoregulation may occur due to direct involvement of the hypothalamus or from combined lesions affecting hypothalamic outflow to the brainstem and spinal cord.

(J Neurol Neurosurg Psychiatry 1996;61:369–375)

Keywords: hypothermia; multiple sclerosis; thrombocytopenia; hypothalamus

The ability of humans to precisely thermoregulate body temperature around 37°C is a complex process. Simplified, the system consists of peripheral thermoreceptors that relay afferent signals to central integrating mechanisms. Central and peripheral thermal information are thought to be integrated at various CNS sites, each of which can facilitate or inhibit other sites, which are hierarchically arranged. Integrators compare the information with that from internal thermosensitive cells and if necessary activate behavioural and autonomic mechanisms via efferent channels. Animal studies have shown that lower centres including the brainstem and cervical cord have the capability to mount independent responses to thermal stimuli. The hypothalamus acts as the chief integrator which coordinates the activity of the other centres. Discrete lesions of the anterior hypothalamus can lead to either hyperthermia or hypothermia, whereas lesions in the posterior hypothalamic nucleus tend to produce hypothermia. Hypothermia may also occur when there is damage to the reflex thermoregulatory pathways traversing the brainstem or spinal cord. Reports of disorders of control of temperature in patients with multiple sclerosis are few. Although plaques of demyelination affecting the hypothalamus have been described at necropsy, this occurs only rarely and there has only been indirect evidence implicating disturbance of this structure in patients with hypothermia. In this report we present five cases of multiple sclerosis in which hypothermia was associated with relapses in the condition and additionally necropsy evidence of involvement of the hypothalamus in one patient with recurrent hypothermia.

Case reports

Case 1

A 48 year old man with clinically definite multiple sclerosis for five years (Kurtzke disability scale 6) was admitted in December 1991. Since diagnosis he had experienced several relapses with clinical involvement of the spinal cord and brainstem with some response to steroid treatment. During a two year period of azathioprine treatment, there had been a reduction in the number of relapses and no haematological abnormality had been detected. After this two year period the azathioprine was discontinued. Three months later he required admission because of three weeks of deteriorating mobility, with slurred speech, confusion, and disorientation. For 10 days before admission, he had become increasingly withdrawn and drowsy. In retrospect his wife had noticed that he had started to snore at night and that his feet were unusually cold.

On admission he was in stupor; there was increased tone in the upper limbs and a flaccid paraparesis. The axillary temperature was 36°C. An initial diagnosis of acute relapse of multiple sclerosis was made and he was treated with intravenous methylprednisolone. Haemoglobin was 12.7 g/dl, white blood cells 10.9 x 10^9/l, platelets 27 x 10^9/l, serum sodium 140 mmol/l, and urea 8.9 mmol/l. Treatment was started with cefuroxime on the assumption that there may have been a precipitating infection from the urinary tract. Over 48 hours he steadily deteriorated, becoming mute, with neck stiffness, agitation, repetitive facial twitching, left lower motor facial weakness, and decerebrate posturing. Haemoglobin was 9.9 g/dl, white blood cells 5.8 x 10^9/l, and platelets 19 x 10^9/l. Brain CT showed a moderate degree of cerebral atrophy; CSF was normal. A fall in respiratory rate was followed by periods of apnoea, whereupon ventilatory support was commenced and continued for 11 days. At the start of assisted ventilation rectal temperature was 31°C. Rewarming returned the core temperature to normal within 48
hours and a return to normal conscious level occurred after four days. Thrombocytopenia persisted for 10 days. Excessive bleeding from around central and peripheral lines (prothrombin time (PT) ranging from 13–16 seconds and kaolin cephalin clotting time (KCCT) 49–56 seconds, platelet antibodies absent) necessitated transfusion of packed cells, platelets, and plasma protein fraction. Vitamin B12 was normal (990 nmol/l) but blood folate (1-4 μg/l) and red cell folate (66 μg/l) were low. The bone marrow showed increased megakaryocytes and features which were consistent with folate deficiency. Autoantibody titres (including antinuclear factor, rheumatoid factor, antimitochondrial, gastric parietal cell, smooth muscle, reticulin, thyroid microsomal, thyroglobulin antibodies) were negative.

Recovery rapidly ensued but the patient was left with a residual spastic paraparesis and sensory level to T 12, mild upper limb weakness, and incoordination. He returned home 30 days after admission and within two weeks had returned to work and was able to walk short distances with a stick. On discharge haemoglobin was 13-2 g/dl, white blood cells 7·6 × 109/l, platelets 208 × 109/l.

Six weeks after discharge the patient was readmitted after a recurrence of the original symptoms, with slurred speech, forgetfulness, and lethargy. Rectal temperature was 32·3°C. Neurologically there was facial asymmetry, left upper limb incoordination, and a worsening of the spastic paraparesis. Thrombocytopenia and clotting abnormalities were again documented (platelets 84 × 109/l, prothrombin time 13 s, KCCT 60 s) which corrected with rewarming. Close observation of rectal temperature over six days disclosed an inversion of the normal circadian rhythm, with a peak of 37°C between 6.00 and 10.00 am and lowest temperatures between 6.00 and 10.00 pm. More detailed thermoregulatory studies were declined by the patient. At discharge 14 days later platelets had risen to 294 × 109/l and white blood cells to 9·9 × 109/l, but a slight fall in haemoglobin to 10-3 g/dl was noted. Over subsequent months rectal temperature measured at home ranged from 35 to 36·5°C. At temperatures above this there was a pronounced decline in functional lower limb power, from weight bearing to non-weight bearing.

Brain MRI in 1987 had been normal. Repeat imaging after both episodes of hypothermia, including administration of gadolinium on the second occasion, showed multiple high signal lesions in the periventricular white matter, but no plaques were detected in the region of the hypothalamus. No evidence of hypopituitarism was detected on formal dynamic endocrinological assessment. Blood pressure and heart rate response to Valsalva’s manoeuvre and blood pressure response to standing were normal. There were borderline abnormalities of the 30:15 heart rate response to standing and beat to beat variation on deep breathing was reduced to a heart rate change of 8-5 beats per minute.

For the first year after these episodes the patient’s condition remained stable. However, hypothermia became a recurrent problem in the winter months followed by further deterioration with dysnesia, periods of confusion, hypersomnolence leading to dementia, aphagia, and subsequent death. At necropsy the brain weighed 1350 g and showed no external abnormality. Plaques of demyelination were found in the typical periventricular distribution as well as in the midbrain, pons, and medulla. In addition there were plaques throughout the hypothalamus including the area of the posterior hypothalamic nucleus (figure).

CASE 2
A 59 year old man with a 30 year history of multiple sclerosis (clinically definite and laboratory supported, Kurtzke disability score 7), who was previously noted to have a spastic paraparesis, cerebellar signs, and mild dysarthria, presented in November 1993 with an insidious onset over four weeks of increasing fatigue, lethargy, and slowness of thought, which progressed to increasing drowsiness, dysphagia, and dysarthria. On admission he was in stupor with a rectal temperature of 33°C. Investigations showed a platelet count of 94 × 109/l, haemoglobin 11·5 g/dl, white cell count 7·0 × 109/l, and serum sodium 142 mmol/l. He was treated with passive rewarming and intravenous fluids and normothermia was achieved within 36 hours. Despite a further fall in platelets to 79 × 109/l after 24 hours, the platelet count returned to normal within four days. His clinical recovery was complicated by a paranoid psychosis and confusion for 17 days, severe left ventricular
Hypothermia

sclerosis

duration and clinically typical of multiple sclerosis with early relapses and remissions. Whether the presence of the autoantibodies is relevant is uncertain given the patient’s age, but the pattern of early relapses and remissions was considered to be more in keeping with a diagnosis of multiple sclerosis than cerebral lupus erythematosus. Cerebral lupus erythematosus seemed less likely in view of the negative double stranded DNA antibodies, negative IgG anticardiolipin antibody, normal complement levels, and the distribution of the lesions on CT. Extraneurological features, particularly polyarthropathy, had never been present.

CASE 3

A 57 year old woman with a 20 year history of clinically definite multiple sclerosis (Kurtzke disability scale 7) was admitted in March 1992 with deteriorating mobility, lethargy, and intermittent dysphagia. On admission she was oriented but over two weeks her conscious level deteriorated. Skin temperature was normal. On transfer to the neurology unit she would open her eyes spontaneously and localise pain, but the only verbal response was grunting. There was bilateral optic atrophy and absence of oculocephalic responses but no other specific cranial nerve abnormalities. She had pronounced neck stiffness, general rigidity, and a spastic tetraparesis. Her core temperature was 35°C. She was rewarmed, given intravenous fluids, methylprednisolone, and antibiotics for respiratory and urinary infections. The temperature returned to normal within 24 hours. On admission haemoglobin was 12.1 g/dl, white cells 11.5 × 10^9/l, and platelets 141 × 10^9/l. Mild hyponatraemia was noted (serum sodium concentration 130 mmol/l). Plasma viscosity was increased at 2.17 cp. Clotting was abnormal with a slight prolongation of KCCT of 52 seconds and a minor increase in fibrin degradation products at 1.0 µg/ml (normal <0.5 µg/ml). A transient thrombocytopenia of 99 × 10^9/l became apparent 24 hours after admission and returned to normal within 48 hours. An EEG was abnormal at the time of reduced conscious level, with diffuse delta and theta slow wave activity. Brain CT disclosed bilateral periventricular low density lesions in keeping with her longstanding multiple sclerosis. Protein in CSF was normal. Platelet associated antibody was raised at a level of 2.2 (normal <1.6), antinuclear factor was positive with a speckled pattern at a titre of 1:160, with DNA antibodies negative and the rheumatoid factor positive at a titre of >1:320. IgM anticardiolipin antibody binding was borderline positive but IgG was negative. After improvement in conscious level she remained confused for nine days before regaining her premorbid mental state. A return to her previous physical level of function was achieved after one month. A second episode of hypothermia occurred nine months later and was detected after one week of progressive lethargy and dysarthria. Her rectal temperature was 34°C and she was conscious and oriented, although slightly slow in responses and confused. Neck stiffness was absent. There was evidence of a right internuclear ophthalmoplegia, cerebellar dysarthria, spastic tetraparesis, and upper limb cerebellar signs, all of which were longstanding. With rewarining there was an improvement in mental function and she was discharged after only six days. This patient’s disease was of long

Case 4

A 64 year old woman with clinically definite multiple sclerosis for 30 years (Kurtzke disability scale 9) was admitted in November 1993. Since diagnosis she had had many relapses and remissions with involvement of optic nerves, spinal cord, and brainstem. Over the previous eight years there had been a progressive physical decline. On this occasion she presented with a three month history of deteriorating upper and lower limb function, episodes of speech disturbance, and peripheral oedema. Three days before admission she was found unconscious and at her local hospital her conscious level remained depressed for 12 hours before there was a spontaneous, fluctuating, improvement. On transfer the rectal temperature was 34.7°C, she was alert although disoriented, with peripheral and periorbital oedema, optic atrophy, and nystagmus. Impaired palatal movement was a new feature and there had been a significant deterioration in the tetraparesis. Mild hyponatraemia (sodium concentration 130 mmol/l) was noted with normal urinary and plasma osmolalities, which corrected with fluid restriction. Cortisol and thyroid function were normal. Full blood count was normal. An EEG showed diffuse delta and theta activity which improved on rewarining. Temperature returned to normal without active treatment within 24 hours, although her mental state did not return to normal for seven days. Her functional capacity had returned to her previous level by the time of discharge. No further episodes of hypothermia have occurred.

Case 5

A 47 year old woman was admitted to a medical unit with a few days history of withdrawal, lethargy, and then lapsing into coma. She had led a reclusive existence, and 12 years earlier had been admitted to a psychiatric unit with blurred vision, sensory symptoms, and difficulty in walking, labelled as hysterical in view of associated psychological disability. On the current admission she was unrousable, had neck stiffness, generalised hypertension, and a rectal temperature of 29°C. There was no evidence of drug overdose and her biochemistry, including thyroid function and cortisol, was normal. Haemoglobin concentration was 10.2 g/dl, white cell count 8.5 × 10^9/l, platelets 33 × 10^9/l, and serum sodium con-
centrality 143 mmol/l. Gentle rewarming led to a gradual return to normothermia over three days, at which time she was conscious but confused and neurological evaluation showed bilateral optic disc pallor, mild limb incoordination, mild paraparesis, and bilateral extensor plantar responses. The platelet count returned to normal. Subsequent investigation showed bilateral delay of P300 latency of visual evoked potentials and a high CSF IgG index with oligoclonal bands in the CSF but not in the serum. Brain MRI showed diffuse cortical atrophy with multiple hyperintense periventricular lesions on T2 weighted sequences but without abnormality in the region of the hypothalamus. Initially EEG showed a generalised encephalopathic picture with widespread theta and delta activity, but this subsequently improved to a mixture of alpha and theta components. Chest radiography was normal and autoantibodies were negative.

On discharge from hospital after one month the patient was normothermic, disoriented, and garrulous with mild cognitive blunting. She had slight gait ataxia, pale optic discs, and a right extensor plantar response.

Thus this patient had presented with hypothermia and a new diagnosis of multiple sclerosis was made after a review of the history, the current neurological findings, and results of investigations. A second episode of hypothermia occurred 11 months later after one week of increasing drowsiness, anorexia, and unsteadiness. Her rectal temperature was 34°C and she was drowsy and confused. There was nystagmus on horizontal gaze, decorticate posturing of the upper limbs, and a spastic tetraparesis with bilateral extensor plantar responses. Core temperature returned to normal after 48 hours and she was discharged eight days later with return to her previous neurological status.

Discussion

Impairment of consciousness in multiple sclerosis is well recognised, if uncommon, but previously only seven patients have been reported with relapses of multiple sclerosis with obtundation which has been associated with hypothermia.15-18.20 We present four patients seen in a three year period from one neurology unit and a fifth case from a nearby unit, which led us to believe that it is probably more common than previously recognised. The patients share common features which might suggest which are more at risk of this complication. All of our patients presented with an insidious neurological decline, associated with depressed conscious level and considerable hypothermia. Each had multiple sclerosis of at least five years duration and all but one were very disabled (Kurtzke EDSS ≥ 6). All displayed signs during the acute relapse suggesting an active lesion in the brain stem and in four patients signs consistent with brainstem involvement had previously been noted. From the available histories it is likely that the periods of hypothermia exceeded one week. All responded to rewarming within 48 hours. Improvement in cognitive function lagged behind establishment of normothermia, with confusion persisting for up to 17 days. Four patients had repeated episodes of hypothermia and in two chronic hypothermia developed.

Normal thermoregulation relies on peripheral thermoreceptors in skin and the upper gastrointestinal tract, which send afferent signals via the cervical cord, brainstem, and thalamocortical system to the cortex for conscious appreciation of ambient temperature.1-4 Thermoregulation occurs at several levels or centres, the hypothalamus, including the preoptic area, the anterior and posterior hypothalamus, brainstem, and cervical cord.5-6 Affuent cold impulses synapse in the posterior hypothalamic heat maintenance centre, not only with efferent pathways initiating heat production but also with cells which receive inhibitory impulses from the anterior hypothalamus in response to local warming. The anterior hypothalamic heat loss centre is situated near the preoptic nuclei and destruction of this area in animals results in maintenance of temperature in cold but overheating in hot environments.7,8 The anterior hypothalamic efferent impulses for heat dissipation are mediated by the sympathetic nervous system, which induces sweating and vasodilation. The site of the thermostat in humans has been variously considered to be in either the anterior or posterior hypothalamus and even the whole brainstem.1 Reflex thermoregulatory pathways that function independently of this central control have been shown to pass through the brainstem and cervical cord.9 The raphe nuclei are key sites for the integration of peripheral and central thermal stimuli, and in processing information ascending to the preoptic/anterior hypothalamic area (POAH).

Many of these neurons seem to be warm sensitive.4 Animal studies provide evidence for predominantly cold responsive neurons in the pontine dorsomedial reticular formation of the guinea pig10 and in the rat the medulla itself has cold receptors, which when damaged result in chronic hypothermia.7-8 Thermoregulation studies on lesions in rat brains concluded that communication between the preoptic (PO) and anterior hypothalamic (AH) nuclei is necessary for normal thermoregulation at extremes of temperatures and similar effects to those seen with destruction of the PO/AH could be produced by cutting the neural connections between the PO/AH and other brain structures. However, a secondary central temperature control system was indicated by the ability of the rats to maintain regulation of temperature in a neutral environment despite large lesions destroying the medial preoptic region and the anterior hypothalamic tissue. Isolated lesions of the medulla resulted in a profound fall in body temperature in some animals, inability to regulate against cold rather than heat in others, and a reduction of resting body temperature in some animals.7 Other studies in rats suggested that lesions which prevented cold induced vasodilation but did not impair heat induced vasodilation must be separately controlled at
Hypothermia in multiple sclerosis

Clinical features of patients with hypothermia and multiple sclerosis

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Reference No</th>
<th>Age/sex</th>
<th>Kranke score</th>
<th>Rectal temp (°C)</th>
<th>Neck stiffness</th>
<th>Myoclonus</th>
<th>Conscious level</th>
<th>Brain stem signs</th>
<th>Platelet count x 10^9/l</th>
<th>Recurrent hypothermia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>61/F</td>
<td>10</td>
<td>29.4</td>
<td>NK</td>
<td>NK</td>
<td>+ +</td>
<td>Yes</td>
<td>19</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>41/F</td>
<td>7</td>
<td>32.9</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>No</td>
<td>61</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>52/M</td>
<td>7</td>
<td>32.5</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>50</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>55/F</td>
<td>6</td>
<td>33.0</td>
<td>Yes</td>
<td>Yes</td>
<td>+ +</td>
<td>No</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>52/M</td>
<td>7</td>
<td>32.5</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>40/F</td>
<td>6</td>
<td>32.0</td>
<td>Yes</td>
<td>Yes</td>
<td>+</td>
<td>No</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>38/F</td>
<td>6</td>
<td>32.0</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>Normal</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>63/M</td>
<td>4</td>
<td>32.4</td>
<td>NK</td>
<td>No</td>
<td>+</td>
<td>+</td>
<td>Normal</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>68/F</td>
<td>6</td>
<td>31.6</td>
<td>NK</td>
<td>No</td>
<td>+</td>
<td>+</td>
<td>Normal</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>48/M</td>
<td>6</td>
<td>31.0</td>
<td>Yes</td>
<td>Yes</td>
<td>+</td>
<td>Yes</td>
<td>27</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>*</td>
<td>56/M</td>
<td>7</td>
<td>33.0</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>95</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>*</td>
<td>57/F</td>
<td>7</td>
<td>35.0</td>
<td>Yes</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>99</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>48/F</td>
<td>9</td>
<td>34.7</td>
<td>No</td>
<td>No</td>
<td>+</td>
<td>Yes</td>
<td>172</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>*</td>
<td>47/F</td>
<td>3</td>
<td>29.0</td>
<td>Yes</td>
<td>No</td>
<td>+</td>
<td>+</td>
<td>33</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*Patients in current series. Conscious level: + = confused, + + = stupor, + + + = coma; NK = not known.

Ghawache and Destee\(^\text{18}\) reported a patient who had three separate episodes of hypothermia 14 years after the onset of multiple sclerosis. Hypothermic episodes correlated closely with aggravation of spastic paraparesis and a consistent inappropriate antidiuretic hormone secretion. Brain MRI did not show any evidence of hypothalamic plaques and there was no other endocrine evidence of hypothalamic disturbance. Unlike our patients, there was no significant deterioration in clinical status after the hypothermic episodes. By contrast, thermoregulatory abnormality resulting in hypothermia has been reported in multiple sclerosis and in one case pathological evidence was found of plaques involving the lateral and posterior hypothalamus.\(^\text{19}\) The table summarises clinical data from patients with multiple sclerosis and hypothermia.

In a condition in which there are known to be multiple lesions it is difficult to implicate a single anatomical site as being responsible for the thermoregulatory abnormality. Sullivan et al\(^\text{20}\) presented evidence of a central thermoregulatory centre lesion with a fall in core temperature and a restricted skin vasoconstrictor response to cooling in their patients. The hyponatraemia seen in one patient suggested that the lesion was likely to lie in the hypothalamus. In our patients thermoregulatory studies were not possible. An inversion of the normal circadian rhythm of temperature was seen in the first case, suggesting a central disturbance but MRI on two occasions after episodes of hypothermia did not show any lesions in the region of the hypothalamus, a negative finding also noted by Geny et al\(^\text{20}\) and Lammens et al.\(^\text{17}\) Furthermore, postmortem examination in one of the patients failed to show any hypothalamic plaques. Similarly in a postmortem report by Nagashi et al\(^\text{21}\) of a patient with coexistent pituitary hypothyroidism and Devic’s disease no lesions were seen involving the hypothalamus. As far as we are aware patient 1 is the first reported patient in which hypothermia has occurred with multiple sclerosis and subsequent necropsy has shown direct involvement of the hypothalamus by plaques of demyelination. We think that it is possible that in some patients the thermoregulatory abnormalities are due to brain stem disease, for which clinical evidence was seen in all of our patients. In patient 1 there were also borderline abnormalities of auto-
nomic function. Previous studies of autonomic function in patients with multiple sclerosis have shown that abnormalities of cardiovascular regulation and thermoregulatory sweating are common, and abnormal sweating responses correlate with more severe disease or presence of impotence and brainstem disease. In syringomyelia and syringobulbia subclinical disturbances of autonomic function were commonly found when there was evidence of brainstem involvement. Isolated lesions of the brainstem producing hypothermia have occurred with central pontine myelolysis and mesodiencephalic haematoma.

Brainstem involvement was a common feature of our patients, not in itself unusual, but suggesting that such patients with widespread disease may have a predisposition to hypothermia, related to brainstem disease, impaired peripheral response, lack of shivering with cervical cord involvement, and possibly involvement of the preoptic/anterior hypothalamic junction and are associated with a poor outcome.

Thrombocytopenia as seen in patients with hypothermia and multiple sclerosis has been reported in other cases of accidental and spontaneous hypothermia. Initially noted in early cardiac surgery patients who were cooled to 20°C, it is thought to occur due to sequestration of platelets in the spleen as was shown in studies of labelled platelets in dogs. However, in patients with recurrent hypothermia there may be a deleterious effect on haemopoiesis causing thrombocytopenia. Information on patients in intensive care units suggests that hypothermia may contribute to the multifactorial coagulopathy seen in the critically ill multiple transfused patient. A temperature effect on the enzyme coagulation cascade is implied. In a patient with multiple sclerosis and thrombocytopenia occult hypothermia should be considered.

In conclusion we have reported five patients with multiple sclerosis who presented over a three year period and had relapses associated with sub-acute hypothermia followed by chronic hypothermia in two cases. This complication may be more widespread than previously recognised and relates to duration of disease and possibly presence of brainstem involvement. Complaints of drowsiness, confusion, and snoring should lead to recording of temperature with a low reading rectal thermometer. Thrombocytopenia may be an indicator of unsuspected hypothermia.

We thank Dr RA Shakir, Dr P Tilley, and Dr TJ Wals for allowing us to report on their patients and to Dr DJ Burn for his helpful comments on this manuscript.

38 Barnsley L. The term caused of heat illness (DM thesis). Oxford University of Oxford,
Hypothermia in multiple sclerosis
