Paroxysmal tinnitus due to a meningioma in the cerebellopontine angle

Michael Espir, Robin Illingworth, Borka Ceranic, Linda Luxon

Abstract
A 44 year old woman presented with frequent paroxysms of unilateral tinnitus and ataxia which were abolished by treatment with carbamazepine. Hearing was normal and initially there were no other symptoms or signs between paroxysms. Brain stem evoked responses from the affected left ear were absent and MRI showed a large tumour in the left cerebellopontine angle. This was completely removed and histologically proved to be a meningioma. There were striking similarities to trigeminal neuralgia and other paroxysmal brain stem symptoms which occasionally occur in multiple sclerosis and diseases of the cerebellopontine angle. Possible mechanisms are discussed.

Keywords: meningioma; cerebellopontine angle; tinnitus

Unilateral subjective tinnitus is a common presenting symptom of cerebellopontine angle tumours; it may be persistent or intermittent, and occasionally occurs without hearing loss. We describe here a patient who had a meningioma in the cerebellopontine angle and presented with the unusual symptom of paroxysmal tinnitus.

Case report
A 44 year old married woman working as a secretary had a two and a half month history of intermittent episodes of a noise “like the screech of brakes of an underground train” in her left ear. This lasted for 5–10 seconds and recurred several times each hour without any obvious provocation. With each episode she also felt unsteady as though she had “just got off a boat”, and on a few occasions she had had to sit down on the ground. In between these attacks she felt entirely normal. She had no hearing loss.

About three years previously for two weeks she had felt unsteady “like being on a boat all the time”. About a year previously she had had continuous tinnitus in the left ear which cleared after about six months. She had also had recurrent bouts of stiffness in her neck during the past year. She had received treatment with prochlorperazine and a cervical collar without any benefit. She had no other neurological symptoms and no other relevant medical or family history.

On examination during the episodes she was slightly unsteady but there was no nystagmus. Her hearing was clinically normal; the left corneal reflex was normal when she was seen first but later was slightly reduced; there were no other neurological signs.

Pure tone audiometry, speech reception thresholds, and tympanometry were normal. Ipsilateral and contralateral reflexes were absent on stimulating the left ear, but normal on the right. Transient click evoked otoacoustic emissions (TEOAEs) were present in both ears, indicating normal cochlear func-

Figure 1 Frequency spectrum of the spontaneous otoacoustic emissions recorded in the left ear: (A) preoperatively, showing distinct peaks at 1453 Hz, 2285 Hz, 3601 Hz, and 3748 Hz, and (B) postoperatively, showing almost complete cessation of emissions.
tion, with a stronger total response of 13.0 dBSpl in the left ear, and 9.3 dBSpl in the right. Spontaneous otoacoustic emissions (SOAEs) were recorded in the left ear only, with four spectral peaks at 1453 Hz, 2285 Hz, 3601 Hz, and 3748 Hz (fig 1A).

Contralateral sound mediated suppression of the emissions was reduced bilaterally. Brain stem auditory evoked responses (AERs) showed no reproducible responses on stimulating the left ear, neither ipsilaterally nor contralaterally, and were normal on the right. Standard electro-oculographic battery assessing gaze evoked nystagmus, optokinetic responses, saccades and pursuit were normal, except for saccadic intrusions of pursuit attributable to carbamazepine. Caloric responses showed a left canal paresis of 35%.

Brain MRI showed a 3 × 2 cm mass in the left cerebellopontine angle extending into the internal auditory meatus which was not expanded. The left side of the pons was very compressed and indented. The mass was rather flat and bun-like in shape and for this reason it was thought that it might be a meningioma rather than a schwannoma (fig 2).

Within 24 hours of starting treatment with carbamazepine (tegretol retard; 200 mg twice daily) the paroxysms of tinnitus and ataxia were abolished.

At operation on 9 June 1994 via a posterior fossa craniectomy and drilling open the internal auditory meatus, the tumour was completely removed including the part which had extended into the meatus. Histology showed a benign mesothelial and psammomatous meningioma.

Her postoperative course was uneventful; there was no deafness or other neurological deficit apart from slight ataxia and a feeling of vibration intermittently in the left ear. Treatment with carbamazepine was not continued after the operation and the tinnitus did not recur.

On repeating the tests of eighth nerve function postoperatively, there was no significant change in the pure tone audiogram. Acoustic reflex responses and BSERs from the left ear were not reproducible but the canal paresis documented on caloric testing had increased to 58%. Pursuit was normal after stopping carbamazepine. The SOAE from the left ear had almost entirely ceased (fig 1B).

Discussion

Unilateral tinnitus, hearing loss, and unsteadiness, with an absent corneal reflex are common presenting features of cerebellopontine pathology, neuroma arising on the vestibular division of the eighth nerve being the commonest. In 25% of cases, other diseases are identified, meningiomas being the most common (about 8% of cases). The normal hearing and the MRI findings in our patient suggested a meningioma rather than an acoustic neuroma.

Tinnitus may be due to lesions of the labyrinth, eighth nerve, or CNS, but the pathophysiology remains obscure. Hypotheses include decoupling of the stereocilia of the hair cells, "misinterpretation" of auditory neural activity by higher centres, self-sustaining oscillation of the basilar membrane consequent on the evoked cochlear mechanical response, and alterations in the neural activity within the eighth cranial nerve. As early as 1944, fibre interaction in injured or compressed neural tissue was reported and one theory of tinnitus generation proposed by Moller is that damage to the myelin sheath may allow ephaptic transmission ("cross-talk") between nerve fibres, which results in derangement of the temporal pattern of auditory nerve discharges and gives rise to tinnitus. Another less well documented mechanism for the development of tinnitus is the derangement of the efferent auditory fibres, which run in the vestibular division of the eighth nerve, producing aberrant auditory behaviour. In this case, tinnitus was associated with an increased spontaneous discharge rate in the auditory nerve, similar to the mechanism suggested by Moller and supported by the fact that the tinnitus was abolished by carbamazepine. The presence of SOAEs, and higher TEOAE total response in the same ear, may indicate increased cochlear output on that side as a result of dysfunction of the central cochlear control mechanisms. However, in the absence of information regarding the previous cochlear state, this remains speculative.

It is of interest that a year before presentation, this patient reported tinnitus which was continuous for about six months without hearing loss, and which then remitted. This may have been consequent on progressive auditory nerve damage as a result of pressure, which produced initially minor damage and altered neural activity within the eighth nerve perceived as tinnitus. With increasing pressure, degeneration of these affected fibres resulted in resolution of the tinnitus, or there may have been damage to the efferent system as mani-
Paroxysmal tinnitus due to a meningioma in the cerebellopontine angle

We thank Mr H B Holden for referring the patient, Mr Stewart Anderson for preoperative neurophysiological testing, Dr Paul Lewis for the histological report, Mr A D Chestman for his contribution to the operation, the Photographic Unit at the Institute of Laryngology and Otology, the Royal National Throat, Nose and Ear Hospital for fig 1, and Mr Tom Crawford for fig 2.

Paroxysmal tinnitus due to a meningioma in the cerebellopontine angle.

M Espir, R Illingworth, B Ceramic and L Luxon

J Neurol Neurosurg Psychiatry 1997 62: 401-403
doi: 10.1136/jnnp.62.4.401

Updated information and services can be found at:
http://jnnp.bmj.com/content/62/4/401

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/