tion syndrome has a poor prognosis, with a 50% mortality rate. The nervous system is seldom involved in the syndrome. If such involvement appears, it usually does so towards the end of the course of the disease. A patient with sensorimotor neuropathy related to axonopathy and occasional demyelination has been recently reported, but in the context of a fulminant illness.3

The distinctive feature of our finding is the occurrence of transient cranial nerve involvement as the probable first sign of macrophage activation syndrome. It could be claimed that the symptomatology is related to the lymphoma. However, very little is known about neurological complications in T cell lymphoma, and their occurrence is probably rare.3 Kaufman et al4 have reported an involvement of the nervous system in 14 patients out of 104 cases, eight being related to direct complications. In only one patient, palsy of the sixth cranial nerve was the first sign. Neurological signs occurred between 10 and 102 weeks after diagnosis of lymphoma. If polyneuropathy occurs in T cell lymphoma it is due to infiltration and the clinical evolution is usually stereotyped with slowly evolving sensorimotor signs.4 Because there is no postmortem examination in our case, infiltration of peripheral nerves cannot be eliminated; but it is unlikely, considering the improvement in neurological signs. Meningoradiculitis could be evoked, but if that were so, there would have been a worsening of the initial signs.4 Moreover, CSF examination and cerebro MRI were normal. All these indications lead us to suggest that the neurological signs in our patient could be related to a remitting/relapsing neuropathy due to non-cutaneous T cell lymphoma infiltrating peripheral nerves, to vasculitis or, more likely, to the neurotoxic effects of cytokines. Cytokines, especially TNF, are secreted in large amounts in macrophage activation syndrome, and TNF can induce general side effects and cerebral damage.4

We are grateful to L. Rose for her help with the English version of this paper.

Figure 2. Lymphoid cells with azurophil granules. Myelogram (originally ×100).
Paraneoplastic opsoclonus associated with cancer of the gall bladder.

P Corcia, B De Toffol, C Hommet, D Saudeau and A Autret

J Neurol Neurosurg Psychiatry 1997 62: 293
doi: 10.1136/jnnp.62.3.293

Updated information and services can be found at:
http://jnnp.bmj.com/content/62/3/293.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/