We studied 10 patients with panic disorder (mean age 29.5 years (range 23-35 years) and 10 age matched healthy controls (mean age 27.5 years (range 24-34 years). Controls were recruited from the sleep laboratory technicians. Patients satisfied criteria for a diagnosis of panic disorder according to DSM-IV. Protocol exclusion criteria included: (a) a history of major medical or neurological illness; (b) a history of sleep panic attacks; (c) current or past evidence of affective disorders; (d) use of psychoactive drugs in the two weeks before the study. All subjects underwent a 48 hour ambulatory polysomnography (Oxford Medilog 9200). The ECG signal was recorded from the right arm and digitised at 128 Hz with 8 bit resolution using a specific option of the Medilog system. The R-R intervals were detected by a derivative-threshold algorithm; the accuracy of the component, and the variability tracing was improved by fitting each QRS complex by a second order polynomial function. The fiduciary point on the ECG was taken as the maximum of the fitting parabola to reduce the error due to the low sampling rate. The heart rate variability signal was processed using an autoregressive algorithm. All the spectral calculations were performed on all the successive 300 second segments of ECG recordings of the second night. The analysed time intervals were chosen from: (a) awake state at the beginning of the night; (b) stage 2 non-REM sleep; (c) stages 3-4 non-REM sleep; (d) REM sleep.

We focused on two areas of interest in the spectrum: (1) the low frequency (LF) component 0-05 to 0-15 Hz: an increase of the power in this band is commonly associated with sympathetic activity and the high frequency (HF) component 0-2 to 0-4 Hz, mainly expression of parasympathetic control. The following variables were evaluated: the R-R mean and variance, the power of LF and HF components, and the sympatho-vagal balance (LF/HF ratio). We analysed the normalised spectral component (ratio between the power density of each spectral component and the total spectral density minus the power in the band 0-05 Hz) as better measures of the autonomic activity in respect to the absolute numbers; in this way it is possible to remove the effects of the large variability in the response among the several subjects. We applied ANOVA to determine the changes within each group through the different conditions. Differences between the two groups were evaluated by unequal two tailed Student’s t test.

Concerning sleep architecture, no difference was found in the percentages of all sleep stages between patients with panic disorder and controls (values are mean (SD)): stage 1 non-REM sleep 4.5 (2) vs 3.9 (2.7); stage 2 non-REM sleep 49.8 (6.2) vs 51.7 (7.4); stages 3-4 non-REM sleep 20.6 (8) vs 25.1 (6.8); REM sleep 25.1 (6.8) vs 25.9 (3.6). No difference was found in the number of analysed segments in each sleep stage between the two groups.

Mean R-R showed, both in patients with panic disorder and controls, a trend towards an increase in all sleep stages compared with wakefulness before sleep. No difference was found in R-R mean and variance between patients and controls in the various conditions. The LF component (sympathetic activity) decreased during sleep with minimal values during stages 3-4 non-REM sleep, whereas the HF component (parasympathetic activity) displayed a reciprocal.
Trend both in patients with panic disorder and controls (table). During REM sleep, an increase in sympathetic activity occurred almost to the value of wakefulness, both in patients and controls. These conclusions are corroborated by the LF/HF ratios, which showed a sympathetic preponderance during REM sleep and a parasympathetic preponderance during non-REM sleep in both groups. No difference was found between patients and controls in LF, HF, and LF/HF ratios during sleep, whereas an increased LF and a decreased HF were found in patients during wakefulness before sleep.

Our nocturnal findings do not suggest autonomic dysfunction in panic disorder. However, our data do not exclude a role of the autonomic nervous system in the pathophysiology of panic disorder. In fact, our study shows that patients with panic disorder have sympathetic overactivity (and cholinergic underactivity) during wakefulness before sleep. Thus an intrinsic defect in autonomic regulation may be excluded in panic disorder, but these patients have a higher sympathetic tone than controls during the awake state, probably dependent on cognitive activity. This diurnal increase in cardiac sympathetic activity could play a part in fatal cardiac arrhythmias in panic disorder, as recently suggested.1

Luigi Ferini-Strambi
Antonio Spiera
Alessandro Oldani
The Sleep Disorders Center, University of Milano, School of Medicine and Istituto Scientifico H San Raffaele, Milano, Italy
Department of Neurophysiologic Sciences, University of Milano, School of Medicine and Istituto Scientifico H San Raffaele, Milano, Italy
Anna Bianchi
Sergio Cerutti
The Department of Biomedical Engineering, Politecnico di Milano, Milano, Italy

Correspondence to: Dr Luigi Ferini-Strambi, Sleep Disorders Center, University of Milano, Istituto Scientifico H San Raffaele, Via Prinetti 29, 20127 Milano, Italy.

4 Bianchi AM, Mainardi L, Petrucci E, Signorini MG, Mainardi M, Cerutti S. Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE

Table 1 Heart rate variability in panic disorder and controls

<table>
<thead>
<tr>
<th></th>
<th>Patients (n = 10)</th>
<th>Controls (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF (nu)</td>
<td>53.2 (7-3)</td>
<td>42.7 (4-9)</td>
</tr>
<tr>
<td>LF (nu)</td>
<td>2.33 (0-86)</td>
<td>2.81 (0-21)</td>
</tr>
<tr>
<td>LF/HF</td>
<td>0.60 (19-2)</td>
<td>0.76 (0-48)</td>
</tr>
<tr>
<td>REM sleep</td>
<td>26.9 (11-1)</td>
<td>25.9 (8-6)</td>
</tr>
<tr>
<td>HF (nu)</td>
<td>73.1 (14-6)</td>
<td>66.2 (11-6)</td>
</tr>
<tr>
<td>LF (nu)</td>
<td>0.48 (0-41)</td>
<td>0.61 (0-32)</td>
</tr>
<tr>
<td>LF/HF</td>
<td>56.3 (12-8)</td>
<td>53.2 (16-6)</td>
</tr>
<tr>
<td>HF (nu)</td>
<td>43.7 (8-3)</td>
<td>41.5 (14-2)</td>
</tr>
<tr>
<td>LF (nu)</td>
<td>1.53 (0-68)</td>
<td>1.83 (1-26)</td>
</tr>
</tbody>
</table>

Values are means (SD). W = wakefulness before sleep; nu = normalised units.

*P < 0.04 vs controls.

Large deletion (7-2 kb) of mitochondrial DNA with novel boundaries in a case of progressive external ophthalmoplegia

Chronic progressive external ophthalmoplegia (CPEO)1 is a well characterised form of mitochondrial myopathy; it occurs with single or multiple deletions of mitochondrial DNA (mtDNA), or with the 3243 point mutation. Single deletions occur sporadically and are usually not transmitted to offspring, whereas point mutations are transmitted maternally and multiple deletions are inherited in an autosomal pattern. Single deletions are often flanked by direct repeats of three to 18 base pairs (bp).1 The "common deletion":1 found in one half of patients with CPEO is 4-9 kb long and occurs between direct tandem repeats at positions 8470-8482 and 13 447-13 459.1 A partial duplication of mtDNA can be associated with the deletion and was reported to be specific for Kearns-Sayre syndrome.1 We describe a young woman with a sporadic CPEO and a large deletion (7-2 kb) of mitochondrial DNA with novel boundaries, flanked by a 14 bp imperfect tandem repeat at positions 8407-8420 and 15 658-15 671. A 28 year old woman was referred to us for investigation of CPEO. At the age of 12 she developed a progressive ptosis of the left eyelid. A contralateral ptosis appeared two years later, with a fluctuating vertical diplopia. Since then, progressive ophthalmoplegia was noticed. Subjectively there was no limb weakness; she did not have nystagmus, or cardiac arhythmia. Her family history was negative for neuromuscular disorders, diabetes, and hearing impairment. Relatives were not examined.

Neurological examination confirmed bilateral ptosis, and severe limitation of eye movements in all directions during voluntary and reflex movements. Visual acuity was 6/15 in the right eye and 6/10 in the left; fundus was normal. Hearing was not impaired. There was a mild facial paralysis affecting predominantly the orbicular palpebral muscles, and moderate paresis of the trapezius and sternocleidomastoid muscles. Muscle strength was slightly reduced proximally and distally in the four limbs. Tendon jerks and detailed sensory testing were normal.

Electromyography showed a full recruitment on submaximal effort with polyphasic potentials in the examined muscles (right arm and right leg) suggesting a myopathy, whose nerve conduction study was normal within the normal range. An ECG was normal. Lumbar puncture was not performed. Brain CT was normal. There was a moderate elevation of creatine kinase and lactate dehydrogenase concentrations. Diabetes mellitus was not present.

Quadrieps muscle biopsy showed an increased variability in the size of fibres; few fibres showed subsarcolemmal glycogenosis, a characteristic of mitochondrial, without a typical ragged red pattern on trichrome-Gomori staining. Few fibres were cytochrome oxidase negative; deletion with single repeat in 16 S rRNA was not found.

Total DNA was extracted from muscle and blood by standard techniques. Southern blot analysis of total muscle DNA digested with PvuII and hybridised with a polymerase chain reaction (PCR) generated tRNALeu (UUR) probe (3130-3558) disclosed an additional band of approximate 9 kb (length, figure A), suggesting the presence of a large deletion of mitochondrial DNA. The mean (SD) proportion of mutant versus total amount of mtDNA evaluated by scanning densitometry was 51.4% (n = 3). The deletion was present in 51% of mitochondrial DNA molecules in deltoid muscle but it was absent from leucocyte mitochondrial DNA. The presence of an associated deletion in skin fibroblasts, the mtDNA digested with BamHI, which cuts within the deletion, Hybridisation with the tRNALeu(UUR) probe (figure, A) showed two slower migrating bands, whereas a probe (11 713-11 935) hybridised only within the deletion only hybridised to the 16-5 kb band (figure, B). (Double digestion with SauBI and BgIII gave similar results, data not shown). Therefore, the mtDNA investigated did not contain the full length wild type sequence, and cannot be duplications, but most likely are a circular deletion monomer (CDM) and circular deletion dimer (CDD). Amplification by PCR with primers flanking the "common deletion" yielded a 5 kb fragment in leucocyte DNA amplified from wild type DNA. Muscle DNA amplification yielded an additional 1 kb fragment (not shown). This fragment was cloned in a pIT7 blue vector (Novagen™); The DNA sequence was determined in an automated sequencer (ALF™) to map precise the deletion. The deletion was 7-2 kb and it was flanked by a 14 bp imperfect tandem repeat at positions 8407-8420 and 15 658-15 671. (Figure, C). Sequence analysis showed that primer H2 did not prime where expected (13 506-13 255) but hybridised instead at position 16 248-16 255 where there is a perfect homology over eight nucleotides at the 3’ end.

The phenotype of the patient suggested a mitochondrial myopathy. Analysis of DNA showed a large deletion of mitochondrial DNA with novel boundaries. Several cases reported in the literature and review articles are described with similar phenotypes and not with healthy controls, strongly sug-
Cardiac autonomic regulation during sleep in panic disorder.

L Ferini-Strambi, A Spera, A Oldani, M Battaglia, A Bianchi and S Cerutti

J Neurol Neurosurg Psychiatry 1996 61: 421-422
doi: 10.1136/jnnp.61.4.421

Updated information and services can be found at:
http://jnnp.bmj.com/content/61/4/421.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes