Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder

Dianne M Sheppard, John L Bradshaw, Jason B Mattingley, Paul Lee

Abstract

Objectives—Deficits in the maintenance of attention may underlie problems in attention deficit hyperactivity disorder (ADHD). Children with ADHD also show asymmetric attention deficits in traditional lateralisation and visuospatial orienting tasks, suggesting right hemispheric (and left hemisphere) attentional disturbance. This study aimed to examine the lateralisation of selective attention in ADHD; specifically, the effect of a moving, random dot background, and stimulant medication in the line bisection task.

Methods—The performance of children with ADHD, on and off methylphenidate, was examined using a computerised horizontal line bisection task with moving and blank backgrounds. Twenty children with a DSM-IV diagnosis of ADHD participated with 20 controls, individually matched for age, sex, grade at school, and IQ. Twelve of the 20 children with ADHD were on stimulant medication at the time of testing. Horizontal lines of varying length were presented in the centre of a computer screen, with either a blank background, or a moving, random dot field. The random dots moved either leftward or rightward across the screen at either 40 mm/s or 80 mm/s.

Results—The children with ADHD off medication bisedected lines significantly further to the right compared with controls, who showed a small leftward error. Methylphenidate normalised the performance of the children with ADHD for the task with the moving dots.

Conclusions—These results support previous evidence for a right hemispheric hypoarousal theory of attentional dysfunction, and are consistent with the emerging picture of a lateralised dysfunction of frontostriatal circuitry in ADHD.

(J Neurol Neurosurg Psychiatry 1999;66:57–63)

Keywords: attention deficit hyperactivity disorder; lateralisation; stimulant medication

Attention deficit hyperactivity disorder (ADHD) is a complex neurological syndrome of largely unknown aetiology. Genetic factors have been implicated, as have such environmental factors as developmental and birth related brain insults. Its primary symptoms include impulsivity, inattention, and hyperactivity, with additional symptoms including motor restlessness and emotional lability.1 For a diagnosis of ADHD, the child must have exhibited some hyperactive, impulsive, or inattentive symptoms before the age of 7 years, although between 30% and 60% of those who have ADHD in childhood continue to exhibit clinical symptoms in adulthood.2

Evidence is accumulating that the problems with inhibiting impulsive actions and difficulty in focusing and sustaining attention may be due to a lateralised disturbance in frontal lobe network function, mediated by the underactivity of predominantly right hemispheric frontostriatal regions.1 3 5 The constellation of symptoms suggest that ADHD is primarily a result of disruption in subcortical-cortical pathways involved in the regulation of behavioural inhibition and efficient executive functioning.5 7 When a stimulant such as methylphenidate is administered, normalisation of arousal levels may occur within structures that are involved in moderating response inhibition and arousal.1

Frontal lobe involvement is supported by clinical findings of executive function deficits such as increased spontaneity, the inability to operate in favour of a remote or abstract reward, a decreased capacity to self monitor behaviour, a decreased ability to respond to stimuli or follow commands, and difficulty maintaining sustained attention.5 8 The caudate has also been implicated in the past with patients with lesions exhibiting typical behavioural patterns of ADHD, including disinhibition, reduced attention span, impulsivity, and socially inappropriate behaviours.5

Neuroimaging research suggests a general hypoarousal dysfunction which may be lateralised to the right basal ganglia-thalamocortical system. Magnetic resonance imaging with a large sample of children with ADHD found that they did not show the normal right>left asymmetry of the caudate nucleus.1 In addition, the asymmetry (left>right) of the lateral ventricle was reversed, and a smaller right globus pallidus, right anterior frontal region, and cerebellum were found in the children with ADHD. In another study,5 9 no significant asymmetries of the caudate were found for 11 adolescents with ADHD or the control group; however, the ADHD group had a larger right caudate than the controls. In addition, a small sample of six children with ADHD showed a hypoperfused right striatum compared with...
controls using the SPECT technique, and this hypoperfusion was partially reversible with methylphenidate, which was in accordance with the transient clinical improvements found.13

Voeller and Heilman11 reported that among children with known right hemispheric damage, a large proportion was also diagnosed with ADHD. They therefore performed a letter cancellation task (a typical laterality task) with an ADHD group. Seven right handed children with attention deficit disorder with or without hyperactivity, behaved similarly to adults with right hemispheric damage who typically show neglect of the left hemispace. In the task the children with ADHD made more overall errors of omission than their controls, and there was a significant majority of left sided errors (they detected significantly more targets on the right side of the page than on the left), suggestive of a disturbance in selective or spatial attention. In another study12 a 10 year old boy with no significant majority of left sided errors (they detected significantly more targets on the right side of the page than on the left), suggestive of a disturbance in selective or spatial attention. In another study12 a 10 year old boy with no detectable structural brain damage, but several clinical signs of left unilateral neglect and ADHD, showed a significant impairment in sustained attention, as well as lateralised attentional biases (typical of left neglect), such as rightward deviations in a line bisection task and left sided omissions in a letter cancellation task. The attentional deficit in ADHD is seen clinically as the inability to stay on task or focus attention for a prolonged period of time, which is sometimes attributed to an underlying problem of inhibition or self regulation, as are the other core symptoms of ADHD (impulsivity and hyperactivity). Inattentive behaviour also fluctuates according to factors such as motivation, levels, environment, and fatigue.13

Although there is no documented evidence of clinical differences for left versus right sides of space, lateralisation studies suggest an asymmetry in controlled attentional orienting in ADHD, implying a right hemispheric dysfunction. Recent research has indicated that people with lateralised attentional problems (for example, unilateral neglect) may also exhibit deficits in sustained attention.14 It is therefore important to ascertain the incidence of lateralised attentional problems in populations that manifest predominantly sustained attention deficits (such as ADHD).

In the present study a computerised horizontal line bisection task (with or without a moving, random dot pattern in the background) was used to examine the lateralisation of selective attention in ADHD. In a previous study of patients with right hemispheric damage with left neglect,15 we found that the moving pattern systematically biased patients' bisection judgements. We hypothesised that children with ADHD may be unable to ignore such irrelevant background noise due to an underlying deficit in selective attention. Given that children with ADHD have shown an apparent right hemispheric dysfunction in covert orienting and lateralisation tasks, it was predicted that they should show a rightward bias, and be abnormally affected by irrelevant background stimuli, as found for patients with unilateral neglect.15 As a further manipulation, we also examined the effect of stimulant medication on possible anomalies in line bisection performance, by comparing children on stimulant medication with those who had never received stimulants, or who had taken their last dose more than 16 hours previously. It was predicted that the stimulant medication should reduce or normalise any bisection performance differences found for the children with ADHD compared with controls.

Patients and methods

Patients

Participants were 20 children, who were initially referred to the ADHD clinic at Monash Medical Centre with suspected ADHD, or who already had a diagnosis of ADHD and whose parents attended the local ADHD Support Group. All children met the DSM-IV criteria for ADHD.16 Diagnoses of the children who came through the clinic were made by initial clinical interviews with children and parents and follow up cognitive, language, and educational assessments of the child. In addition, all children with ADHD scored >1.5 SD above the mean for age and sex on the ADHD rating scale.17 The ADHD rating scale is a 14 item parent or teacher report checklist developed by R Barkley and G DuPaul for evaluating the occurrence of ADHD symptoms in children (6–12 years of age). Each of the 14 items is based on a particular requirement of the DSM III-R, and normative data from a large sample of normal children has been reported along with reliability and validity data (DuPaul 1990, unpublished manuscript; cited in Barkley, 199018).

The sample of 20 children with ADHD was separated into two groups; 12 were on their normal stimulant medication regimes (methylphenidate) at the time of testing, which was carried out an average of 2.2 hours after the last dose. The other eight children either had never received stimulant medication, or had taken their last dose at least 16 hours earlier, for the purpose of testing (when any residual drug would probably no longer be affecting behaviour). The mean age of the sample on medication was 10 years, 5 months (range 9 years, 1 month-12 years, 7 months), and the sample off medication was 10 years, 6 months (range 8 years, 9 months-12 years, 9 months).

Each child with ADHD was individually matched for age (±9 months), sex, handedness, grade at primary school, and IQ (±10 points) as measured by the Wechsler intelligence scale for children (WISC) or the Kaufman brief intelligence test (KBIT).19 Table 1 gives the demographic details of the ADHD sample on medication and their matched controls, and table 2 the details of those off medication and their matched controls.

All children (children with ADHD and matched controls) were given a cognitive assessment, either on the WISC-III if they came through the ADHD clinic, or the KBIT.

Independent sample t tests indicated that the medicated children with ADHD and controls did not differ with respect to age ($t(22)=0.05$, $p=0.96$), grade at primary school ($t(22)=0.16$, $p=0.90$), or other covariables.
Laterality in attention deficit hyperactivity disorder

Mean ADHD rating scale score 34.6 (5.4) 11.3 (7.6)
Mean grade in primary school 5.6 (1.6) 5.0 (1.2)
Mean WISC FSIQ or KBIT score 103.4 (8.3) 103.4 (9.4)
Handedness 8 right handed 8 right handed
Sex 6 males, 2 females 6 males, 2 females

\(t(14)=0.89, p=0.39 \), or IQ level \(t(14)=0.97, p=0.35 \), grade at primary school \(t(14)=0.89, p=0.39 \), or IQ level \(t(14)=0.00, p=1.0 \); however, the ADHD group off medication had a significantly higher score on the ADHD rating scale than controls \(t(14)=7.07, p<0.001 \). The ADHD group on medication did not differ from the group off medication for the scores on the ADHD rating scale \(t(18)=0.89, p=0.39 \).

APPARATUS AND PROCEDURE

The line bisection task was presented on a Toshiba 3100SX portable computer with a VGA monochrome screen (active area=148 mm (height)×198 mm (width)). Stimuli (lines, cursor, and dots) appeared amber on a black background. A grey plastic border surrounded the active display, which did not have any marks that could be used by the participants as cues. The task was a horizontal line bisection task with or without moving dots in the background. Participants sat at a table throughout the task, with the display positioned at a distance of around 450 mm and aligned with the midline. A response box (with 2 microswitch buttons 48 mm apart) was located directly in front of the computer keyboard. The participant used the left index finger for the left button, and the right index for the right button. A solid horizontal line (2 mm thick) was presented in the centre of the screen at the beginning of each trial. A vertical cursor (1 mm width×8 mm height) was located at either the left or right end of the horizontal line.

The participants were instructed to move the cursor to the judged centre of the line, and to ignore any moving dots in the background, by pressing buttons to move the cursor leftward (left button) or rightward (right button). The task was self paced, and participants were able to move the cursor to and fro until satisfied. They then pressed another button located in the centre of the front panel of the response box, to record the response and move to the next trial. If, after making their response, the participants were not happy with their previous judgement of the centre, they could repeat the trial. The display remained blank between successive trials. No feedback on accuracy was given. The velocity of the cursor was set at 60 mm/s for all groups. The computer recorded the distance of the cursor from the actual centre of the line to an accuracy better than 1 mm (in the horizontal axis).

There were five different backgrounds which were pseudorandomly allocated to each of 60 trials. The baseline condition was a blank screen, and there were four different moving dot conditions. The array of solid circular moving dots was displayed in random formation across the active area of the screen at a constant density of 40 dots (20 above and 20 below the line). Two of the four conditions involved leftward drifting dots at either a slow speed of 40 mm/s, or a fast speed of 80 mm/s. In the other two conditions the dots drifted rightward, again at either slow or fast speeds. Therefore, there were 10 conditions, each consisting of six trials. The background dots drifted across the screen and disappeared on one side before re emerging on the other. It is important to note that the dots did not appear within the narrow band that contained the stimulus line and cursor, and thus there was no contiguity between the central display and the peripheral background. Two line lengths were used (180 mm and 140 mm) to minimise the likelihood that participants would develop a single response set and perform the task automatically. Line length and side of cursor start were counterbalanced within the design. Each participant completed a total of 60 trials—that is, 20 trials in each of three blocks—and the order of the blocks was counterbalanced between participants. Figure 1 shows the three different display conditions.

All procedures followed were in accordance with the ethical standards of the Monash University standing committee on ethics in research on humans, and the Monash Medical Centre human research and ethics committee.

Results

The ADHD group off stimulant medication are considered first. Figure 2 shows the mean deviation from the centre (mm) in the line bisection task for each group and for each screen condition (data were collapsed across the two line lengths for all comparisons). A score of zero indicates bisection at the midpoint, positive values are transections to the right of the centre, and negative values are transections to the left. On average the ADHD

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Demographic details of the patients with ADHD on medication and matched controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD medicated group (n=12)</td>
</tr>
<tr>
<td>Mean age (years:months)</td>
<td>10:5 (1:4)</td>
</tr>
<tr>
<td>Sex</td>
<td>11 males, 1 female</td>
</tr>
<tr>
<td>Handedness</td>
<td>11 right handed, 1 left handed</td>
</tr>
<tr>
<td>Mean WISC FSIQ or KBIT score</td>
<td>102.6 (8.8)</td>
</tr>
<tr>
<td>Mean grade in primary school</td>
<td>4.7 (1.4)</td>
</tr>
<tr>
<td>Mean ADHD rating scale score</td>
<td>32.7 (4.5)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are SD.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Demographic details of patients with ADHD off medication and matched controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADHD non-medicated group (n=8)</td>
</tr>
<tr>
<td>Mean age (years:months)</td>
<td>11:4 (1:5)</td>
</tr>
<tr>
<td>Sex</td>
<td>6 males, 2 females</td>
</tr>
<tr>
<td>Handedness</td>
<td>8 right handed</td>
</tr>
<tr>
<td>Mean WISC FSIQ or KBIT score</td>
<td>103.4 (8.3)</td>
</tr>
<tr>
<td>Mean grade in primary school</td>
<td>5.6 (1.0)</td>
</tr>
<tr>
<td>Mean ADHD rating scale score</td>
<td>34.6 (5.4)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are SD.
group transected the line 1.1 mm to the right, whereas, as normally found, controls transected the line 1.1 mm to the left.

A two way analysis of variance (ANOVA) with factors group (ADHD v controls) and screen (blank screen, slow, and fast dots) showed a main effect of group ($F(1,14)=11.17$, $p<0.01$), but no interaction. Thus the ADHD group was significantly right biased compared with the controls, irrespective of the background. One tailed single sample t test (comparing mean bisection errors with zero—that is, perfect bisection) results indicated that the ADHD group was transecting the line significantly to the right of centre ($t(7)=2.13$, $p<0.05$), and controls to the left of centre ($t(7)=−2.35$, $p<0.05$).

Figure 3 shows that the ADHD group on medication was more accurate than controls when the moving dots were in the background, and that accuracy declined for both groups in the blank screen condition; the ADHD group on medication transected further to the right, whereas controls again transected further to the left. A two way ANOVA with factors group and screen was conducted for the ADHD sample on stimulant medication, and a significant group\timesscreen interaction was found ($F(2,44)=3.89$, $p<0.03$). There was not, however, a main effect of group ($F(1,22)=2.26$, $p>0.05$).

One way ANOVAs comparing the groups for each screen condition showed that the only significant group difference was for the blank screen ($F(1,22)=6.94$, $p<0.02$). Thus compared with the controls, the medicated ADHD group transected further to the right for this condition only. One tailed t tests indicated, however, that for this condition, the apparent right transection of the ADHD group was not significantly different from zero ($t(11)=1.51$, $p>0.05$). Nevertheless, the control group was again transecting the line significantly to the left of centre ($t(11)=−1.85$, $p<0.05$). Thus whereas the unmedicated ADHD group was significantly right biased (and matched controls were left biased), the group on medication showed no significant bias.
Laterality in attention deficit hyperactivity disorder

Discussion

The line bisection task showed that the ADHD group off medication was significantly right biased, compared with the controls’ left bias across all screen conditions. Consistent transsections to the right of centre suggest that the left portion of the line was perceived as slightly shorter, or less salient, than the right portion, due perhaps to a reduced ability to direct attention leftward, or perhaps the right portion was perceived as slightly longer. The ADHD group on stimulant medication did not, however, show a significant right bias. Thus, methylphenidate seems to have normalised the ADHD group’s performance, especially with the moving dots in the background. Only when on medication were there no lateral biases in performance; the average point of transection of the ADHD group on medication did not significantly deviate from the true midpoint.

In addition to the traditional lateralisation tasks, children with ADHD have also shown attentional asymmetries in visual-spatial orienting tasks. Carter et al. compared 20 unmedicated children with ADHD with their normal controls. Participants maintained central fixation, responding when they detected a target in the left or right visual field. The left or right side of the fixation cross was illuminated before the onset of the target, forming an “arrow cue” which either correctly predicted the target’s location (80% of spatially informative cues were valid) or pointed to the direction opposite to which the target would subsequently appear (20% invalid trials). A neutral cue gave no predictive information (the brightening of the entire fixation cross). The “cost” of an invalid cue was measured as the difference in reaction times for invalidly cued and neutral cued targets. For both groups, the invalid cues were responded to more slowly, as predicted; however, the children with ADHD showed a loss of costs on attentional orienting to invalidly cued left visual field targets. The normal control group, by contrast, showed costs on invalid trials on both sides. These findings suggest a hemispheric asymmetry of “controlled” spatial orienting processes in ADHD.21

In addition to their endogenous spatial orienting task, an exogenous or automatic orienting task indicated the spatial location of the target by a peripheral precue (the brightening of a box either to the left or right of fixation).
Invalid cues for left visual field targets (presented to the right of fixation) were significantly more disruptive than invalid cues for right visual field targets. This performance asymmetry was not found for the normal controls, but is, however, commonly found for patients with right hemispheric neglect. Increased costs of invalid cues for left visual field targets were also evident in a group of adult patients with ADHD in a similar visuospatial attention task.

In another exogenously cued orienting task, children with ADHD failed to show the expected performance asymmetry for invalid precues (the difference occurring in the expected direction but failing to reach significance), but did exhibit significantly slower reaction times to the uncued left visual field targets compared with uncued right visual field targets. In addition, low doses of methylphenidate equalised the left and right visual field responses to the uncued targets.

In comparison with the right bias of the unmedicated ADHD group, controls consistently showed a slight but significant left bias. This result is consistent with previous research involving both visual and kinaesthetic line bisection tasks, in which normal right handed people judge the centre of the line to be slightly (but significantly) to the left of the true centre. Neuroimaging and cognitive studies of normal people, as well as animal studies, suggest the involvement of right hemispheric cortical regions (in particular the right prefrontal cortex) in selective attention and arousal and vigilance. Alertness (a general readiness to respond, or vigilance) and selective attention (selectively or spatially focused attention with concomitant inhibition of distracting stimuli) may be considered as two component functions of a general attention mechanism. Right hemispheric lesions may impair sustained alertness and selective/spatial attention in humans. There is also increasing evidence that mechanisms subserving spatial attention and alertness are related; thus patients with right hemispheric unilateral neglect show a bilateral deficit in sustained attention in addition to the well documented spatial attentional deficit on the contralesional side of space. Moreover, the lateralisation of attentional dysfunction in neglect is linked to low arousal levels.

Line bisection performance in the present study can be contrasted with that of left neglecting patients with right hemispheric damage, who were previously shown to bisect lines to the right in the same paradigm. The performance of patients with neglect, however, was also affected by the direction of background movement, such that the patients' judgements were significantly shifted toward the “neglected” or left side by the leftward moving background. The children with ADHD in the same task showed the expected, but relatively small, right sided bias in line bisection; however, the leftward moving dots did not shift the bisection judgements to the left. In fact, unlike the situation with right hemispheric damage, the direction of the moving dots did not affect the performance of the children with ADHD at all. Thus whereas children with ADHD may perform similarly to patients with unilateral left neglect in some traditional lateralisation tasks (for example, letter cancellation and line bisection), there are seemingly both quantitative and qualitative differences in the task performances of these groups. Firstly, the magnitude of the error in tasks such as line bisection were comparatively small for the ADHD group. The average error for the unmedicated children with ADHD in this task was about 1 mm to the right of centre, compared with the typically variable, but substantially larger, bisection error for patients with left neglect. Although the ADHD group does not seem to have the same “stickiness” of attention as the patients with neglect (as their lateralised performance is independent of the moving background), the lack of an effect of background movement could be an artefact of the small bisection error for the ADHD group. Further investigation is needed to elucidate the effect of background motion on lateralised task performance in ADHD.

Sustained attention may have also played a part in the bisection performance of the children with ADHD. The children with ADHD off medication showed a significant temporal sequence effect. Their bisection performance did not deviate from the centre in the first block of 20 trials, but in the third block of trials their right bias emerged. The children with ADHD on medication showed no significant deviation from the centre for the first or third block of trials. Thus (for the children with ADHD off medication) as the task became more familiar, arousal levels and sustained attention most probably decreased. Evidence for a coupling of low levels of alertness and the presence of lateralised biases was provided in a recent study in which patients with right hemispheric damage (with unilateral left neglect) showed the expected problems in attending to visual stimuli on the left; however, an uninformative sound (presented immediately before presentation of the visual target) “alerted” the patients and reduced the lateral bias in spatial attention. The sustained attention deficit in ADHD is likely to have resulted in a decreased alertness over time for the line bisection task, and thus caused emergence of a right bias in the final block of trials. The children with ADHD on stimulant medication, however, did not show the same abnormal bias, due probably to an improved level of arousal.

The well documented sustained attention deficits in ADHD are thought to be due to low levels of neural activation in prefrontal structures, accompanied by an imbalance of activity in frontostriatal regions. The deficit in the frontostriatal gating mechanism not only results in a sustained attention deficit, but is also thought to be responsible for the impulsivity and hyperactivity. Conceivably, the three core features of ADHD (including a deficit in sustained attention) may be explained by this dysfunctional gating mechanism, and the disinhibition of responses to sensory
Laterality in attention deficit hyperactivity disorder

4 Lou HC, Henriksen L, Bruhn P, et al. Bisection. Methylphenidate medication normalised this asymmetry, perhaps by increasing right hemispheric hypoarousal. Neuroimaging studies further support such a hypothesis. More research should now focus on the spatial (as opposed to the sustained) aspect of attention deficit in ADHD.

This research was supported by the Australian Research Council.

24 Nigg JT, Swanson JM, Hinshaw SP. Covert visual spatial attention in boys with attention deficit hyperactivity disorder: Lateral effects, methylphenidate response and results for parents. Neuropsychology 1997;35:63–76.

Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder
Dianne M Sheppard, John L Bradshaw, Jason B Mattingley and Paul Lee

J Neurol Neurosurg Psychiatry 1999 66: 57-63
doi: 10.1136/jnnp.66.1.57

Updated information and services can be found at:
http://jnnp.bmj.com/content/66/1/57

These include:

References
This article cites 29 articles, 6 of which you can access for free at:
http://jnnp.bmj.com/content/66/1/57#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/68/2/256.3.full.pdf

Topic Collections
Articles on similar topics can be found in the following collections

- Child and adolescent psychiatry (251)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
LETTERS TO THE EDITOR

Acute Optic Neuritis in Australia: a 13 year prospective study

The frequency with which multiple sclerosis develops after an attack of acute optic neuritis varies widely in different series and has been reported to range from 11.5% to 85%. The variability in the findings may relate to different methods of patient selection, diagnostic criteria, geographical factors, duration of follow up, and study design.

A cohort of 82 patients (59 females, 23 males) with uncomplicated ON aged 10 to 50 years (mean 29.2) who were examined neurologically and had visual evoked responses (VERs) performed in our department during the period 1973–83 were re-examined in 1983–85. Twenty six of the patients (32%) had progressed to probable or clinically definite multiple sclerosis during the follow up period of 7–114 (mean 57) months. Female sex, young adult age, and the presence of HLA-B7 or DR2 seemed to increase the risk of developing the disease.7 Seventy one of the 82 (87%) (52 females, 19 males) were reviewed in 1991–2; 11 patients could not be traced. Neurological examination was performed on 49; two patients had died with multiple sclerosis and a telephone questionnaire was completed on the remainder. Thirty three (46%, or 40% of the original 82) had developed probable or clinically definite multiple sclerosis after a mean duration of 13.25 years (range 8–29.6 years). Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment,8 predicted that 52% would develop the disease in 15 years. Eight cases had developed multiple sclerosis since the previous review. Kaplan-Meier and actuarial methods of assessment,8 predicted that 52% would develop the disease in 15 years (figure). There was a significantly greater risk of developing multiple sclerosis for patients in the 21–30 year age group than those outside this range but there was no significant difference in the rate of progression to the disease for males and females. There was no significant difference in the probability of developing multiple sclerosis in patients with single or recurrent attacks of optic neuritis or bilateral optic neuritis, nor in those who were DR-2 positive (table 1).

The finding in the Australian cohort that 52% of patients with optic neuritis were at risk of developing probable or clinically definite multiple sclerosis in 15 years is comparable with that of 57% in 11.6 years in the United Kingdom, 66% in the United States,9 and 45% in 15 years in Sweden.10

Multiple sclerosis in 15 years is comparable with that of 57% in 11.6 years in the United Kingdom, 66% in the United States,9 and 45% in 15 years in Sweden.10

Post-traumatic hydrocephalus: influence of cranietomy on the CSF circulation

Post-traumatic ventricular dilatation may have a wide range of aetiological factors: starting from neuronal loss due to head trauma and possible secondary ischaemic insults, to obstruction of CSF circulation resulting in hydrocephalus. It is important to differentiate between primary and secondary hydrocephalus and brain atrophy before considering placement of a shunt. Making this decision can be facilitated by measurement of the resistance to CSF outflow.1 However, the pattern of the CSF circulation may change dramatically after a cranietomy resulting from a previous decompressive cranietomy for refractory intracranial hypertension after head injury. The effect of the skull and dura on CSF hydrodynamics has been explored experimentally.2 CNS resistance to CSF outflow after cranietomy decreases two-fold and brain compliance (expressed using the pressure-volume index, PVI) increases.3 This problem is important clinically as the following case illustrates:

A 44 year old man fell downstairs and was admitted with a Glasgow coma score (GCS) of 4. Brain CT disclosed an intracerebral haematoma, which required a right frontal lobectomy and decompressive cranietomy to control raised intracranial pressure. Five months later he remained severely disabled, with deteriorating GCS and increasing spasticity. Brain CT showed a progressive ventricular dilatation with widening of the cortical sulci. Cranietomy had been delayed because of persistent problems with infections.

The first lumbar computerised infusion test was performed 5 months after injury to study the patient's CSF circulation. The opening pressure was low (10 mm Hg) with a very low pulse amplitude. An infusion of normal saline at a rate of 1.5 ml/min increased the intracranial pressure (ICP) to a plateau of 12.2 mm Hg within 22 minutes. The calculated resistance to CSF outflow was 0.7 mm Hg/ml/min and the pressure-volume index was increased to 28 ml (figure).

It is important to mention here that the normal range for the pressure-volume index, calculated from the constant infusion (an inverse of elastance coefficient) is different from the values obtained by the bolus injection.12 Values below 13 ml indicate a tight brain, from 13 ml to 23 ml normal compliance and above 23 ml hypotensive compliance.

A slow constant rate infusion tests global compliance of the craniospinal axis whereas a fast bolus volume load probably tests compartmental compliance of the container into which the extra volume is added.

This pattern of CSF circulation with low or normal resistance to CSF outflow, increased brain compliance, and very few vasogenic waves is characteristic of cerebral atrophy.13 Cranietomy was carried out as his deterioratisation was attributed to the “syndrome of trephining” where the brain sinks in, particularly with erect posture and dehydration producing deterioration in conscious level and focal signs. However, 1 month later, there had been no progress in the patient’s condition and repeat CT again suggested progressive ventriculomegaly. The infusion study was repeated. The opening ICP was not dramatically different (10 mm Hg) to the previous study. However, the pulse amplitude (1.5 mm Hg) was increased, and the calculated resistance to CSF outflow was greatly increased to 20 mm Hg/ml/min, with a normal pressure-volume index of 15 ml. Such a pattern is specific for hydrocephalus. After this test the patient was shunted with a Codman Medos programmable valve (setting 120 mm H2O ventriculoperitoneal shunt with remarkable clinical improvement, the GCS rose to 14, he began to talk and his spasticity in his arms decreased dramatically. It is obvious why the pressure-volume compensatory reserve (PVI) decreases after cranietomy, but only an interpretation of an increase in the resistance to CSF is not immediately apparent. Two explanations are possible:

The patient had developed an acute hydrocephalus, possibly as a result of traumatic subarachnoid haemorrhage. Cranietomy was a factor allowing compensation of CSF circulation in the early stages. It is difficult to explain what is the nature of such compensation. Shapiro et al.14 attempted to offer an interesting but conceptually difficult hypothesis that the time constant (resistance to CSF outflow x compliance of cerebrospinal space) of cerebrospinal system hydrodynamics has a tendency to remain constant. Therefore, a

Clinical features of patients with optic neuritis (ON)

<table>
<thead>
<tr>
<th>ON</th>
<th>ON-multiple sclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr):</td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>10 4</td>
</tr>
<tr>
<td>21–30</td>
<td>8 17</td>
</tr>
<tr>
<td>31–40</td>
<td>11 9</td>
</tr>
<tr>
<td>41–50</td>
<td>9 3</td>
</tr>
<tr>
<td>>50</td>
<td>2 1</td>
</tr>
</tbody>
</table>

Sex:

- Males: 13 6
- Females: 25 27

ON Type:

- Single: 23 17
- Recurrent: 11 13
- Bilateral: 4 3

HLA Type:

- DR2+: 15 22
- DR2−: 19 11

Probability of patients with a first attack of optic neuritis not developing multiple sclerosis in 15 years

<table>
<thead>
<tr>
<th>Probability</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50</td>
</tr>
<tr>
<td>0.05</td>
<td>100</td>
</tr>
<tr>
<td>0.10</td>
<td>150</td>
</tr>
<tr>
<td>0.15</td>
<td>200</td>
</tr>
</tbody>
</table>

Probability of patients with a first attack of optic neuritis not developing multiple sclerosis in 15 years
Mechanistic increase in compliance after craniectomy tends to be followed by a decrease in the resistance to CSF outflow. This process may be reversed after cranioplasty—that is, a decrease in PVI may be followed by an increase in the resistance to CSF outflow.

The second possible scenario is more important for clinical management. A large craniectomy may facilitate irreversible ventricular enlargement over weeks or months. Thus, after cranioplasty, the expanded ventricles may, via the cerebral mantle, obstruct the lumen of the cortical subarachnoid space and increase the resistance to CSF outflow.

This case demonstrates that when the CSF circulation is studied in patients with a large craniectomy the CSF outflow resistance cannot be taken reliably as a guide for shunting. Overnight ICP monitoring or CSF infusion study should be performed after cranioplasty, when CSF circulatory reserve decreases dramatically. Moreover, a prolonged period without a bone flap may encourage ventricular dilatation.

MAREK CZOSNYKA
JO COPEMAN
ZOFIA CZOSNYKA
ROY S MCCONNELL
CATHERINE DICKINSON
JOHN D PICKARD

Academic Neurosurgical Unit, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK

CT and infusion studies. (A) Scan performed on admission. (B) After right frontal lobectomy and bone flap removal. (C) Four months after injury, before cranioplasty. (F) Infusion test demonstrated low resistance to CSF outflow and increased brain compliance. ICP=mean intracranial pressure; AMP=pulse amplitude of ICP waveform. Constant infusion rate of 1.5 ml/min is indicated by a thick horizontal line. X axis=time. (D) Five months after injury, after cranioplasty. (G) Infusion test demonstrated grossly increased resistance to CSF outflow and normal brain compliance. (E) One month after shunting: normalisation of ventricles. Bicaudate index decreased from 33% to 21% with a decrease in the 3rd ventricle diameter (from 13 mm to 8 mm).
Diencephalic amnesia and apraxia after left thalamic infarction

Amnesia and apraxia are unusual manifestations of unilateral thalamic lesions. A patient in whom severe amnesia and apraxia were the presenting features of a left thalamic infarct is presented. The findings support the concept that memory and praxis both utilise circuits which include the dominant thalamus.

A 78 year old right handed Hungarian woman presented with memory loss and disorientation. She had been well and conversed normally with her daughter on the evening before presentation. The next morning, her daughter was alarmed to find her lying on a bed. The patient was unable to recall her name, the address of the house in which she was staying, or the names of her grandchildren. She subsequently failed to recognise her family doctor of 7 years. History included non-insulin dependent diabetes, hypertension, hyperlipidaemia, and atrial fibrillation. Medications were digoxin, glibenclamide, and metoprolol. Captopril had been prescribed 4 weeks previously but was ceased 2 days before presentation due to pre-syncopal symptoms. The patient consumed no alcohol. There was no history of cerebrovascular events.

Cognitive functions were examined at the bedside with the assistance of an interpreter, as the patient spoke no English, although she conversed freely in her native Hungarian. She had no recollection of events since emigrating to Australia 50 years previously, gave her correct maiden name, and could not recognise or name her grandchildren, although she recognised her daughter. She acknowledged that she was in a hospital, but maintained it was in Budapest and the year was 1947. Although her recollections regarding her early life and wartime Hungary seemed accurate, she confabulated when asked for details of recent events. Short term recall of verbal material and people was poor. The patient was able to name objects such as a pencil and a watch, and obey two and three stage commands. She was unable to use eating utensils or a toothbrush, either in pantomime or when provided with the object itself. Movements of the face and limbs were normal, and there were no sensory abnormalities. Knee and ankle jerks were absent bilaterally and both plantar responses were extensor. General examination revealed atrial fibrillation and mild cardiomegaly. The patient continued to display severe impairment of anterograde memory. She was reluctant to leave her bed, and quickly became lost unless supervised. She did not recognise familiar staff members and was unable to use ward landmarks to reorientate herself. She required assistance to feed herself, brush her teeth, and shower. When reviewed 3 months later, her memory disturbance and apraxia for simple activities of daily life (such as brushing her teeth) persisted, necessitating care in a supervised environment.

Brain MRI (figure) showed a left anterior thalamic lesion consistent with lacunar infarction and periventricular white matter changes.

G. M. Hochwald, M. Epstein, F. Malhan, Crasho

Department of Neurology, Royal Adelaide Hospital, Adelaide, South Australia
PD THOMPSON
University Department of Medicine
Correspondence to: Professor PD Thompson, University Department of Medicine, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia

Transverse myelopathy in the antiphospholipid antibody syndrome: pinworm infestation as a trigger?

The antiphospholipid antibody syndrome is a disorder characterised by the production of autoantibodies directed against negatively charged phospholipid membrane phospholipids. Antiphospholipid antibodies have been described in various neurological disorders. It has been generally accepted that viral, bacterial, and parasitic infections can serve as a potential trigger for autoimmune reactions. Despite the growing knowledge that has accumulated, the relation between parasites and autoimmunity has not been clarified.

Enterobiasis vermicularis (pinworm) is a nematode rarely found outside the gastrointestinal tract, but allergic reaction due to enterobiasis has been reported.1 We describe the case of transverse myelopathy preceded by intestinal pinworm infestation in the primary antiphospholipid antibody syndrome. To our knowledge, such an association has not been reported previously. Pinworm therapy was complicated by the Jarisch-Herxheimer reaction manifested by temporary exacerbation of pathological symptoms.

In March 1998, a 40 year old woman who complained of perianal itching noticed the presence of worms migrating from the anus. Three days later itching and numbness in lower limbs developed and the patient had weakness in the legs. These symptoms progressed over the next 3 days to severe paraparesis and urinary urgency. Her medical history was relevant for three unexplained miscarriages which all occurred in midpregnancies. In the local hospital, she underwent brain and spinal cord MRI which showed hyperintensity in the level of T12-L1. In our hospital for further investigation.

Neurological examination showed mild spastic paraparesis, bilateral Babinski's signs, and a Th-12 sensory level. Erythrocyte sedimentation rate was 34. Oligoclonal bands were absent and the immunoglobulin G and M bands were within the normal range. Renal function and angiotensin converting enzyme, concentrations of IgG, IgM, IgA, IgE, and immune complexes, screening for antinuclear (HEP-2 cells), anti-ds DNA, antinucleoprotein, cytoplasmic, antimitochondrial, and antiparietal cell antibodies, rheumatoid factor, and the search for antineutropoietic virus and antibacterial antibodies were normal or negative. A venereal disease research laboratory Borrelia test was negative. A medium positive concentration of IgM anticitrullinated protein antibody was detected, and lupus anticoagulant was negative. Raised titres of serum IgG and IgM anti-GM1 (1:1600 and 1:3200, respectively) and anti-sulfatide antibodies (1:6400, for both classes) were also demonstrated. Class II human leucocyte antigen (HLA) typing showed the presence of HLA-DRA, DRA, DQ5, DQ8, and DQ9. Cerebrospinal fluid was normal. Electromyoneurography was normal.

Because the patient complained of reappearance of worms and perianal itching, a coproscopic and cellulose adhesive tape test was performed and diagnosis of enterobiasis was established. Mebendazole was given in a single dose of 100 mg and the next day the Jarisch-Herxheimer reaction occurred, with deterioration of leg spasticity, inability to walk, and development of urinary retention. At that time, low positive IgG ACA was detected. The dose of prednisone was raised to 50 mg/day and slowly tapered off within the next 2 months. Sphincter disturbances resolved in 1 day and motor dysfunction gradually improved with only mild spasticity left. Diagnosis of antiphospholipid antibody syndrome in our patient was based on the presence of recurrent fetal loss, transverse myelopathy, and raised ACA. The ACA titre was probably lowered by previously administered corticosteroids. There are several reports of transverse myelopathy as a manifestation of antiphospholipid antibody syndrome in the past decade.2 It is postulated the pathogenic role of antiphospholipid antibodies in transverse myelopathy might be based either on vasculopathy or on interaction with spinal cord phospholipids. Infection by helminths is universally associated with activation of T helper 2 (Th2)-type cells. Recent mechanisms and protective value of antihelminthic Th2 responses, such responses may also be detrimental to the host. The presence of ACA, anti-GM1, and anti-sulfatide antibodies in our patient suggest a possible response to E vermicularis, as it has been shown that nema-todes contain cardiopilin, ganglioside GM1, and sulfatides within their complex lipid composition.3 When parasites share epitopes with host tissues, such molecular mimicry may exploit host immune tolerance against a self determinant. Autoimmunity may occur if immune tolerance is overriden in genetically susceptible hosts. It has been proposed that the presence of pathogenic cross reactive autoantibodies could be the basis for the relation between nematodes and autoimmunity. It may be also postulated that E vermicularis stimulated Th2 response which enhanced polyclonal autoantibody production resulting in the presence of ACA, anti-GM1, and anti-sulfatide antibodies. The association of transverse myelopathy, ACA, and enterobiasis might be purely coincidental, which we assume to be extremely unlikely. The finding of different autoantibodies, as well as the isotype switch of ACA, strongly suggests that pinworm infestation in our patient was the “triggering event” that increased the production of autoantibodies against cardiolipin and led to the development of transverse myelopathy.

The appearance of the spinal cord damage caused by ACA in our patient might have been facilitated by the simultaneous effect of anti-GM1 and anti-sulfatide antibodies. A significant subset of the human anti-GM1 antibodies that reacted with the Gal(b1–3)GalNAc determinant also bound to oligodendrocyte-rich glycoprotein which is a constituent of the myelin of the CNS. As for anti-sulfatide antibodies, their presence has already been shown in some diseases affecting the CNS. It is clear that parasitic infections can serve as a trigger factor of autoimmune reactivity, but the presence of autoantibodies or self reactive T cells is rarely associated with clinical manifestations. They develop only in patients with adequate immunogenetic and hormonal background for autoimmune diseases. In several studies, increased frequencies of HLA-DRA, DQ7, DR7, and DQ7 were found in patients with antiphospholipid antibody syndrome,1 and in our patient HLA-DR4 and DR53 were present. Additional studies are necessary to further elucidate the complex mechanisms of involvement of intestinal helmints in the processes of autoimmune activity.
tation using a finger but there was a left homonymous field defect to a red pin and he had a left afferent pupillary defect. Fundoscopy showed bilateral optic atrophy. The remainder of the cranial nerve examination was normal. In the arms tone and power were normal, but coordination was mildly impaired on the right. The reflexes were exaggerated and Hoffman’s sign was present bilaterally. A palomental reflex was present on the right. In the legs power was normal, but tone was increased and there were several beats of ankle clonus; reflexes were exaggerated and plantar responses were upgoing. Coordination was impaired in both legs, his gait was ataxic, and Romberg’s test was positive. He had a minor reduction in vibration sensation at the right ankle; otherwise sensation was normal. He appeared moderately tanned, but there was no other hyperpigmentation. Supine blood pressure was 114/78, falling to 108/80 on standing. The remainder of the examination was normal.

Routine biochemistry was normal. A morning cortisol was 469 nmol/l (normal >160 nmol/l), but a short synacthen test showed an abnormally flat response (serum...
correlation to: Dr M C Lawden, Leicester Royal Infirmary, Leicester, LE1 5WW, UK.

By October 1996 his headaches had settled but his eyesight, memory, coordination, and walking were worse. Visual acuity was below 6/60 in both eyes. Brain MRI was repeated (figure C-E). By August 1997 there had been new clinical developments (MRI figure F-G). In May 1998 he complained of navigational difficulties in familiar surroundings, further memory loss, and cognitive decline (MRI figure H-I).

In May 1996 (figure A) T2 weighted axial imaging showed high signal intensity areas in the region of the right lateral geniculate nucleus and left optic tract. The occipital white matter was normal. T1 weighted images with gadolinium contrast enhancement (figure B) showed bilateral enhancement of the optic radiations. By October 1996 (figure C) T2 weighted axial imaging showed spread of the areas of high signal intensity continuously from the lateral geniculate nuclei posteriorly along the optic radiations into the white matter of both occipital lobes, more prominent on the right. T1 weighted images showed contrast enhancement in the optic chiasm and optic tracts (figure D), lateral geniculate nuclei, origins of the optic radiations, and right occipital white matter (figure E).

By August 1997 (figure F) there had been further progression in the white matter changes in both occipital lobes, with spread to the splenium of the corpus callosum. Contrast enhancement (figure G) was seen in the optic radiations and right occipital white matter. The cerebellar white matter was of low signal with a small area of contrast enhancement above the fourth ventricle to the right of the midline.

In May 1998 (figure H and I) the changes in white matter were more extensive with the appearance of ring enhancement.

Our case illustrates MRI appearances typical of adrenoleukodystrophy and demonstrates in particular the evolution of these changes with time. The tendency of this condition to affect the visual pathways selectively is well illustrated as is the spread of disease along the fibre tracts of that system. This allowed visualisation of parts of the visual system, the anatomy of which is usually hidden—for example, the intracerebral portion of the optic tracts. The characteristic MRI appearances are thought to result from an advancing front of active demyelination, followed by an area of inflammatory cellular response demonstrating contrast enhancement, surrounded by areas of established damage, gliosis, and neuronal loss.

Golf ball epilepsy

Blunt head injuries may cause epilepsy. We present the cases of four young people whose heads were all subject to contact with golf balls travelling at speed. Each had post-traumatic seizures, three early and one late, despite the apparent absence of post-traumatic amnesia. Although many patients who develop epilepsy recall some type of head injury preceding their first seizure, post-traumatic epilepsy probably accounts for less than 5% of all the epilepsies. There is good evidence that the risk of post-traumatic epilepsy increases with the severity of the injury. Thus, Jennett identified the presence of intracranial haemorrhage, dural laceration, and early post-traumatic seizures as the chief risk factors for late post-traumatic epilepsy. Amnegers et al also emphasised that in the absence of a post-traumatic amnesia of 30 minutes or greater, there was no significant increased risk for the development of post-traumatic epilepsy.

From a practical point of view and for medicolegal purposes, it is necessary to decide if a seizure is post-traumatic. As a general rule it may be stated that if the person concerned does not give a history of a post-traumatic amnesia lasting for a significant period of time (an hour or more), and there is no history of a compound or depressed fracture with dural tear, it is reasonable to exclude the possibility that the epilepsy is post-traumatic. However, it is worth noting that this view is based on Jennett’s work and precedes CT. There is no good evidence from a large series to indicate whether findings on acute imaging add anything to the prediction of post-traumatic epilepsy.
Four examples of acute symptomatic seizures and epilepsy developing after head injuries with golf balls are described, which seem to be an exception to these clinical rules.

An 11 year old boy was struck on the right temple by a golf ball resulting in right frontotemporal haematoma. His consciousness was not impaired until about 3 hours later when he became drowsy and had two focal motor seizures affecting the left arm. He was intubated and ventilated. A head CT showed a right frontotemporal extradural haematoma with no skull fracture (figure A). The haematoma was evacuated (figure B). He was woken and extubated the next day and was discharged without neurological impairment two days later on phenytoin. His follow up is yet available.

A 16 year old boy, who was a keen golfer with a single figure handicap, was struck on the head by a golf ball which rebounded several yards after striking him on the forehead. He experienced local pain, bruising, and swelling. Although he was never unconscious, some 4–5 hours later he developed repetitive jerking of the right face and arm. He was taken to his local casualty department where the diagnosis of serial focal motor seizures was made. His consciousness was then somewhat obtunded. A brain CT was performed which showed a small, discrete, sphenoidal intracerebral haematoma in the left frontotemporal region below the skull at the point where he had been struck (similar in shape, but more hypointense than the appearance in the figure B). The haematoma gave the distinct impression of a golf ball embedded in the surface of the cerebral hemisphere!

He was treated with parenteral anti-epileptic drugs and subsequently with thio-phenytoin necessitating ventilation for 48 hours when he was loaded with phenytoin.

He was maintained on phenytoin for 12 months but subsequently this was withdrawn and he has remained seizure free.

A 5 year old girl was struck on the forehead above the right eye by a golf ball struck 10 metres away. On arrival in the accident and emergency department she was fully alert, orientated, and neurologically intact. A lacrimation was present but there had been no apparent impairment of consciousness or vomiting. However, 90 minutes after the injury she had a generalised tonic clonic seizure lasting 25 minutes. She was intubated and a CT scan showed a very small depressed fracture with minimal haemorrhagic contusion in the cortex of the right frontal lobe (figure C). She was woken and extubated later that day. She has had no further seizures since the injury.

A 12 year old boy was practising golf with a friend. He was struck on the front of the head by a golf ball which rebounded a considerable distance after striking him. He did not lose consciousness and had no more than localised pain, tenderness, and bruising at the site of impact. He did not seek any medical advice about the injury. Over the next 4 years he had three well documented tonic-clonic seizures that started at night while he was sleeping.

A CT scan 3 years after the original injury showed a small, wedge shaped area of low density affecting the cortex close to the point at which he recalls being struck (figure D).

The heads of these four young people were all subject to contact with golf balls which at club level travel at speeds of up to 130 miles/ hour. Each had post-traumatic seizures, three early and one late, despite the apparent absence of post-traumatic amnesia.

Patients 1 and 2 would indicate that this kind of injury is capable of transferring energy across the skull, independent of a skull fracture, to cause an extraudral or cortical haematoma.1 In patient 4 the lesion identified at a later date by CT is consistent with the late onset of giving rise to the late acute symptomatic seizures and late epilepsy without causing post-traumatic amnesia, skull fracture or dural tear. CT evidence, however, would predict the possibility of seizures in these examples in whom the development of post-traumatic epilepsy probably results from the physical properties of golf balls and their ability to transmit considerable mechanical energy at a small site of impact. The problem is one of which spectators on golf courses (and their doctors) should be aware.

DAVID CHADWICK
DANIELA B CLEAR
PAUL ELDRIIDGE
CONOR MALUCCI
The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L6 7LJ, UK
Correspondence to: Professor D Chadwick, University Department of Neurological Sciences, The Walton Centre for Neurology and Neurosurgery, Lower Lane, Liverpool L6 7LJ, UK

Sensory predominant neuropathy with GM, antibodies, conduction blocks, and orbital pseudotumour

Two male patients developed multifocal sensory neuropathy with high titre IgM anti-GM, antibodies (up to 1:6400) and infiltrative orbitopathy. Nerve conduction studies showed multiple motor conduction blocks and evidence of a similar phenomenon in sensory nerves. Both patients deteriorated after corticosteroid administration but benefited substantially from intravenous immunoglobulin therapy. Our findings suggest the existence of a predominantly sensory subtype of multifocal motor neuropathy (MMN) and challenge the assumed motor specificity of anti-GM, antibodies.

Anti-GM, antibodies have been implicated in the aetiology of multifocal motor neuropathy (MMN) and are assumed to be specific for this disease when occurring at high titres.1,2 We report on two patients with high titre IgM anti-GM, antibodies and electrophysiological features typical of MMN presenting with severe sensory neuropathy.

Patient 1 was a 61 year old woman who developed asymmetric numbness of limbs and difficulty in performing fine motor movements around the age of 55. Sensory deficits showed a multifocal pattern (multiple mononeuropathy) and involved proximal limb regions, trunk, and face. The course of illness was steadily deteriorating with some episodes of profound disease progression usually preceded by minor infections. After 10 years he was unable to write, needed assistance for dressing and walking, and complained of diplopia. Neurological examination showed profound bilateral sensory modalities in the arms and legs and pseudotrihexis of the fingers and wrist. Deep tendon reflexes were preserved and muscle strength was normal. The patient showed marked protrusion and downwards and outwards deviation of the left eye with a complex impairment of all eye movements.

Patient 2, a 68 year old man, reported an insidious onset and gradual worsening of asymmetric sensory loss and sensory dysaesthesia. At a neurological examination 15 years after disease onset, pinprick sensation, vibration, and proprioception were prominently affected in his arms and legs. There was severe ataxia of gait. Postural maintenance and voluntary movements strongly depended on visual guidance. Muscle strength was normal except for slight bilateral paresis of the tibialis anterior and intrinsic hand muscles (4+/5 MRC grade) with no evidence of autonomic nerve or pyramidal tract dysfunction. Tendon reflexes were absent. The patient had an incomplete left side third nerve paresis and ipsilateral visual loss.

Concurrent inflammatory orbital pain was present in both patients, as were repeated screenings for neoplastic and connective tissue diseases. Enzyme linked immunosorbent assays (ELISA) showed IgM antibody activity against GM1, asialo-GM1, GM1a, and GM1b, presuming recognising the Gal(β1–3)GalNAc group (table). Clonality of ganglioside antibodies was not investigated. Serum immunoelectrophoresis did not show monoclonal gammapathy. All the following laboratory indices were normal or negative: creatine phosphokinase, erythrocyte sedimentation rate, renal and liver function, antinuclear antibodies, thyroxin, vitamins B1, B6, B12, folic acid, urea, uric acid, and serum cryoglobulins. Cerebrospinal fluid was acellular with 52 mg/dl and 90 mg/dl protein, respectively (normal <50 mg/dl).

Motor conduction studies showed multifocal slowing of motor nerve conduction velocities and F wave latencies (table). Despite near normal muscle strength we found motor conduction blocks at sites not prone to compression. Sensory nerve conduction velocities were not be elicited in the median, ulnar, radial, or sural nerves. Electromyography showed fibrillation activity, generalised fasciculations, and features of chronic neurogenic damage. Magneto resonance imaging of the brain, spinal cord, and dorsal nerve roots did not show relevant abnormalities. Both patients had non-progressive orbital infiltration with slight gadoxil enhancement suggestive of ectopic lymphoproliferative tissue. Lesion extension was most pronounced at the apex orbitae and fissura orbitalis superior and caused compression of the left optic and oculomotor nerves in one patient and mechanical interference with eye movements in the other. Analogous orbital infiltration has been described in patients with paraproteinemic neuropathies and antibody mediated autoimmune diseases such as myasthenia gravis.

Administration of methylprednisolone at dosages of 40 to 60 mg/day was followed by marked deterioration of sensory ataxia in both patients. By contrast, substantial and rapid benefit was achieved by means of intravenous immunoglobulin (IVIg) therapy.
Ganglioside antibody patterns and electrophysiological characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody titres:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GM1</td>
<td>1:4000</td>
<td></td>
</tr>
<tr>
<td>IgG GM1</td>
<td>1:4000</td>
<td></td>
</tr>
<tr>
<td>IgM asialo-GM1</td>
<td>1:32000</td>
<td></td>
</tr>
<tr>
<td>IgG asialo-GM1</td>
<td>1:8000</td>
<td></td>
</tr>
<tr>
<td>IgM GD1a</td>
<td></td>
<td>1:500</td>
</tr>
<tr>
<td>IgG GD1a</td>
<td></td>
<td>1:32000</td>
</tr>
<tr>
<td>IgG GD2a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GD2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG GD2b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG GT1a</td>
<td></td>
<td>1:2000</td>
</tr>
<tr>
<td>IgM GT1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG GQ1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgM GQ1a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG sulfatide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG sulfatide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nerve conduction studies:

- **Right median nerve:**
 - Motor conduction block: Absent
 - SNAP: Absent
 - F wave latency (ms): 40.5

- **Right peroneal nerve:**
 - SNAP: Absent
 - Motor conduction block: + +
 - SNAP: Absent
 - F wave latency (ms): 43.6

- **Ulnar nerve:**
 - SNAP: Absent
 - Motor conduction block: +
 - F wave latency (ms): 62.5

- **Median nerve:**
 - SNAP: Absent
 - Motor conduction block: + +
 - F wave latency (ms): 60.2

- **Sensory nerve biopsy:**
 - Abnormal SNAP in 2 cases, normal in 1 case
 - Motor conduction blocks: Present in 2 cases, absent in 1 case

- **Abnormal sensory nerve conduction in multi-focal demyelinating neuropathy with persistent conduction block:**
 - Neurology 1998;32: 958–64

CORRESPONDENCE

Alterations of muscarinic acetylcholine receptor subtypes in diffuse Lewy body disease: relation to Alzheimer’s disease

The article by Shiozaki et al demonstrating significantly less muscarinic receptor binding sites in the temporal cortex in dementia with Lewy bodies than in Alzheimer’s disease and different upregulation of the m1 and m2 receptor subtypes suggests differences in the manner of downregulation of the cholinergic system between both dementing disorders that may be of basic and practical therapeutic relevance. The more severe reduction of ChAT activity in the neocortex in dementia with Lewy bodies than in Alzheimer’s disease, the higher upregulation of the postsynaptic m1 receptor in dementia with Lewy bodies, and the higher level of the presynaptic m2 receptor subtype in Alzheimer’s disease suggest a severer depletion of presynaptic projection neurons in dementia with Lewy bodies but their relative preservation or upregulation in Alzheimer’s disease.

We propose that multifocal neuropathies with conduction blocks and high titre anti-GM antibodies have a clinical range from predominantly sensory to predominantly motor variants and suggest that all these variants be subsumed under the term “multifocal motor-sensory neuropathy (MMSN)”. This concept is of clinical relevance in that all phenotypes share the same therapeutic peculiarities including good response to IV Ig and inefficacy in the disease range 50% to 70% than in non-demented patients (0% to 40%), who show neuronal loss similar to or only slightly higher than age matched controls. Cell loss in the nucleus basalis of Meynert in demented patients with Parkinson’s disease (brain stem type of dementia with Lewy bodies), cell depletion in the nucleus basalis of Meynert averages 30% to 40% without correlation with age or duration of the illness. It is much higher in demented patients with Parkinson’s disease (similar to Alzheimer’s disease). It is much higher in demented patients with Parkinson’s disease (similar to Alzheimer’s disease) than in non-demented patients (0% to 40%), who show neuronal loss similar to or only slightly higher than age matched controls. Cell loss in the nucleus basalis of Meynert in demented patients with Parkinson’s disease is usually associated with little or no cortical Alzheimer’s disease pathology, whereas in severely demented patients with Parkinson’s disease, heavy cell depletion in the nucleus basalis of Meynert is often, but inconsistently, accompanied by severe cortical neuritic Alzheimer’s disease pathologies suggesting threshold levels of cholinergic forebrain impairment and deficit for the development of dementia. Even more severe depletion of the nucleus basalis of Meynert with 75% to 80% loss of large cholinergic neurons found in dementia with Lewy bodies (figure). There were no major differences in cell loss in the nucleus basalis of Meynert between dementia with Lewy bodies with “plaque only” Alzheimer’s disease (two cases) and with “true” Alzheimer’s disease (eight cases with Braak stages V or VI). Lewy bodies and neurofibrillary tangles in the nucleus basalis of Meynert neurons were seen in eight brains of patients with Lewy body disease.

These changes are associated with a decrease in cholinergic innervation of the cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert and mental status. Neocortical cholinergic activity (choline acetyl transferase) is far more severely decreased in cholinergic innervation of the cerebral cortex and hippocampus that may or may not correlate with the severity of cell loss in the nucleus basalis of Meynert pathology (neuron loss, tangles, and Lewy bodies), but not with local cortical pathology. The heterogeneity of degeneration of cholinergic neurons in the basal forebrain and its relative independence from cortical pathology suggests primary involvement of the basal forebrain in Alzheimer’s disease, by contrast with probable retrograde damage in Alzheimer’s disease and dementia with Lewy bodies confirmed by defective retrograde transport of nerve growth factor to the nucleus basalis of Meynert in Alzheimer’s disease.1

These morphological differences in the degeneration of the cholinergic forebrain system between various dementing neurodegenerative disorders are, at least in part, supported by the data presented by Shiozaki et al indicating differences between Alzheimer’s disease and Parkinson’s disease. These and other genetic, morphological, and biochemical differences between the three disorders may strengthen the hypothesis that they represent different nosological entities. This, however, needs further confirmation.

KURT A JELLINGER
Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria

Correspondence to:
Dr Kurt A Jellinger, Ludwig Boltzmann Institute of Clinical Neurobiology, PKHB-Building, Baumgartner Hoehe 1, A-1140 Vienna, Austria

NUSIS.intersection@univie.ac.at

Mortality from Parkinson’s disease

The publication of the 10 year mortality data from the Sydney multicentre study of Parkinson’s disease serves as a timely reminder that patients with this condition still die at a rate in excess of their peers despite advances in therapeutics and surgery.1 This fact has been lost on many of our colleagues working in this area, both on the clinical and the research fronts. On many occasions at local and national meetings, we have been forced to remind people that levodopa has not normalised mortality rates in Parkinson’s disease: the ratio of observed to expected deaths with a method to calculate expected deaths. J Neurol Neurosurg Psychiatry 1999;67:435–43.

7 Diamond SG, Markham CH. Present mortality in Parkinson’s disease: the ratio of observed to expected deaths with a method to calculate expected deaths. J Neurol Neurosurg Psychiatry 1976;38:259–69.
Anaphylactoid reaction to methylprednisolone. Is it surprising when pharmacological and immune effects of a drug differ?

Clear reports a case of anaphylactoid reaction to methylprednisolone which developed after starting treatment with interferon-β-1b. She states that “allergic reaction to steroids is rare and anaphylactoid reaction to methylprednisolone rarer still with only three reports in the literature.” Her report surprised us as on the week of publication of her case we had a patient with multiple sclerosis who developed an urticarial rash within 15 minutes of commencing treatment with intravenous methylprednisolone. Although we thought this to be an unusual response to methylprednisolone, we were not overly perplexed by the drug’s capacity to induce a presumably IgE mediated immune response. Surely for almost all drugs the pharmaceutical and immune properties are quite distinct.

I undertook a brief literature search. The database was interrogated using Medline Pubmed and the words “anaphylaxis” and “methylprednisolone”. At least 29 cases of anaphylactoid reaction to methylprednisolone are documented in this simple search. Kamm and Hagmeyer systematically review allergic reactions to corticosteroids in the April 1999 publication of Annals of Pharmacotherapy. Their primary data source is a Medline search from January 1966 to December 1997. They report 36 allergic-type reactions to intravenous corticosteroids, including death in 12 patients suspected to be related to corticosteroid anaphylaxis. Methylprednisolone and hydrocortisone were the most commonly implicated corticosteroids. Is it surprising that the frequency of reporting anaphylactoid responses to corticosteroids is low? I can see no inherent paradox between the ability of methylprednisolone to bind IgE and its pharmacological anti-inflammatory action. Clear’s speculation about mechanisms by which interferon β may predispose to anaphylaxis may be interesting. However, it is unreasonable to ascribe the anaphylactoid response to methylprednisolone to interferon β.

M F YOUNG
J P MCCONVILLE
Department of Neurology, Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland, UK
Correspondence to: Dr J P McConville, 10 Shorts Close, Oxford OX1 7PG

Clear replies:
Mea culpa! The disparity in yield of our literature searches reflects different search strategies. These are often problems in electronic search systems. It is still reasonable to state, though, as Van den Berg and Van Eikema Hommes do in their report, that anaphylactoid reaction to methylprednisolone is rare. Few clinicians have come across it.

I agree that it is unreasonable to ascribe the anaphylactoid response to methylprednisolone therapy with interferon β. Nevertheless, it remains the case that a man who had had numerous courses of methylprednisolone without adverse effect had
anaphylactoid reactions to the drug soon after the introduction of interferon β, and that such an unusual event should alert us to the possibility that interferon β may have paradoxic effects. If we see only what we expect to see, we run the risk of missing the truth.

DANIELA CLEAR
University Department of Neurolological Science, Liverpool, UK

BOOK REVIEWS

This slim volume is the result of a small meeting held towards the end of 1997 by a largely European group of scientists designed to explore recent advances in the treatment of some neurodegenerative conditions. The result is a highly eclectic collection of short chapters ranging from the general to highly specific, which overall makes the book hard to follow and thus recommend. For example the second chapter discusses a whole variety of different types of myelin mutant mice, whereas three chapters later we are treated to a discussion on the inhibitory effects of apomorphin on the proliferative potential of a Chinese hamster ovary cell line.

In addition the book tends to leap from clinical to scientific topics with no obvious linking sections; thus we move from a discussion on the newer dopamine agonists to others on animal models of multiple system atrophy and their treatment by neural transplantation. Indeed, the book, by presenting short, often unrelated topics, suffers from being misleading to the uninstructed reader. For example it begins with a chapter on neural precursor cells isolated from the rat spinal cord and their differentiation potential. This is in sharp contrast to the current interest given the potential of these cells for repairing the damaged and diseased CNS. However this chapter, while, giving an insight to the field is of little relevance to the newcomer how this chapter relates to embryonic stem (ES) cells, neural precursor cells from other mammalian species as well as those isolated from the adult CNS. Furthermore, it is not clear how the conclusion of the chapter relates to the studies presented in this chapter to other strategies being adopted with neural precursor cells in animal models of Parkinson’s disease, for example. Indeed many chapters can mislead the reader as a result of their failure to be put together into context—for example, the use of riluzole and gabapentin in amyotrophic lateral sclerosis as discussed by Ludolph et al in their chapter. However, other chapters are more successful by virtue of being more balanced and as a result are more appealing. For example, the chapters by Karl Kiebutz on emerging drug therapies in Huntington’s disease and Steve Dunnett on striatal grafts are particularly good examples of this.

Overall, although the book presents a series of short unrelated articles that often contain biases and no overall context for interpretation, it is of use to people familiar with the field of restorative neuroscience, but even then it is often only helpful in summarising small islands of things. To those not familiar to the field, this book will be misleading and hard to follow, and as result it is unlikely to appeal to many neurologists or neuroscientists.

ROGER BARKER

What I liked most reading through the Shiloh, Nutt, and Weizman’s Atlas of Psychiatric Pharmacotherapy is its completeness. It is indeed a means to explore both basic and clinical psychopharmacology, divided into four main sections: basic principles of psychiatric pharmacotherapy, abused substances, drug interactions, and treatment strategies.

As a basic science researcher, I like the fact that these authors succeed, in the first section, in the very difficult task of translating complex biochemical mechanisms into concise pictures and legends. I particularly like those on second messengers/signal transduction pathways, as these are rare to find and difficult to understand in other books. Switching to more specific psychopharmacology topics, the tables explaining the mechanisms of action of the various drugs are also very well made and updated. For example, the tables illustrating the mechanisms of action of antidepressant drugs go beyond the “catecholamine hypotheses” into explaining the effects, at the genetic level, on the synthesis of growth factors. There is also a great deal of information on the side effects of psychotropic medications, including the pharmacological mechanisms involved. In this regard, the tables describing sexual dysfunctions are particularly useful, as they describe the physiology and the pharmacology of sexual functions in both males and females.

The second section deals with well established as well as novel findings in the field of substance abuse. For each substance, the book explains the receptor mediated effects, the acute effects, the long-term psycho-physiological effects, and the biological mechanisms responsible for dependence, adverse effects, and treatments. The book also gives up to date information on drugs for which biological pathways are less well known, such as phenycyclidine and LSD.

The third section is on drug interactions. For each class of medication—and, if relevant, for each single drug—the book lists different drugs, the serum concentrations of which are decreased or increased by the index one, interact with the index one at the receptor site, or potentiate its side-effects. This section is very useful in a clinical setting, and also gives an idea, by the busy clinician interesting theoretical frameworks with which to understand drug interactions at a pharmacodynamic as well as at a pharmacokinetic level.

The final section contains algorithms for treatment of 35 (!) different psychiatric conditions. These include well described entities such as treatment resistant depression, acute manic episode, and acute exacerbation of schizophrenia. However, what I find most useful are the treatment strategies for conditions that are frequent in clinical practice but have received less attention as far as treatment protocols are concerned—for example, seasonal and atypical depression, delusional disorder, generalised anxiety disorder, post-traumatic stress disorder, anorexia nervosa, and bulimia nervosa. There are also strategies for treatment of rarer disorders and/or disorders with few evidence based recommendations, such as borderline personality disorder, obsessive-compulsive personality disorder, schizoid personality disorder, and attention deficit hyperactivity disorder adult type. Of notice is that the authors do not restrict the guidelines to biological treatments, but recommend, where appropriate, specific psychotherapies. Also, the authors indicate whether the advised treatment have clear cut, partial, or only anecdotal support from scientific literature.

So far, so good. So, what is the problem? The authors say in the Introduction that the book is written, first and foremost, for the clinician who is required to... decide efficiently about options for biological treatments”. A second target is “students in other fields—for example, pharmacology, psychology, and neuroscience”. Unfortunately, one possible problem of this book is that the tables, schemes, figures, and algorithms may be too complex for it to be used as a “quick reference by the busy clinician treating somebody without prior knowledge of the topic. It is possible, therefore, that the book could not reach these two stated target audiences. However, it is well suited to be used in “various academic spheres” (the third stated target). In an academic setting, this book will be used as a teaching tool or as a consultation book to find important details that are not ready available from other sources. The book also has two other minor shortcomings: the absence of an index and some misspellings.

In summary, the Atlas of Psychiatric Pharmacotherapy is clearly the result of a detailed and updated revision of the literature in all fields of psychopharmacology, from basic science to treatment of rare psychiatric conditions. It may be too complex to be used as the main or only source of knowledge by a student or by a clinician involved with everyday clinical practice, but is definitively a must for those academics involved in psychopharmacology teaching or research. Also, departmental or medical school libraries should buy this book, because it will be used by those doctors and students who are looking for an answer to specific or difficult psychopharmacology questions.

CARMINE M PARIANTE

CORRECTION

Sheppard DM, Bradshaw JL, Mattingley JB, Lee P. Effects of stimulant medication on the lateralisation of line bisection judgements of children with attention deficit hyperactivity disorder. J Neurol Neurosurg Psychiatry 1999;66:57–63. In Will page 2 paragraph 3 were wrongly ascribed the legends for figs 2 and 3 were given the legends for figs 4 and 5