physiological studies, the nerve does not seem to be the origin of spontaneous activities in our patient. Pharmacological studies support this hypothesis. The present SFEMG study, with a careful analysis, showed normal end plate function and strongly supports the hypothesis that the origin of spontaneous activities in our patient with Schwartz-Jampel syndrome is in the muscle itself.

KIMIYOSHI ARIMURA SATOSHI TAKENAGA MASANORI NAKAGAWA MITSUHIRO OSAME
Third Department of Internal Medicine, Kagoshima University, Kagoshima, Japan

EBN STALBERG
Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden

Correspondence to: Dr Kimitoshi Arimura, Third Department of Internal Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, Japan

Apolipoprotein E polymorphism and late onset Alzheimer's disease in Argentina

Several genes and, possibly, environmental factors are involved in the initiation, progression, and severity of Alzheimer's disease (AD). The inheritance of the three common Apolipoprotein E (APOE) alleles (e2, e3, and e4) can induce a differential individual susceptibility to Alzheimer's disease.

There is a large body of evidence showing that the e4 allele of APOE is a genetic risk factor for late onset of Alzheimer's disease in an allele dose dependent manner.

The e4 allele frequency varies with the ethnic background as inferred from Japanese and Spanish studies, in which values for the general population are lower than those from the United States, Canada, and northern European countries. The e4 frequencies reported range from 0.24 to 0.52 in patients with Alzheimer's disease, 0.06 to 0.18 in controls, and 0.1 to 0.2 in the general population, regardless of the prevalence of Alzheimer's disease in each country (for review see Adroer et al.).

As little is known about the e4 allele frequency and Alzheimer's disease in Hispanic people from South America, we conducted a case-control study in Austria. The aim of our work was to evaluate the association between the APOE allele genotype and late onset Alzheimer's disease in a population with a heterogeneous genetic background due to the fusion of South American Indian natives with northern and southern European immigrants.

We studied 45 patients (mean age 74-72 (SD 5-5) years, mean age of onset 69-61 (SD 4-7) years) with a diagnosis of probable Alzheimer’s disease according to NINCDS-ADRA criteria. Sporadic patients were defined as those with no first or second degree relatives with dementia in at least two generations back. The 45 age matched controls (mean age 71-89 (SD 7-2) years) had a normal neuropsychological evaluation and no history of psychiatric or vascular diseases or alcoholism. In addition, we studied 101 healthy blood donors younger than 50 years (mean age 33-81 (SD 8-5) years) to determine the e4 allele frequency in the general population. All the subjects included in the study were Hispanic and at least the second generation of native Argentinians. The study protocol and informed consent from all subjects or their relatives was approved by the institution’s ethics committee.

Genomic DNA was obtained from peripheral blood by standard procedures and APOE genotyping was performed using the standard fragment analysis reaction and HPA digestion. 4 The e4 frequency was calculated by allele counting and the differences between groups tested with Fisher’s exact test. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated with GraphPad InStat (1994) V2.0a5a software.

The table shows the genotypes and allele frequencies of each group. The e4 allele frequencies for late onset Alzheimer's disease patients and controls were 0.22 and 0.077 respectively. Heterozygosity for the e4 allele was found in the patients in the Alzheimer's disease group and was absent among controls. Our young population had an e4 allele frequency of 0.153 which agrees with the reported frequencies for white populations. We found a statistically significant difference between patients with late onset Alzheimer's disease and controls (P = 0.015) but not between the Alzheimer's disease group and the young population (P = 0.26). The OR for our case control study, in the presence of one or two e4 alleles, was 3.33 (95% CI 1.204-9.020). Although our results are in general agreement with most reports, we found a rela-
Systematic overestimation of intracranial pressure measured using a Camino pressure monitor

The Camino fiberoptic intracranial pressure (ICP) monitor (Camino Laboratories, San Diego, CA, USA) was the first intraparenchymal microtransducer to be used widely in clinical practice. Recent laboratory tests have confirmed its excellent accuracy and long low term drift when temperature remained constant. However, an increase in ambient temperature pro-

Figure 1 (A) Recording of ICP during removal of a Camino transducer from the subarachnoid space of patients with head injury. The transducer was removed at time point 1. Readings were unstable for about three seconds and then the temperature drift from 4 mm Hg (starting at time point 2) to 0 mm Hg was recorded during cooling of the catheter tip to room temperature. (B) A similar effect to point A was recorded during removal of a Camino transducer submerged in a cylinder filled with warm water (36°C). The pressure decreased (time point 1) from around 25 mm Hg (height of water column) over one second to 0 mm Hg. It is hypothesised that this deeper than expected decrease is caused by an immediate cooling during vapourisation of the water from a wet membrane—too small to cool the whole catheter tip. It is repeatable and is probably equivalent to the apparent "no reading" seen in A. The pressure then increased to 5 mm Hg (at time point 2) and subsequently decreased gradually to 0 mm Hg over the next 20 seconds.
Apolipoprotein E polymorphism and late onset Alzheimer's disease in Argentina.

L Morelli, J Leoni, E M Castano, C A Mangone and A Lambierto

J Neurol Neurosurg Psychiatry 1996 61: 426-427
doi: 10.1136/jnnp.61.4.426

Updated information and services can be found at:
http://jnnp.bmj.com/content/61/4/426.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/