Risperidone in levodopa induced dyskinesia

Levodopa induced dyskinesias represent a common complication of the chronic treatment of patients with Parkinson’s disease. Refining the schedule of levodopa administration and adding controlled release preparations of levodopa, or dopamine agonists, or both often prove insufficient to control these problems. Pharmacological agents which exert a mild antagonism on striatal dopamine receptors might modulate these systems by interacting with serotoninergic pathways and have recently shown beneficial effects in levodopa induced dyskiniesia.

Risperidone is a new, atypical neuroleptic drug with potent serotonin-52 and secondary dopamine-D2 antagonist properties. It has antipsychotic effects with a low incidence of extrapyramidal side effects, a feature which makes this drug a candidate for the treatment of levodopa induced psychosis and dyskinesia in patients with Parkinson’s disease. We have previously obtained beneficial effects with low dosages of risperidone in levodopa induced psychoses in patients with Parkinson’s disease. Here we report our own experience with low dosages of risperidone in levodopa induced dyskinesia.

Eight patients (five women, three men) with advanced Parkinson’s disease, motor fluctuations, and levodopa induced dyskinesia took part in the study. All gave informed consent. Clinical details were as follows: mean age 67.3 (range 57-81) years; mean Parkinson’s disease duration 12.7 (range 2-20) years; Hoehn-Yahr stage in “off” phase: IV in five patients, III in three patients; mean duration of levodopa therapy 9.6 (range 6-14) years; duration of levodopa induced dyskinesia 4.3 (range 2-7) years. All but one had peak dose dyskinesia. The remaining patient had diphasic (beginning and end of dose) dyskinesia. The risperidone dosages ranged from 0.125 to 0.25 mg once a day, at bedtime. The chronic antiparkinsonian treatment (levodopa/dopa decarboxylase inhibitors monotherapy in four patients; levodopa plus bromocriptine or pergolide in four patients) remained unchanged during the trial. The severity of parkinsonism and dyskinesia was assessed at regular intervals during the trial using the unified Parkinson’s disease rating scale (UPDRS, part III-motor scale) and the abnormal involuntary movement scale (AIMS). All patients but one were evaluated during the period of maximum benefit from therapy (“best on” condition); the remaining patient, with diphasic dyskinesia, was evaluated during the beginning of the levodopa effects. Patients were asked to fill in diaries at home with the number of hours spent in “on” and “off” conditions, but data were available only in a few cases and were not reported.

The table summarizes the results. After risperidone therapy all the patients had moderated to pronounced reduction in dyskinesia. These effects have been maintained during the follow up (mean 11 (range 6-21) months). The final AIMS score of the group was significantly lower compared to the baseline score (P<0.01, Wilcoxon test). Three patients (2, 4, 6) took 0.25 mg risperidone/day with no modification of their parkinsonism. Three other patients (1, 3, 5) were unable to tolerate the initial 0.25 mg dosage owing to a worsening of parkinsonism (increase of number of hours spent in “off” conditions or worsening of “on” conditions) and their dosage was therefore reduced to 0.125 mg/day after some weeks. This produced a smaller improvement in the dyskinesia with no great worsening of parkinsonism (table). One patient (7) received 0.125 mg risperidone/day from the beginning of the trial. This patient (5), with diphasic dyskinesia, received 0.25 mg risperidone/day for about one year, with considerable improvement in the dyskinesia. Subsequently, owing to a worsening of parkinsonism, the risperidone dosage of this patient was reduced to 0.25 mg twice a week, although some improvement in dyskinesia was maintained. The final UPDRS score of the group showed no significant changes when compared with the baseline score (Wilcoxon test) (table). No serious side effects were encountered during this risperidone trial.

The results of this open experience suggest that in some patients with Parkinson’s disease low dosages of risperidone might have beneficial effects on levodopa induced dyskinesia, without causing significant worsening of parkinsonism. In the light of the pharmacological properties of risperidone, both dopamine and serotonin antagonism might play a part in the effects we found on levodopa induced dyskinesia. It has to be stressed that, owing to the extreme sensitivity of patients with Parkinson’s disease to both the beneficial and undesirable effects of neuroleptic drugs, treatment with risperidone must be started with very low dosages (0.125 mg daily) and continued with caution. In conclusion, these results warrant larger, controlled studies to test the therapeutic potential of risperidone in levodopa induced dyskinesia.

Lack of association of a Taq 1 polymorphism of the human myelin oligodendrocyte glycoprotein gene with multiple sclerosis in a population of patients from the Southampton area

The lesions of multiple sclerosis are most often held to be caused by an immune attack on CNS myelin. The nature of the antigens involved remains obscure, but it is now thought at least two major myelin proteins—myelin basic protein and proteolipid protein—are known to cause cell mediated demyelination in animals (experimental allergic encephalomyelitis) and in some ways resembles human multiple sclerosis. Minor myelin components may presumably also act as autoantigens. Myelin oligodendrocyte glycoprotein (MOG) is a quantitative minor myelin protein localised to oligodendrocyte cell bodies and processes and to the outer layer of CNS myelin sheaths. Originally detected by a mouse monoclonal antibody to rat cerebellar glycoproteins, MOG is thought to be a member of the immunoglobulin superfamily. In common with several other members of this family, MOG has a membrane spanning domain and an extracellular glycosylated N-terminus and its presence on the outermost surface of myelin and the oligodendrocyte plasma membrane may make MOG accessible to the immune system. The evidence that MOG may act as an autoantigen in multiple sclerosis includes reports that anti-MOG antibodies cause extensive CNS demyelination both in vivo and in vitro, that peptides from the primary sequence of MOG can produce experimental allergic encephalomyelitis, that the predominant T cell response in a population of patients with multiple sclerosis is to MOG and that antibodies to MOG can be demonstrated in the CSF and serum of patients with multiple sclerosis. Additionally the human MOG gene has been localised to a region of the major histocompatibility complex on chromosome 6, the significance of this in immune theories of the causation of multiple sclerosis being unclear. Against this

LETTERS TO THE EDITOR

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Levodopa dosage (mg/day)</th>
<th>Risperidone dosage (mg/day)</th>
<th>Duration</th>
<th>UPDRS score</th>
<th>AIMS score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
<td>Final</td>
</tr>
<tr>
<td>1</td>
<td>1150</td>
<td>0.125</td>
<td>12</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>0.25</td>
<td>21</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>0.125</td>
<td>9</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>0.25</td>
<td>12</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>1025</td>
<td>0.125</td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>875</td>
<td>0.25</td>
<td>9</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>925</td>
<td>0.125</td>
<td>6</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Mean</td>
<td>919</td>
<td>0.187</td>
<td>11</td>
<td>26.5</td>
<td>26.5</td>
</tr>
<tr>
<td>SD</td>
<td>287</td>
<td>0.067</td>
<td>4.66</td>
<td>14.2</td>
<td>12.7</td>
</tr>
<tr>
<td>P Value†</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.01</td>
</tr>
</tbody>
</table>

| * Months of duration of risperidone treatment.
† Comparison of final baseline scores (Wilcoxon test).
background, analysis of the human MOG gene has defined its intron/exon structure and provided evidence that a 1.9 kb Taq 1 restriction fragment length polymorphism (RFLP) of the human MOG gene could be linked to multiple sclerosis in a significant fashion in a population of Australian patients with multiple sclerosis. We have examined this Taq 1 polymorphism in a population of patients with multiple sclerosis and controls from the Southampton area.

Venous blood samples were obtained from 40 patients with multiple sclerosis in the Southampton area and from 80 age and sex matched controls. The patients were 29 women and 11 men diagnosed as having clinically definite multiple sclerosis by the Poser criteria. The age range was 27–43 years with a mean of 33.9 years. DNA was extracted by standard procedures, digested with Taq 1, electrophoresed, and subjected to Southern blotting using the same human MOG cDNA as previously. Six polymorphic bands of 4.9, 4.4, 3.25, 2.4, 1.9, and 1.65 kb were found, plus three invariant bands of 1.75, 1.25, and 1.05 kb. This contrasts with the Australian study, in which Taq 1 digestion of human genomic DNA and hybridisation with the same MOG cDNA probe showed five polymorphic bands of 5.25, 4.65, 2.4, 1.9, and 1.05 kb and only one invariant band of 1.7 kb. In that study the 1.9 kb band was present in 12.4% of patients with multiple sclerosis and 3.7% of controls, a difference which was significant (p<0.05). The table shows the distribution of the Taq 1 digest polymorphic bands between patients with multiple sclerosis and controls in the present study; none of these distribution differences were statistically significant. We assume that the 1.9 kb band found here is the same as in the previous study, in which case the incidence in the two sets of patients with multiple sclerosis is very similar—12.5% and 12.2%. However the incidence of this RFLP in the control group in the present study was much higher than in the previous study—8.8% v 3.7%—thus denoting significance. We assume our finding of extra invariant bands in Taq 1 digests of the human MOG gene and largely different sized RFLPs are due to genetic differences in the two populations. This illustrates the difficulties of extrapolating between two geographically widely separated cohorts. It is also important to have comparable groups in terms of clinical types of multiple sclerosis, age and sex structures, and nature of the control populations used.

This work was supported by the Multiple Sclerosis Society of Great Britain and Northern Ireland. C Bertrand is thanked for the gift of the human MOG cDNA.

Correspondence to: Professor R J Thompson, Wessex Human Genetics Institute, Duthie Building, Mailpoint 808, Southampton General Hospital, Tremona Road, Southampton S016 7YD, UK.

Table 1 Distribution of Taq 1 digest polymorphic bands in patients with multiple sclerosis and controls

<table>
<thead>
<tr>
<th>Band size (kb)</th>
<th>Patients (n = 40)</th>
<th>Matched controls (n = 80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>11 (27.5)</td>
<td>23 (28.8)</td>
</tr>
<tr>
<td>4.4</td>
<td>39 (97.5)</td>
<td>78 (97.5)</td>
</tr>
<tr>
<td>3.25</td>
<td>38 (95)</td>
<td>76 (95)</td>
</tr>
<tr>
<td>2.4</td>
<td>14 (35)</td>
<td>32 (40)</td>
</tr>
<tr>
<td>1.9</td>
<td>5 (12.5)</td>
<td>7 (8.8)</td>
</tr>
<tr>
<td>1.65</td>
<td>15 (37.5)</td>
<td>27 (33.8)</td>
</tr>
</tbody>
</table>

Pneumocephalus as a complication of metastases and eroding infection in the sacral region

Pneumocephalus is a well known and rare disease that denotes a pathological presence of intracranial air. Below, we describe an extremely rare case of the development of pneumocephalus.

A 66 year old woman was admitted to our clinic with headache persisting for the previous two months. The headache had become particularly severe and had been accompanied by vomiting during the previous week. One year before being admitted to our clinic, the patient had undergone brain CT along with other tests and the results were normal. Medical records indicated that 10 years ago the patient had undergone surgical treatment of an adenocarcinoma of the rectum. Since then she had been under an oncologist’s observation. Seven years after surgery, metastases developed in the L5 vertebral body and the sacrum. This was confirmed by radiography of the lumbosacral spine and the sacrum, by radioisotope bone scans, by sacrum CT, and by pathohistological analysis of the biopsy of the sacral region. Despite implemented radiation therapy the general condition of the patient deteriorated. She lost weight and finally became paralysed. Skin and subcutaneous tissue defects appeared in the sacral region and did not heal. At admission the patient was extremely thin, subfuehrle 37°C, cardiovacularatory and respiratory systems were stable. Findings of the anus praeter naturalis in the abdominal region were normal. In the sacral region a deep seated ulcerative lesion 12×9 cm in size was visible, covered by brown strata, which secreted purulent and bloody substance. A neurological examination indicated that the patient was conscious, that her speech was normal, and that there were no signs of meningeal irritation. Flaccid paraplegia was present together with sensory modalities impaired in the right L4 and S1 dermatome and the l5, S1, S2, and S3 dermatome and she was incontinent for faeces and urine. Routine laboratory blood tests showed the following increases: erythrocyte sedimentation rate 56 mm/h, ALP 105 U/l, ALT 59 U/l, AST 25 U/l and reduced values of: HGB 113, HCT 0.345, MCHC 26.4 g/l. The findings from other laboratory tests were normal. The fundus oculi examination was normal. Findings from radiography of the paranasal sinus and the skull were normal except for the presence of air in the third and in the lateral ventricles. The brain CT indicated that the size of the ventricular system was normal and the ventricular system was for the most part filled with very hypodense zones which, according to absorptivity, corresponded to the air. Some air was visible around the brainstem. Such a finding indicates a pneumocephalus (fig 1). The sacrum CT showed a large skin and subcutaneous defect. The sacrum was mostly destroyed and filled with air.
Paraneoplastic opsoclonus associated with papillary renal cell carcinoma

Opsoclonus is an ocular dyskinesia consisting of involuntary, repetitive, rapid conjugate ocular saccades that are irregular in amplitude and frequency and occur in all directions without an intervening intervals.1 Opsonules appear more commonly in children,2 and in half of such cases in association with neuroblastoma.3 In adults, the most frequent causes are idiopathic (50%) and paraneoplastic (20%).4 Among the second group, different types of tumours involving a wide variety of organs have been reported, although no case of renal tumour has been published.5

A previously healthy 64 year old man complained of progressive vertigo and unsteady gait, together with mild headache, since a month before admission. At examination he showed severe opsoclonus (increased by saccadic movements and visual fixation), slight cephalic myoclonic movements, and he could not stand or walk because of truncal ataxia. The rest of the neurological evaluation was unremarkable.

Blood tests included white cell count, hae-moglobin, erythrocyte sedimentation rate, glucose, urea, creatinine, bilirubin, immunoglobulins, and angiotensin converting enzyme.6 These were all normal. Serological tests for syphilis and HIV were negative, as was the screening for several tumour markers. Anti-Hu and anti-Ri serum antineuronal antibodies were not detected. On admission, CSF contained 19 mononuclear white blood cells (WBC)/mm³, 73 mg/dl protein, with normal glucose concentration and negative cytological examination. Two months later, a new CSF examination showed 40 mononuclear WBC/mm³, 47 mg/dl protein, and normal glucose concentration.

Figure 2 CT of the sacrum. The arrow points to a small hypodense area representing air.

zones corresponding to soft mass density. Sporadically, inside the spinal canal some small hypodense zones were visible, the absorptivity of which corresponded to air (fig 2). Abdominal and pelvic CT scans were normal. Findings of lung and heart radiography and ECG were normal. The EEG and ECG were normal. The EEG was normal. Findingsof lung and heart radiography were normal. Six months later, he also had lambar pain and radiography suggested the existence of lumbar osteoblastic lesions.

Therefore, we consider that the development of opsoclonus in our patient was probably linked to his renal tumour. The pathogenesis of paraneoplastic opsoclonus is unknown, although there is increasing evidence that it may be immune mediated.7 It has been proposed that antigenic substances may be shared between certain tumours and portions of the nervous system.8 This would elicit an immune response against the

References

Text for Image

Ksenija Willheim
Ante Jurjevic
Zoran Tomic
Department of Neurology, School of Medicine University of Rijeka, Clinical Hospital Centre, Rijeka, Croatia

Correspondence to: Professor Ksenija Willheim, Department of Neurology, Clinical Hospital Centre, Rijeka, Kresimirova 42, 51000 Rijeka, Croatia.

In vivo visualisation of the longitudinal callosal fascicle (Probst's bundle) and other abnormalities in an acallosal brain

A 45 year old office clerk with a two year history of intermittent tension like headache presented with difficulties of walking heel to toe and of exchanging sensorimotor information between both hemispheres (alternating bilateral tapping, contralateral mirroring of finger position, cross localisation of tactile stimuli, finger sequence repetition, and bilateral coordinated arm rotations). There were no complaints about limitations in activities of daily life. The family history was unremarkable regarding motor disabilities, mental retardation, or epilepsy. MRI (A, C-F: TR 25 ms, TE 6.9 ms; B: TR 4000 ms, TE 90 ms) disclosed an absence of the corpus callosum, massa intermedia, posterior commissure (figure A) and septum pellucidum (figure C-F) and a hypoplastic anterior commissure (figure A). On the basis of the history and the anatomic findings, the patient can be classified as having an “asymptomatic” acallosal brain or a complete agenesis of the corpus callosum.1

The convolutional pattern on the medial surface of the hemisphere was abnormal with gyri radiating in a fan-like fashion and without a visible callosomarginal sulcus (figure A). On the axial and coronal slices an anteroposteriorly running fibre tract (arrow head, figure B-F) was visible which could clearly be distinguished from the medially situated cingulate gyrus (arrow in figure D). This fibre tract has been named after Probst (Balkenlängsbündel of Probst, callosal longitudinal bundle) who saw it as a typical sign of agenesis of the corpus callosum.2 Pathoanatomical investigations of the origin and course of the fibre tract led to the conclusion that it consists of heterotopic myelinated callosal fibres and results from a migration disorder of callosal fibres.3,4 During embryogenesis the fibres are thought to arrive at the midplane where they are hindered in their further migration across the midline and then change their direction of growth into an anteroposterior direction and by this form the Probst's bundles in each hemisphere.1 This hypothesis about the development of the Probst's bundles is supported by recent investigations in acallosal mice.4

The absence of the corpus callosum and the volume of the Probst’s bundles influence the shape of the ventricles. The posteroventral parts of the lateral ventricles and the third and fourth ventricle are enlarged. Frontally, the Probst's bundles are thickest and become smaller on their frontooccipital course (figure B). Frontally they are comma shaped, bulge into the medial wall of the lateral ventricles, and cause a narrowing and dorsolateral transposition of them (bull horn formation of the ventricles in figure D, E).3,4 Posteriorly, the Probst's bundle forms a thin layer on the upper medial wall of the lateral ventricles which are consequently dilated (figure F). Additionally, a completely separated forus could vaguely be identified at the lower medial wall of the lateral ventricles directly ventral to the longitudinal callosal bundle (figure D, short arrow in E).

This case illustrates that MRI allows a precise in vivo examination of the anatomical situation in patients with accidentally detected acallosal brains. Especially, the detailed characteristics of Probst's bundle were to our knowledge previously only defined pathoanatomically, which is somewhat limited by shrinkage artifacts. The detection of Probst's bundle during life might be useful to further elucidate the function of this fibre tract by evoked potential studies using transcranial magnetic or electric brain stimulation similar to the approach described for an activation of interhemispheric fibres in humans.5

BERND-ULRICH MEYER
SIMONE RORICH
Department of Neurology, Charité, Vinzenz-Kliniken, Augustenburger Platz 1, 13353 Berlin, Germany. Telephone 030/4506011; fax 030/45060901

In vivo visualisation of the longitudinal callosal fascicle (Probst's bundle) (arrow head) and other abnormalities in an acallosal brain. Long arrow in D=cingulate gyrus; short arrow in E=formix.
Self induced noogenic seizures in a photosensitive patient

Self induced seizures are commonly encountered in photosensitive epileptic patients. Pattern, musicogenic, and cheirogenic self induced seizures are rarely described. In all cases the manoeuvres employed by the patients implicate external stimuli. Self induced seizures with internal stimuli have not been reported.

In noogenic or thinking epilepsy seizures are precipitated by elaborate mental activity implicating decision complexity, sequential factors, and possibly related stress. In this condition a third of the patients also show photoparoxysmal discharges but not clinical photosensitivity.

We report a photosensitive patient who induced absences by a specific noogenic process of predominant emotional character. A 20 year old man of normal intelligence had a family history of seizures and a febrile convolution at the age of 4. At the age of 11 he had generalised tonic-clonic seizures on three occasions while watching television. At this stage EEG showed frequent spontaneous generalised 3–4 Hz polyspike and wave discharges of up to five seconds and pronounced photosensitivity to frequencies from 10 to 50 Hz. Physical means for seizure prevention such as dispersion screens fitted on the TV screen, polaroid glasses, and monocular viewing had limited success. One year later, treatment with sodium valproate was initiated because of additional spontaneous clusters of absence seizures often followed by generalised tonic-clonic seizures. Absences consisted of brief repetitive episodes of "stopping his activities and looking vacant". They would occur any time of the day but often in the morning after awakening. He could be taken out of this state by his mother shouting his name but if this was unsuccessful, absences would progress to generalised convulsions. This period coincided with the death of his father.

Seizures continued despite increasing sodium valproate to 2000 mg daily but poor compliance was confirmed on serial estimations of drug blood concentrations. Self induction was suspected but this was categorically denied by the patient and there was no evidence of recognisable relevant manoeuvres such as eyelid blinking, hand waving, or hyperventilation. Television, flickering lights, excitement, enjoyment, and concentration on previous emotional experiences were among the precipitating factors he listed on questioning at the age of 15. A video-EEG showed brief generalised polyspike and wave discharges only during intermittent photic stimulation (figure). There were no spontaneous or hyperventilation induced discharges. Neurological examination and brain MRI were normal.

Absences were dramatically reduced at the age of 18 when 50 mg lamotrigine given at night was added to sodium valproate, and ceased completely eight months later when the patient changed his lifestyle by starting university studies and limited self employment. One year later, he retrospectively admitted self induction by "concentrating on upsetting things in the school" and thinking of his father. "I know when I self induced the seizures. I could self induce the fits quite easily, if I thought about my father. Like the time I spent with him, also the time that he was in the hospital or things like that. This could induce the fits. I never did it to gain anything, I did it to get away from other people". He also explained that he did not use light stimulation for self induction "because that would become obvious to others and betray my habit". He employed self induction mainly at school and with the purpose of inducing absences. A new video-EEG at the age of 18 years showed only minor posterior
photoparoxysmal responses and failed to induce abnormalities on thinking about his father. Presently, the patient has only occasional generalised tonic-clonic seizures associated with alcohol excess or sleep deprivation. He also has a skin rash diagnosed as Darier’s disease.

This patient with typical absences, generalised tonic-clonic seizures, and clinical photosensitivity, presents two interesting features regarding his reflex seizures. Firstly, both flickering lights and complex interictal photogenic stimuli were specific modes of seizure precipitation. Secondly, he self induced seizures by an emotional noogenic process and not by the common method of manipulating light stimulation. Like most of the patients with self induced seizures he concealed his habit for many years. Wilful confession was the only way to disclose it as no external stimuli were involved. Absences and self induction ceased due to conscious effort and appropriate medication.

Specific modes of precipitation in reflex epilepsies are simple and complex. Simple stimuli such as flickering lights are usually external, have a short time response, and are easy to identify. Conversely, complex stimuli as in noogenic epilepsy are internal, have a longer time response, and are not discernible to the observer. The electroclinical characteristics of the generated response do not seem to be primarily determined by the type of the stimuli (simple or complex) and may be local or generalised. In photosensitive epilepsy clinical seizures and EEG discharges may be restricted to the occipital regions or generalised and the underlying mechanisms seem to be different. A non-uniform hyperexcitability of the occipital cortex and a critical mass of neuronal excitation and synchronisation. Similarly, seizures precipitated by higher cognitive processes such as thinking may be generated by hyperexcitable neurons in the relevant cortical areas—namely, the parietal lobes, are generalised, and the EEG photosensitivity may vary. That in noogenic reflex seizures cortical hyperexcitability may explain the inability of the frontal regions is implied by the fact that a third of the patients also show photoparoxysmal responses to intermittent photic stimulation. The thought process that is linked with seizure precipitation does not seem to be uniform. Spatial processing, strategic or consequential thinking, and even prominently emotional processes have been proposed as decisively activating factors. In our patient the effective triggering stimuli were photic and complicated, primary emotional thinking processes. He elected the more elaborate noogenic trigger for self induction although photic manoeuvres would possibly be more provocative. This may suggest that the experience of the seizure itself was not the main objective as we previously suggested for another photosensitive patient who used photic stimuli but never light for self induced seizures. A practical aspect of this report is that self induced noogenic seizures are difficult to detect and escape detection for many years, and may not be as unique as this case may indicate.

Correspondence to: Dr M Koutroumanidis, Department of Clinical Neurophysiology and Epilepsy, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK.

A necropsied case of Machado-Joseph disease with a hyperintense signal of transverse pontine fibres on long TR sequences of magnetic resonance images

Machado-Joseph disease refers to autosomal dominant spinocerebellar degeneration, and the gene responsible for the disease exhibits an expanded trinucleotide CAG repeat in chromosome 14q32.1. Machado-Joseph disease has a wide range of clinical manifestations in addition to ataxia. The diverse disorders are characterised neuropathologically by the involvement of the pallidolysian, dentatorubral, pontocerebel lar, cochleovestibular, and spinocerebellar systems, lower motor neurons, and dorsal root ganglia. Previous MRI studies disclosed only mild cerebellar and brain stem atrophy in Machado-Joseph disease.1 Our MRI examinations in 31 cases disclosed atrophy of the pons, middle, and superior cerebellar peduncles, and frontal and temporal lobes, together with fourth ventricular dilatation. A third of the cases displayed a hyperintense signal of the transverse pontine fibres, which had been found previously in patients with olivopontocerebellar atrophy.4 Here, we report on a patient with Machado-Joseph disease who had a hyperintense imaging signal on MRI, nine months before death, and pathological findings of the necropsied brain. A 46 year old man had been in good health until the age of 23 when he began to stagger and slur his speech. He showed progressive difficulty in walking and was bedridden at the age of 37. Eight years later, he was admitted to hospital because of dysphagia and dysarthria. His father had had Machado-Joseph disease and died at age of 40.

The patient was 160 cm tall and weighed 34.8 kg. He was mentally inactive, but his orientation and memory seemed normal. Communication was difficult due to cerebellar ataxia, dysarthria, and hypophonia. Abduction of the eyes was limited bilaterally, with impaired upward gaze, slow saccades, and gaze evoked horizontal nystagmus. He had bulging eyes and his speech was very hypophonic. Fine twitching movements were noted in his facial muscles. His limbs were hypotonic and wasted. Muscle strength was weak, and the legs were severely deformed due to contracture. Tendon reflexes in the upper limbs were exaggerated, but knee and ankle jerks were decreased. The Babinski reflex was positive. Dysmetria and dysdiadochokinesia were present in both arms. Dys tonic posture was striking in his hands. CAG repeat numbers of the MJ1 gene were 77 and 19 (method described previously). He died of the intrapulmonary atelectasis at the age of 46, nine months after MRI.

Brain MRI was carried out using Signa Advantage 1.5T. T1 weighted images (TR=450 ms, TE=19 ms), T2 weighted images (TR=3000 ms, TE=102 ms), and the first echo of long TR sequence images (TR=3000 s, TE=17 ms) were taken in the transaxial, coronal, and sagittal planes, at 5 mm thickness with a 2.5 mm gap. Brain MRI disclosed severe atrophy of the lobe of the cerebellum, upper cerebellar peduncles or brain stem, and moderate atrophy of both middle cerebellar peduncles, bilateral frontal (figure A) or temporal cortex, as well as a hyperintense signal in transverse pontine fibres (figure B) and pontine midline on the first echo of the long TR sequence. The hyperintense signal in the pons was narrower and less intense than in most cases of olivopontocerebellar atrophy.

The weight of the fresh brain was 1320 g. Paraffin sections (7 μm) were made after fixing the specimens with formalin and staining with haematoxylin and eosin, Klüver-Barrera, Bodian, and myelin stains, and immunohistochemistry with anti-tigal fibrillar acidic protein and antiubiquitin antibodies. The brain atrophy was moderate in the frontal (figure C) and temporal lobes and considerable in the pontine base and cerebellum. On microscopical examination, the cell architecture in the cerebral cortex was normal without senile plaques, neurofibrillary tangles, or inclusion bodies. The frontal white matter displayed pallor of the myelin (figure D). The globus pallidus showed mild neuronal cell loss and gliosis. The pontine nuclei, transverse fibres, and upper and middle cerebellar peduncles showed considerable atrophy associated with nerve cell loss, but without gliosis, demyelination, or change in neuronal density (figure E). The cerebellar white matter exhibited slight pallor on Klüver-Barrera staining, and the dentate nuclei showed cell loss and gliosis. The cerebellar cortex was normal.

Characteristic findings on MRI in this case were the abnormal hyperintense signal of transverse pontine fibres and diffuse atrophy of both the frontal and temporal cortex. The hyperintense signal in the pons of cases of olivopontocerebellar atrophy has been reported to reflect gliosis and myelin sheath loss along degenerated pontocerebellar fibres.4 Our previous MRI examinations have disclosed the abnormal signal of transverse pontine fibres in some cases of Machado-Joseph disease, whereas all cases of olivopontocerebellar atrophy show a more hyperintense and wider signal of transverse pontine fibres.5 The difference might arise from the lack of demyelination and gliosis in Machado-Joseph disease, and the decrease in the volume without change of the neuronal density in the pontine nuclei and transverse pontine fibres in this case.

The frontal atrophy found by MRI in 31 cases of Machado-Joseph disease was confirmed and found to be more accelerated than in age matched control subjects. The cell architecture of the frontal cortex was well preserved, but pallor of the myelin was noted in the frontal white matter. The frontal atrophy might be produced by demyelination in
the deep white matter. The patient was mentally inactive, but his orientation and memory were not impaired, although a mental test was impossible because of his severe ataxia, dystonia, and hypophonia. Patients with Machado-Joseph disease do not usually show impaired cognitive function, despite mild to moderate frontal or temporal atrophy. A previous pathological study of Machado-Joseph disease disclosed similar frontal atrophy, in which the cerebral cortex was not greatly affected, but the frontal white matter volume was decreased.

In conclusion, the frontal atrophy commonly seen in Machado-Joseph disease may be caused by demyelination in the deep white matter and the hyperintense signal of transverse pontine fibres, visible on long TR sequences of MRI, is presumably due to the characteristic atrophy of the pons in Machado-Joseph disease.

YUKARI IMON
SADAO KATAYAMA
HIDESHI KAWAKAMI
YOSHI MURATA
MASAKI OKA
SHIGENOBU NAKAMURA
Third Department of Internal Medicine, Hiroshima University School of Medicine, Japan

Correspondence to: Dr Yukari Imon, Department of Geriatric Medicine, Tokyo Medical College, 6-7-1 Nishinshinjuku, Shinjuku-ku, Tokyo 160, Japan.

BOOK REVIEWS

This book comprises 171 editorial pages divided into three chapters. It seems more directed towards clinical neurologists rather than neuroradiologists or basic scientists, as its summary suggests, since it is largely concise and simplistic in its explanation of terminology and technology. It attempts to comprehensively consider both the benefits and limitations of MR in multiple sclerosis and its role in clinical practice and is largely successful in its aims. It has an impressive list of authors who undoubtedly represent some of the most senior researchers in the field who have assessed the impact of MR on the management of multiple sclerosis and the insights into pathogenesis it has provided as well as more predictable subjects such as the distribution and morphology of lesions in the disease.

(A) Coronal T2 weighted MRI (TR:3000 ms, TE:102 ms) showing moderate frontal atrophy.
(B) Axial first echo of long TR sequences MRI (TR:3000 ms, TE:17 ms) showing hyperintense signal of transverse pontine fibres (arrow) and pontine midline (arrow head). (C) Section of the left frontal lobe fixed in formalin. The orbital gyri show moderate atrophy and the superior, middle, and inferior frontal gyri show mild atrophy. (D) Section of the left frontal lobe. The frontal white matter displays pallor of the myelin (Klüver-Barrera stain, originally ×10).

(E) Medial part of the pons. The pontine nuclei and transverse fibres show pronounced atrophy with nerve cell loss, but without gliosis, demyelination, or change in neuronal density (KB stain, originally ×10).
and differential diagnosis. I found one of the most useful sections was the explanation of terms which tend to bring uninitiated neurologists such as myself into a cold sweat such as FLAIR, FSE, ADC, and TE, which are explained in a brief and uncomplicated manner. In addition the review of the role of MR in the ever increasing number of clinical trials which place so much emphasis on this technique as a surrogate marker of disease activity was illuminating. This book is well written and beautifully illustrated, as one would expect, but my only question mark would be the place of this text in the library of a general neurologist. The competition is great and the number of textbooks which consider not only MR but the entire clinical picture of multiple sclerosis seems to grow by the month. Therefore I just wonder whether most would see the details on MR provided in such tomes as MacAlpine’s or Raines’ multiple sclerosis sufficient without investing a further £50.

NEIL ROBERTSON

This book covers most aspects relating to the neurobiology of Parkinson’s disease and closely related conditions and arose from the 11th International Symposium on Parkinson’s disease held in March 1994. These meetings are held every three years and are recognised as one of the major international symposia on these conditions and this book is filled with contributions from current international figures in this field. Nearly half the book is devoted to epidemiological, biochemical, and physiopathological aspects of Parkinson’s disease and related conditions, reflecting current interests worldwide. Inevitably, it seems that collections of papers arising from a large meeting contain anomalies of structure, and this one is no exception. However, one benefit may be balance in terms of representation of current views and this is achieved in the representation of both sides of the “genes or environment” question. Clinical aspects focus particularly on the “Parkinson plus” syndromes and dementia in Parkinson’s disease, with separate sections on autonomic disorders, and neuroimaging, and the last section deals with therapeutic aspects. Although this section is probably now more out of date than any of the others, there are chapters on most of the major pharmacological treatments and there is a particularly helpful outline of therapeutic controversies. This section also covers thalamotomies, pallidotomies, and subthalamic stimulation, but strangely there is no separate chapter on neural transplantation. Overall this is a useful and interesting book for anyone with an interest in extrapyramidal syndromes.

ANNEROSSER

CORRECTION

In line 7 of the first paragraph, “asymptomatic” should read “symptomatic”.

The part sentence starting 10 lines from bottom, first column “five with arachnoiditis, two with a sharp root kink, four distally (group 4).” should read “three with arachnoiditis, two with a sharp root kink, all distally (group 4)”.

ANNE ROSSER
A necropsied case of Machado-Joseph disease with a hyperintense signal of transverse pontine fibres on long TR sequences of magnetic resonance images

YUKARI IMON, SADAO KATAYAMA, HIDESHI KAWAKAMI, YOSHIO MURATA, MASAKI OKA and SHIGENOBU NAKAMURA

J Neurol Neurosurg Psychiatry 1998 64: 140-141
doi: 10.1136/jnnp.64.1.140

Updated information and services can be found at:
http://jnnp.bmj.com/content/64/1/140

These include:

References
This article cites 4 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/64/1/140#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/