LETTERS TO THE EDITOR

Cerebral metabolism during vegetative state and after recovery to consciousness

One way to approach the study of consciousness is to explore leisional cases in which impairment of consciousness is the prominent clinical sign. Vegetative state is such a condition wherein awareness is abolished whereas arousal persists. It can be diagnosed clinically soon after a brain injury and may be reversible (as in the following case report) or progress to a persistent vegetative state or death. The distinction between vegetative state and persistent vegetative state is that the second is defined as a vegetative state that has continued or endured for at least 1 month.1 We present a patient who developed a vegetative state after carbon monoxide poisoning and in whom we had the opportunity to measure brain glucose metabolism distribution during the vegetative state and after recovery to consciousness. Using [(18F)fluorodeoxyglucose (FDG)] PET and statistical parametric mapping (SPM) we compared both patient’s sets to a normal control population. Our findings offer an insight into the neural correlates of “awareness”, pointing to a critical role for posterior associative cortices in consciousness.

A 40 year old right handed woman attempted suicide through CO intoxication and was found unconscious. She was treated with hyperbaric oxygen but evolved to a vegetative state diagnosed according to the following criteria: (1) spontaneous eye opening without evidence of awareness of the environment; (2) no evidence of reproducible voluntary behavioural responses to any stimuli; (3) no evidence of language comprehension or expression; (4) intermittent wakefulness and behaviourally assessed sleep-wake cycles; (5) normal cardiorespiratory function and blood pressure control; (6) preserved pupillary, oculocephalic, corneal, and vestibulo-ocular reflexes. Brain MRI performed 14 days after admission was normal. Electroencephalography showed a 6 Hz basal activity with more pronounced slowing on the left parietal regions. Auditory evoked potentials of the median nerve showed normal latency and amplitude of P14 and N20 potentials without any late cortical components. After remaining in a vegetative state for 19 days the patient regained consciousness. Her sequelae consisted of a bilateral spastic paresis of upper and lower limbs. Neuropsychological tests one month after admission showed an attention deficit with moderate impairment of short term memory. One year after the accident she showed a spastic gait with altered fine motor function, most prominent on the right, a slurred speech, and minor short term memory disturbances. FDG-PET was performed during the vegetative state (day 15 after admission) and after recovery to consciousness (day 77).

The control population consisted of 48 drug free, healthy volunteers, aged from 18 to 76 years (mean: 42 (SD 21) years). The study was approved by the ethics committee of the University of Liège. Informed consent was obtained by the husband of the patient and for all control subjects. Five to 10 mCi FDG was injected intravenously; PET data were obtained on a Siemens CTI 951 R 16/31 scanner in bidimensional mode. Arterial blood samples were drawn during the whole procedure and cerebral metabolic glucose rates (CMRGlu) were calculated for all subjects. PET data were analysed using SPM software (SPM96 version; Welcome Department of Cognitive Neurology, Institute of Neurology, London, UK).2 The use of SPM to assess between subject (rather than within subject) variability is unlikely to alter the relevance of our results given their high degree of significance. Data from each subject were normalised to a standard stereotactic space and then smoothed with a 16 mm full width half maximum isotropic kernel. The analysis identified brain regions where glucose metabolism was significantly lower in each patient scan compared with the control group. The resulting foci were characterised in terms of peak height over the entire volume analysed at a threshold of corrected p<0.05.3

During the vegetative state, average grey matter glucose metabolism was 36% lower than in controls (4.5 ± 7.3 (SD 1.4) mg/100 g/min). No substantial change in mean CMRGlu was found after recovery (4.7 mg/100 g/min). During the vegetative state, significant regional CMRGlu decreases were found in the left and right superior parietal lobule; the left inferior parietal lobule; the precuneus; the left superior occipital, superior and middle temporal gyri; and the premotor and postcentral and precentral cortex (figure, yellow colour). After recovery, metabolic impairment was confined to the left and right precentral and postcentral gyri and premotor cortices (figure, blue colour).

This case report offers an insight into the neural correlates of human consciousness (at least, external awareness as it can be assessed at the patient’s bedside). Given that global glucose utilisation levels remained essentially the same, the recovery of consciousness seems related to a modification of the regional distribution of brain function rather than to the global resumption of cerebral metabolism. The main decreases in metabolism seen during the vegetative state but not after recovery were found in parietal areas, including the precuneus. This is in agreement with postmortem findings in persistent vegetative state, in which involvement of the association cortices is reported as a critical neuroanatomical substrate4 and with PET studies in postanoxic syndrome, in which the parieto-occipital cortex showed the most consistent impairment.2 The functions of these areas are manifold: lateral parietal areas are involved in spatial perception and attention, working memory, mental imagery, and language, whereas the precuneus is activated in episodic memory retrieval, modulation of visual perception by mental imagery, and attention.5 Our data point to a critical role for these posterior associative cortices in the emergence of conscious experience.

STEVEN LAUREYS
CHRISTIAN LEMAIRE
PIERRE MAQUET
Cyclotron Research Centre, University of Liège, Sart Tilman, 4000 Liège, Belgium

CHRISTOPHE PHILIPS
Institute of Cognitive Neurology, University College London, Alexandra House, 17 Queen Square, London WC1N 3AR, England, UK

GEORGE FRANCK
Department of Neurology, CHU Liège Sart, Tilman B-33, 4000 Liège, Belgium
Correspondence to: Dr Pierre Maquet, Cyclotron Research Centre (B30), University of Liège, Sart Tilman, 4000 Liège, Belgium Telephone 0032 43 66 36 87; fax 0032 43 66 29 46; email maquet@pet.crc.ac.be

Localisation of voxels in which cerebral glucose metabolism was impaired during vegetative state (in yellow) and after recovery to consciousness (in blue), compared with the control population. SPM(2) threshold was set at voxel level corrected p<0.05 and projected on the patient’s coregistered MRI, normalised to the stereotactic space of Talairach.
Electrical inexcitability of nerves and muscles in severe infantile spinal muscular atrophy

Spinal muscular atrophy (SMA) is one of the most common fatal autosomal recessive disorders, characterised by progressive degeneration of anterior horn cells. Before the advent of genetic testing, the diagnosis of SMA was based on clinical, histopathological, and electrophysiological features. In 1992, the International SMA Consortium defined diagnostic criteria of proximal SMA based on clinical findings.1 In SMA type I (severe; Werdnig-Hoffmann disease), affected persons have onset of symptoms before 6 months of age and are never able to sit without support. Electrophysiological demonstration of denervation features in early 1995, the candidate gene, the survival motor neuron gene, was identified, making the confirmation of SMA by DNA analysis possible. With the availability of a genetic test for SMA, many investigators are refining the diagnostic criteria published by the Consortium. Studies involving hundreds of patients with SMA have disclosed a subset of patients who fulfill at least one exclusion criterion defined by the Consortium.2 We identified an infant with severe SMA who fulfilled two exclusion criteria and also showed involvement of all nerves as well as muscles. This report will further delineate the wide range of phenotypes for this particular gene mutation.

A 1-year-old male infant was born at term. Fetal movements were noted at 13 weeks of gestation. Chorionic villus sampling at 10 weeks of gestation disclosed normal chromosomal decreases. Decreased fetal movement and polyhydramnios were noted at about 34 weeks of gestation. At delivery, the infant was cyanotic with no respiratory effort and was subsequently intubated. On physical examination, the infant had no spontaneous movements. He opened his eyes with brief fixation but no following. Tongue fasciculations were present. Other cranial nerves seemed intact. Mild flexion contractures of both elbows, knees, and ankles were noted. Tone was flaccid in upper limbs and lower limbs, and there was no movement response to painful stimulus. Deep tendon reflexes were absent.

Brain MRI disclosed mild diffuse cortical atrophy. His EMG was severely abnormal, with widespread fibrillations and absent voluntary motor units except in the genioglossus, where mildly neurogenic motor units with decreased recruitment were seen. Stimulation of the median, ulnar, tibial, and peroneal nerves with a maximal stimulus resulted in no clinical or electrical response. The biceps brachii and rectus femoris muscles were electrically inexcitable by direct needle stimulation. Median, ulnar, and sural sensory potentials were not obtainable. DNA testing showed a homozygous deletion of exons 7 and 8 of the telomeric SMN gene, all three siblings showed a large deletion in the region that includes all alleles of the multicyclop copy markers Ag1-CA and C212, localised at the 5′ end of the two SMN gene copies. It has been postulated that the severity of disease may be correlated with the extent of a deletion involving the SMN gene and the multicyclop copy markers.3,4 The infant in our report with SMA type I showed electrical inexcitability of motor nerves as well as the characteristic alteration of the SMN gene.5–7 Although it has been shown for some time that histological studies that sensory systems are involved in SMA, electrophysiological sensory findings have been previously reported only once.3 Sensory nerve conduction velocity was tested in an infant with severe SMA and showed no recordable potential, but the infant in our report also exhibited universal absence of sensory potentials. In both cases, DNA analysis disclosed the 5q deletion. It is unclear whether this finding represents a distinct entity or merely the severe end of classic Werdnig-Hoffmann disease. The diagnostic criteria produced by the International SMA Consortium currently lists “abnormal sensory nerve conduction potential” as an exclusion criterion. Our finding of absent sensory potentials in a 5q deletion establishes case of SMA indicates further need for revision of the Consortium criteria. Studies involving large numbers of patients with SMA have identified cases of SMA variants.1 These patients were diagnosed as infantile SMA by the presence of proximal weakness and atrophy, hypotonia, and evidence of neurogenic alterations in EMG and muscle biopsy. In addition, these patients also exhibited one of the exclusion criteria defined by the Consortium—for example, diaphragmatic weakness, involvement of the CNS, or arthrogryposis. Although these patients did not show the typical SMA deletion and were therefore probably not linked to chromosome 5q, they could have had point mutations. The infant in our report showed no respiratory effort after birth, indicating diaphragmatic weakness. He did, however, possess the characteristic SMN gene alterations. This finding suggests that diaphragmatic weakness should be reconsidered as an exclusion criterion by the Consortium.

A review of the literature disclosed no previous reports of electrically inexcitable muscles in SMA. This phenomenon is known to occur in a few other neuromuscular conditions such as periodic paralysis and critical illness polyneuropathy. Fibrillations, as seen in the infant in our report, are commonly seen in acute denervation and are thought to be caused by perturbation of the sarcocell membrane, rendering it unstable. One possibility may be that the severe acute denervation in SMA type I can result in abnormal function of the membrane to make it electrically excitable. Further electrophysiological studies at the cellular level are required to delineate this interesting finding.

ALICE A KUO
Department of Pediatrics

STEVEN M PULST
DAWN S ELIASHIV
CAMERON R ADAMS
Division of Neurophysiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Correspondence to: Dr Cameron R Adams, Department of Neurophysiology, Cedars-Sinai Medical Center, 8631 West Third Street, Room 1145, East Tower, Los Angeles, CA 90048, USA

Acute overdosage and intoxication with carbidopa/levodopa can be detected in the subacute stage by measurement of 3-α-methyldopa

Although the effects of a chronic overdosage with levodopa are well known, few cases of acute intoxication have been described.8–10 A particular problem in establishing a diagnosis of levodopa overdosage is the relatively short half life in the circulation of levodopa.11 If there is a delay in bringing an acutely intoxicated patient to hospital, perhaps due to late discovery, the blood concentration of levodopa could already be normal in response to the peak levodopa concentration in Parkinson’s disease therapy) after 6–8 hours. Depending on the extent of the overdosage, the time could be even shorter. This report describes the clinical effects and the plasma concentrations of levodopa and specific metabolites over a period of 132.5 hours after ingestion of 30 tablets of carbidopa/levodopa (50 mg/200 mg tablets).

A 76 year old patient had a pre-existing mild akinetic rigid Parkinson’s syndrome, which had been treated for the past 1.5 years with 3×1 tablets of carbidopa/levodopa (50 mg/200 mg) a day without a substantial response. The weight of the patient was 74 kg. A known chronic obstructive airway disease was treated with a home oxygen appliance. At about 8.30 pm, the patient had attempted suicide by taking 30 tablets of carbidopa/levodopa. About 00.00 hours the patient appeared psychically altered, crying without reason, anxious, and depressed. After about 30 minutes he was increasingly inadequate, irrational, and subphrenic, and was experiencing visual hallucinations; he was restless, tossing and turning, and getting out of bed. He did not represent peak dose dyskinesia or other extrapyramidal clinical features. At 10.00 pm he showed bilaterally maximally dilated pupils. The muscle stretch reflexes were lively, there were no pyramidal tract signs, and he did not show any signs of Parkinson’s syndrome or dyskinesia. Arterial hypotension and sinus tachycardia could be registered.

After an empty box of Striaton (carbidopa/levodopa, 50 mg/200 mg) was found in the patient’s flat, 1 g of carbon was given by stomach tube after gastric lavage, and the patient was carried out before the diagnosis of intoxication had been made; it showed a pronounced subcortical arteriosclerotic encephalopathy with reduced brain volume. The patient was moved to the medical intensive care unit and observed for 24 hours. The ECG showed a P pulmonale, but no other unusual features. Echocardiography showed normal right and left ventricular function with suspicion of right ventricular hypertro-
The peripheral conversion of levodopa into dopamine can be assumed that the effect is caused by the receptors in the dilatator iridis. There is no evidence from this that dopamine antagonists interfere with absorption or lead to a gastrointestinal paralysis due to the high dose of levodopa; the relation between amount ingested and plasma concentration seems to be linear, at least in this dose range.

We conclude from these findings that in cases of suspected levodopa intoxication some hours previously, it could be important to measure the concentration of 3-O-methyldopa, so as not to overlook an overdosage with levodopa, which may be due to a suicide attempt. In addition to the diagnostic uncertainty in relation to the immediate treatment of the patient, this would also have an effect on further psychiatric and psychological therapy.

HJ STUERENBURG B G H SCHÖSER
Neurological Department, University Hospital Hamburg-Eppendorf, Hamburg, Germany

Correspondence to: Dr Hans Joerg Stuureen, Neurologische Abteilung, Universitätskrankenhaus Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. Telephone 040 49 4171 4832; fax 040 49 4171 5086; email stuureen@uke.uni-hamburg.de

The use of olanzapine for movement disorder in Huntington’s disease: a first case report

Movement disorder is a prominent feature of Huntington’s disease and consists of involuntary and voluntary components as well as associated bradykinesia. Pharmacological treatment is problematic because of the side effects of the drugs used, which may further compromise cognitive functioning and mobility. Patients are often not subjectively aware of their movements but can be considerably disabled by them and carers are often distressed and enquire about treatment options. If drug treatment is considered it is important to achieve the maximum improvement in movements with the minimum of negative side effects. This paper describes the effect of olanzapine on movements after one patient had symptomatic improvement when treated with olanzapine.

He is a man in his early 50s who had a confirmatory genetic test for Huntington’s disease in 1994, after the development of clinically obvious motor symptoms. It is likely that the onset of symptoms had occurred a few years previously as he had experienced difficulties in concentration at work, attributed at the time to stress, leading to the loss of employment. In addition his family, watching family videos of a few years earlier, thought that there was evidence of the early signs of his movement disorder. However there was no known family history of Huntington’s disease which might have led to an earlier diagnosis. By May 1995 his involuntary movements were becoming more noticeable, although control of voluntary movement was good. A trial of sulphide commencing at 200 mg twice daily and increasing over 1 week to 800 mg daily was undertaken with a subsequent decrease in frequency and extent of involuntary movement recorded in case notes; unfortunately the QNE was not repeated at this time. However, the patient experienced a subjective slowing of his coginitive processes, concurrently became depressed, and decided to stop the treatment within 3 weeks. Paroxetine, a selective serotonin reuptake inhibitor antidepressant, was started at a dose of 20 mg a day, which led to an improvement in his low mood. His involuntary movements continued to cause difficulties in his daily living. He was unable to sit comfortably in a chair and when out of door he felt that he was discovering that he was knocking into them. He agreed to a trial of

Distribution into muscles rather then metabolism may largely determine the plasma half life of levodopa and explain why this was only slightly altered with overdose. The measured peak concentration of 66 763 ng/ml is about 30 times higher than the peak concentration to be expected after taking one tablet of carbidopa/levodopa (50 mg/200 mg). It is apparent that the 30 tablets did not interfere with absorption or lead to a gastrointestinal paralysis due to the high dose of levodopa; the relation between amount ingested and plasma concentration seems to be linear, at least in this dose range.

We conclude from these findings that in cases of suspected levodopa intoxication some hours previously, it could be important to measure the concentration of 3-O-methyldopa, so as not to overlook an overdosage with levodopa, which may be due to a suicide attempt. In addition to the diagnostic uncertainty in relation to the immediate treatment of the patient, this would also have an effect on further psychiatric and psychological therapy.
risperidone. This was started at a dose of 1 mg twice daily, increasing to a dose of 1 mg four times a day over a period of 2 weeks, stopped after a brief period. He developed hypotension (blood pressure 100/60 mm Hg), complaining of dizziness after the initial dose. His blood pressure remained stable, although low, after this and as there was improvement in his movements the drug was continued. However, he decided to stop the risperidone after 4 months because of his subjective experience of slowed thinking and occasional dizziness. A repeated trial of sulpiride was carried out in March 1997. Sulpiride was started at a dose of 200 mg twice a day and increased to a total daily dose of 1000 mg over 2 weeks. He was on sulpiride for 4 weeks with no improvement in his movements, so the trial was discontinued. The patient continued to experience low mood and after the discontinuation of sulpiride, his antidepressant drug was changed to lofepramine commencing at 70 mg once a day and increasing after a few days to 140 mg daily. There were no changes noted in his movements during this change.

Although the patient was subjectively unaware of the extent of his movements his everyday life continued to be affected. The social occasions he felt able to attend were becoming more limited and activities he wanted to pursue such as travelling abroad by air were problematic. A trial of olanzapine was then instituted. He was started on 5 mg a day in the morning. There was a marked improvement in his involuntary movements within 1 week but once again he experienced slowed thinking. However, adjusting the time of medication to the evening led to an improvement in this. Six months later the improvement in his involuntary movements was maintained. Serial quantitative neurological examination scores are illustrated in figure 1.

In the absence of a cure for Huntington’s disease, it is very important that any interventions considered enhance the quality of life of the patient and improve overall functioning. It may not always be in the best interests of the patient to use drug treatments for the movement disorder. In those patients who have severe movements, however, a trial of treatment may be appropriate and continued if a clear benefit has been achieved. Neurological monitoring and the patient’s own perception of the effect of the drug must be taken into account.

The mechanism by which olanzapine may have beneficial effects is unclear. Olanzapine has been shown to have high affinity for a large number of receptors including D1, D2, D4, 5HT2A, 5HT2C, 5 HT3, α-1-adrenergic, histamine H1, and 5 muscarinic receptors. This binding profile is similar to clozapine, another atypical antipsychotic drug, but substantially different to the conventional antipsychotic haloperidol. Preferential loss of D2 projection neurons which are involved in a feedback loop normally active in the suppression of involuntary movements is thought to be the pathophysiological basis of chorea in patients with Huntington’s disease.2 The D2 antagonist properties of olanzapine may explain its possible benefits in the improvement of chorea. However, the effect at other receptors such as D4 may also be important, as D4 receptor density has been shown to be raised in Huntington’s disease, therefore the D4/D2 ratio of activity may also be relevant. Differences in binding profile across a range of receptors may explain clinical differences in outcome when comparing different antipsychotic drugs.

This case report indicates that olanzapine may be a useful addition to the treatments for movement disorder, for some patients, and controlled trials of its use in Huntington’s disease would be welcome.

Patient characteristics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at surgery</th>
<th>Sex</th>
<th>Years with PD</th>
<th>H and Y*</th>
<th>UPDRS off/pallidotomy</th>
<th>Pallidotomy side</th>
<th>Transient side effects</th>
<th>Medication additional to levodopa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66</td>
<td>M</td>
<td>8</td>
<td>2/5</td>
<td>57/NP</td>
<td>R</td>
<td>Slight facial paresis, swallowing problems, drooling</td>
<td>Trihexifenidyl, amantadine, apomorphine</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>F</td>
<td>7</td>
<td>2/2.5</td>
<td>22</td>
<td>L</td>
<td>Slight dysarthria</td>
<td>Pergolide, amantadine, selegeline, biperiden</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>M</td>
<td>15</td>
<td>2/1.5</td>
<td>55</td>
<td>L</td>
<td>Facial paresis</td>
<td>Pergolide, selegeline, biperiden, clozapine, tamoxifen, cisapride</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>M</td>
<td>12</td>
<td>2/2</td>
<td>45/22</td>
<td>L</td>
<td>Slight dysarthria</td>
<td>Pergolide, amantadine, selegeline, biperiden</td>
</tr>
<tr>
<td>5</td>
<td>53</td>
<td>M</td>
<td>14</td>
<td>2.5/4</td>
<td>69/36</td>
<td>L</td>
<td>Facial paresis, hypophonia</td>
<td>Pergolide, selegeline, biperiden, clozapine</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
<td>M</td>
<td>13</td>
<td>2.5/3</td>
<td>48/27</td>
<td>L</td>
<td>Facial paresis, aphasia</td>
<td>Pergolide, selegeline, biperiden, clozapine</td>
</tr>
<tr>
<td>7</td>
<td>61</td>
<td>F</td>
<td>15</td>
<td>2.5/4</td>
<td>55/3P</td>
<td>R</td>
<td>Slight dysarthria</td>
<td>Pergolide, selegeline, biperiden, clozapine</td>
</tr>
</tbody>
</table>

*H and Y=Hoehn and Yahr; †UPDRS off=unified Parkinson’s disease rating scale part 3 (motor examination), in a standardised off state, 12 hours without antiparkinson medication; NP=not performed.
localisation. Patients started with a short schedule of corticosteroids (5 days) the night before surgery.

The hiccup started immediately after the operation or the next day, were intermittent, and the bouts of hiccup of six patients, with a duration of hours, resolved within 3 days after the procedure. One patient complained of yawning more often and frequent bouts of hiccup for 6 months.

Five patients were men. All patients were right handed. The mean age at surgery was 54 years and the mean duration of Parkinson’s disease was 12 years. All patients were taking levodopa. In four patients the hiccups appeared after a left sided pallidotomy. Patient 2 had a right sided thalamotomy 4 years before the pallidotomy. Patient 5 underwent a left sided pallidotomy 10 months before the right sided pallidotomy which caused the hiccup. The pallidotomies improved parkinsonism in the “off” state (table), contralateral dyskinesias, and pain accompanying Parkinson’s disease. Six patients had transient adverse events: four patients had a transient facial paresis postoperatively and two a slight transient dysarthria (table). Two patients had choreatic movements after the pallidotomy at the contralateral side which resolved spontaneously within 2 hours and is associated with a favourable surgical outcome.1

Postoperative MR scans were obtained in the first six patients, and showed that in five patients the lesions were located in the posterior part of the globus pallidus pars externa (GPe) and interna (figure). In patient 5 the lesion was situated slightly more anterior in the GPe and putamen. In patient 3 there was a small separate lesion more dorsal, probably an infarct.

We never encountered hiccups in 150 other stereotactic procedures for Parkinson’s disease, such as thalamotomies or deep brain stimulation electrode implantation in the thalamus and therefore it is unlikely that medication or positive contrast medium ven-triculography with Iohexol evoked the hiccups. A possible cause for the transient hiccups could be the lesion in the ventral medial segment of the globus pallidus or pressure, due to oedema, on an adjacent structure like the internal capsule or putamen. We could not find other reports of hiccups as an adverse event after functional stereotactical surgical interventions, nor after lesions of other aetiology involving the stratum.2 Based on our experience we hypothesise that the globus pallidus or a neighbouring structure may be involved in a supramedullary system involved in triggering hiccups.

R M A DE BIE
J D SPEELMAN
Department of Neurology

P R SCHUURMAN
D A BOSCH
Department of Neurosurgery, Academic Medical Center, University of Amsterdam, The Netherlands

Correspondence to: Dr R M A de Bie, Department of Neurology, Academic Medical Center, PO Box 22700, 1100 DE Amsterdam, The Netherlands. Telephone 0031 20 566 3856; fax 0031 20 679 1438; email R.M.deBie@amc.uva.nl

5 Bathia KP, Marsden CD. The behavioral and motor consequences of local lesions of the basal ganglia in man. Brain 1994;117:859–76.

Psychological adjustment and self-reported coping in stroke survivors with and without emotionalism

Emotionalism after stroke is common, occurring in 10%–20% of a community sample.1 Psychological factors in its cause or maintenance have not been studied; research has tended to concentrate instead on location of the stroke lesion. We suspect that one reason for this neglect of psychological aspects of emotionalism is that most people do not make a distinction between emotionalism, and pathological crying and laughing. As a result all disorders of emotionality after stroke are stereotyped as being related to brain damage and therefore psychologically meaningless.

None the less, many patients with emotionalism describe their crying as provoked by emotionally congruent experiences, which makes the tearfulness seem understandable.1 In two previous studies2,4 we have shown that stroke patients with emotionalism have more symptoms of psychological disorder than do patients without emotionalism. In the present study, we explored further the psychological characteristics of stroke patients with emotionalism. Our aim was to determine whether they differed from patients without emotionalism in their psychological reactions to stroke, or in the coping strategies they reported.

Post-traumatic stress disorder is also characterised by recurrent episodes of intrusive and uncontrollable emotion, and we were therefore interested in whether patients with emotionalism also experienced thoughts typical of post-traumatic stress disorder. Because emotionalism is often described as uncontrollable, we were interested in the possibility that patients were more generally helpless, passive, or absent in their responses to stroke. Again, because of the reported uncontrollability of emotionalism, we postulated that patients with emotionalism would report a more external locus of control1 than those without emotionalism.

Participants were adults admitted to local general hospitals after stroke, and were interviewed within 1 month of admission. Exclusions were due to poor physical health, cognitive impairment, communication difficulties, or lack of consent. Approval for the study was obtained from the local research ethics committee.

All participants completed a standardised measure of distress—the general health questionnaire, GHQ-12;4 a widely used measure of intrusive thoughts of the sort encountered in post-traumatic stress disorder—the impact of events rating scale;5 a measure of cognitive coping—the mental adjustment to stroke scale (O’Rourke S, Dennis M, MacHale S, Slattery J. The development of the mental adjustment to stroke scale: reliability, patient outcome and associations with mood and social activity, manuscript in preparation); and a measure of beliefs about responsibility for recovery from illness—the recovery locus of control scale.6 All the measures are self-report questionnaires.

A total of 177 stroke patients were screened, of whom 112 were excluded. The 65 participants (29 men, 36 women) had a mean age of 71.8 years (range 43 to 88 years). Nineteen (29.2%) patients met our criterion for emotionalism,1 a rate similar to that found in other studies. Their scores on the study measures are compared with the scores of patients without emotionalism in the table. It might be that these associations with emotionalism were accounted for by the greater general levels of distress experienced by those with emotionalism. We therefore undertook analysis of covariance with GHQ-12 and presence of emotionalism as the covariates, and each of the other test items in turn as the independent variable. The results showed an association, after adjustment for GHQ-12 score, between emotionalism and the impact of events subscales intrusion in the community.
Comparison of stroke survivors with and without emotionalism, assessed in hospital 1 month after stroke

GHQ-12* Impact of events scale intrusion subscale** Impact of events scale avoidance subscale* MASS Fighting spirit subscale MASS Anxious preoccupation subscale** MASS Fatalism subscale* MASS Avoidance subscale MASS Helplessness/hopelessness subscale**

<table>
<thead>
<tr>
<th>Group</th>
<th>No emotionalism</th>
<th>Emotionalism</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n=45)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No emotionalism</td>
<td>3.2 (2.4)</td>
<td>5.3 (3.5)</td>
</tr>
<tr>
<td></td>
<td>33.2 (5.3)</td>
<td>34.7 (5.7)</td>
</tr>
<tr>
<td></td>
<td>2.9 (4.6)</td>
<td>9.2 (6.6)</td>
</tr>
<tr>
<td></td>
<td>4.7 (4.6)</td>
<td>9.9 (6.1)</td>
</tr>
<tr>
<td></td>
<td>49.1 (4.3)</td>
<td>48.5 (4.2)</td>
</tr>
<tr>
<td></td>
<td>22.2 (2.8)</td>
<td>25.2 (4.0)</td>
</tr>
<tr>
<td></td>
<td>20.0 (1.9)</td>
<td>21.3 (2.2)</td>
</tr>
<tr>
<td></td>
<td>1.7 (0.8)</td>
<td>1.9 (0.8)</td>
</tr>
<tr>
<td></td>
<td>10.9 (2.5)</td>
<td>14.1 (3.5)</td>
</tr>
</tbody>
</table>

MASS = Mental adjustment to stroke scale.

*p<0.05; **p<0.01,
with the "diffuse" axial and subsequent proximal muscle distribution of the classic disorder. Our patient differs from those reported with stiff leg syndrome in that an occult malignancy was present. Unfortunately, we were unable to obtain electrophysiological studies for comparison. The search for a paraneoplastic process was based on the findings of axillary lymphadenopathy and an abnormal CSF. Our patient is only the second reported patient with paraneoplastic SMS associated with anti-GAD antibody; the other had upper limb rigidity in the setting of breast cancer and additionally mounted an immune response to amphiphysin. Paraneoplastic processes can affect any component of the nervous system and, occasionally, multiple levels, as in the syndrome of sensory neuronopathy-encephalomyelitis. Our patient's findings were not entirely consistent with criteria for classic SMS in that an apparent encephalopathy and a small fibre neuropathy were identified—for example, her dysautonomia (tachycardia and relative hypertension) during spasms may have been a manifestation of involvement of small fibres. The role of autoantibodies in the pathogenesis of SMS and cancer is unclear. Via its probable function in endocytosis, amphiphysin has been postulated to play a part in the regulation of growth factor internalisation; however, the absence of an autoimmune response to this antigen in our patient suggests that other mechanisms of onco genesis in SMS exist. Given anecdotal evidence of improvement in paraneoplastic SMS after treating the underlying malignancy, we suggest that all patients with SMS, diffuse or focal, be screened for occult cancer.

ISAAC E SILVERMAN
Department of Neurology, Johns Hopkins University,
Baltimore, USA

Correspondence to: Dr I E Silverman, Johns Hopkins Hospital, Pathology 509, 600 North Wolfe Street, Baltimore, MD 21287, USA. Telephone 001 410 955 6626; fax 001 410 614 1008; email isilver@jhmi.edu

Tetrodotoxin intoxication in a uraemic patient

Tetrodotoxin intoxication results from ingesting puffer fish or other animals containing the toxin. Clinical presentation is mainly acute motor weakness and respiratory paralysis. Death is common in the worst affected victims. Although the severity of the symptoms generally depends on the amount of toxin ingested, it may be influenced by the victim's medical condition, as described in this report. The patient was a 52 year old uraemic woman. The uraemia was of undetermined aetiology. Over the past 3 years she has received regular haemodialysis. One day both she and her husband, a healthy 55 year old man, ate a fish soup. About 5 hours after the meal she developed a headache and a lingual and circumoral tingling sensation and numbness at the distal parts of all four limbs. She was dizzy and unsteady, had difficulty in swallowing, and became very weak. She was taken to the emergency service and was placed on machine assisted ventilation as respiratory distress and cyanosis developed. Her husband remained asymptomatic throughout this time.

The patient's condition kept on deteriorating, developing eventually into a comatous-like state with no spontaneous or reflexive eye opening or limb movement within 30 minutes of intubation. On neurological examination, the pupillary light reflex was absent and oculocephalic manoeuvre elicited no ocular movements. All four limbs were areflexic and Babinski's signs were absent. Brain CT and laboratory studies of arterial blood gas (under assisted ventilation), electrolytes, liver function, blood glucose, and CSF study were unremarkable. An examination of renal function indicated chronic renal insufficiency with mild azotaemia (urea nitrogen 70 mg/dl, creatinine 9.1 mg/dl). An EEG, recorded 18 hours after the onset of symptoms when the neurological condition was unchanged, showed posterior dominant alpha waves intermixing with trains of short duration, diffuse theta waves. When brief noxious stimuli were applied to the sternum, they were replaced transiently by beta activities. The findings suggested that the profound neurological dysfunction might be peripheral in origin. The patient was given a course of haemodialysis according to the set schedule for uraemia at 21 hours after onset of the symptoms. Her condition improved dramati-
ally within an hour. She could open her eyes and she communicated and answered questions correctly by blinking. Pupillary reflex recovered and voluntary eye movements were limited only at the extreme lateral gaze. Muscle power was grade 3 and 4 in the proximal and distal parts of the four limbs. Tendon reflexes were still absent. She was taken off mechanical ventilation the next day. Her clinical condition continued to improve and her absence of deep tendon reflexes, and some evidence of distal sensory loss in the fingers, was discharged on day 16.

When analysing the remains of the cooked fish (identified as *Yongichthys nebulosus*), tetrodotoxin was demonstrated by thin layer chromatography, high performance liquid chromatography, and cellulose acetate membrane electrophoresis. Toxicity was assayed by using Institute of Cancer Research strain adult male mice and the toxicity score was 25 mouse units (MU)g in fish muscle (1 MU = 10−9 mol). By the TLC method, tetrodotoxin was identified as the sodium channel. By the TLC method, tetrodotoxin was identified as the sodium channel. The voltage clamp experiments showed that tetrodotoxin diminished the sodium inward current component responsible for the depolarisation of excitable membrane. The gating properties of the sodium channel, such as the activation and inactivation mechanism, are not altered—that is, the sodium channel is not permanently damaged and its function recovers when the bound toxin is released. In uraemia, ion conductance through the sodium channel is also impaired. Sodium permeability through excitable membrane is reduced and small inward sodium current and reduced action potential amplitudes are noted in experimental uraemic neuropathy. By contrast with the effects of tetrodotoxin, uraemia changes the basic property of the sodium channel by an increased inactivation and an impaired activation mechanism. The excitability of peripheral nerves will be more significantly depressed when these two conditions coexist, being the synergistic effect of uraemia and tetrodotoxin is obvious in this incident in which the patient and her husband ingested roughly an equal amount of tetrodotoxin (about 200 μg; calculated from toxic score times the weight of ingested fish). The amount is about 10% of the estimated lethal dose in humans—2200 μg/60 kg body weight (body weights of the patient and her husband were 54.5 and 62 kg respectively)—and caused no clinical evidence of poisoning in the healthy person. It was of interest that the CNS was relatively spared from the toxicity as the EEG showed a posterior dominant, prompt reactive alpha rhythm and the patient retained consciousness when the symptoms were at their most severe.

One of the most striking clinical features in our patient was the response to haemodialysis. Despite the small amount of toxin ingested, the dramatic improvement of her clinical condition was most likely attributed to the rapid elimination of absorbed toxin in the course of haemodialysis, rather than spontaneous recovery. The physical and chemical properties of tetrodotoxin are also supportive to this hypothesis. It has a low molecular weight (C11H17N3O8), is water soluble, and not significantly bound to protein—all these features are often found in toxins amenable to haemodialysis. Traditionally, the management of tetrodotoxin intoxication is mainly supportive, such as gastric lavage to remove unabsorbed toxin and machine assisted ventilation when respiration is severely affected. We suggest that haemodialysis may be an effective method in the treatment of tetrodotoxin intoxication.

MIN-YU LAN
SHUNG-LON LAI
SHUN-SHENG CHEN
Department of Neurology, Kaohsiung Medical College, Kaohsiung City, Taiwan
DENG-FUW HWANG
Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan

Correspondence to: Dr Shun-Sheng Chen, Department of Neurology, Kaohsiung Medical College Hospital, 100 Shih-Chung 1st Road, Kaohsiung City 807, Taiwan. Telephone 00886 7 3234237; email sheng@mail.nsysu.edu.tw

Relation between critical illness polyneuropathy and axonal Guillain-Barré syndrome

The clinical entity critical illness polyneuropathy occurs almost exclusively in patients in critical care units and has been characterized as a complication of sepsis and multiple organ failure. It is a common cause of the difficulty in weaning patients from the ventilator, particularly those who show intractable ventilator dependence. All the used measures to prevent or treat sepsis and multiple organ failure are the main methods now used to deal with critical illness polyneuropathy. Knowledge of this type of polyneuropathy is helpful in making management decisions. In acute generalized weakness, the presence of primary axonal degeneration of the motor and sensory fibres, mainly distally, with no evidence of inflammation, has been taken as supportive evidence for the diagnosis of Guillain-Barré syndrome. Bolton et al (*Ann Intern Med* 1967) therefore concluded that the two types of polyneuropathies most probably are separate entities.

Guillain and colleagues enumerated the clinical and spinal fluid features of one form of acute flaccid paralysis without regard for the underlying pathology or physiology. Classic pathological studies of Guillain-Barré syndrome, however, have identified prominent demyelination and inflammatory infiltrates in the spinal roots and nerves. Guillain-Barré syndrome often has been considered to be synonymous with the pathological designation of acute inflammatory demyelinating polyneuropathy, and physiological abnormalities consistent with demyelination have been taken as supportive evidence for the diagnosis of Guillain-Barré syndrome. Bolton et al (*Ann Intern Med* 1967) made a critical distinction of attention to patients who were clinically considered as having Guillain-Barré syndrome, but who were characterised electrophysiologically as having early axonal degeneration of the motor and sensory nerve fibres. The evidence included a rapid fall in compound muscle action potentials and sensory nerve action potentials, and no evidence of demyelination. Such patients often had severe paralysis and could make a slow recovery unexplainably reflecting the need to regenerate axons rather than remyelination. Pathological findings are consistent with axonal degeneration without demyelination. Feasby et al (*Brain* 1984) confirmed the existence of the acute motor-sensory axonal neuropathy (AMSAN) pattern of Guillain-Barré syndrome described by Feasby et al. (1980).

Feasby et al. (*Brain* 1984) suggested that the axonal degeneration is caused by the gram negative bacterium *Campylobacter jejuni*, a leading cause of death in patients with acute respiratory distress syndrome (ARDS). The clinical features of ARDS and Guillain-Barré syndrome, and the presence of the affected axonal pattern in the condition of AMSAN, indicate that it may represent the spectrum of a common pathological entity. Without demyelination, the AMSAN syndrome appears to reflect a more severe and aggressive form of polyneuropathy, which may be facilitated by the presence of a specific bacterial infection.
Repetitive transcranial magnetic stimulation in the treatment of chronic negative schizophrenia: a pilot study

Recently, a new technology known as repetitive transcranial magnetic stimulation (RTMS) has been developed. In 1994, the use of magnetic stimulation in clinical psychiatry was suggested. Since then, it has been used in the study or treatment of obsessive-compulsive disorder, conversion disorder, schizophrenia, and particularly, depression.

Our pilot study aimed to assess the possible adverse effects of this treatment in chronic schizophrenic patients with severe negative symptoms; to evaluate if direct RTMS of the prefrontal cortex might improve negative symptoms or cognitive impairments in patients with chronic schizophrenia; and, thirdly, to note if RTMS might modify the deficit in prefrontal cortical activity, often reported to hypofrontality, a generally established in schizophrenia, specifically under conditions of task activation.

Six right handed patients with chronic schizophrenia were identified at the outpatient psychiatric clinic of the Hospital Clinic of Barcelona. There were two men and four women (mean age 39). Exclusion criteria included alcohol or substance abuse, other psychiatric diseases (other than schizophrenia), systemic neurological illness, taking cerebral metabolic activator or vasodilator medications, electroconvulsive therapy within 6 months, and significant abnormal findings on laboratory examination.

All patients were taking neuroleptic drugs, but a stable dose for at least 3 months was required. All patients were studied off benzodiazepines for at least 1 week before beginning the treatment. During the RTMS, psychotropic medications were continued at the initial dosage.

All patients were admitted to hospital. Inpatients underwent the UKU side effects scale, the positive and negative syndrome scale (PANSS), and a neuropsychological battery, the day before beginning the treatment and at the end of the treatment. The UKU scale was also administered after each session.

An equivalent neuropsychological battery was used on both occasions, which consisted of the block design subtest of the Wechsler adult intelligence scale, the trail making tests A and B, the FAS verbal fluency test, and two subtests of the Wechsler memory scale (the visual memory reproduction and the verbal paired associates subtests).

A brain SPECT study was performed using a rotating dual head gamma camera, fitted with high resolution fanbeam collimators. Two SPECT scans with cognitive activation, such as the Wisconsin card sorting test (WCST), were performed on each patient (24 hours before the beginning of the treatment and 24 hours after the last session).

RTMS was given with a Mag Pro magnetic stimulator, 5 days a week, for 2 weeks, at a dosage of 20 Hz for 2 seconds, once per minute for 20 minutes at 80% motor threshold. The motor threshold was determined by visualisation of finger movement. A butterfly magnetic coil was placed tangential to the orbital area, on the C3 and C4 EEG point.

A brain SPECT study was performed using a rotating dual head gamma camera, fitted with high resolution fanbeam collimators. Two SPECT scans with cognitive activation, such as the Wisconsin card sorting test (WCST), were performed on each patient (24 hours before the beginning of the treatment and 24 hours after the last session).

RTMS was given with a Mag Pro magnetic stimulator, 5 days a week, for 2 weeks, at a dosage of 20 Hz for 2 seconds, once per minute for 20 minutes at 80% motor threshold. The motor threshold was determined by visualisation of finger movement. A butterfly magnetic coil was placed tangential to the orbital area, on the C3 and C4 EEG point.

An important finding of this study was that RTMS may be given to stable schizophrenic patients without exacerbating their psychosis.

<table>
<thead>
<tr>
<th>Test</th>
<th>Mean (SD)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANSS=positive and negative symptom scale</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>PANSS=N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANSS-P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Pre-treatment; Post=treatment; PANSS= positive and negative symptom scale; PG=general psychopathology scale; N=negative scale; P=positive scale. |

Table: Neuropsychological tests and PANSS scores
hypofrontality after treatment, we are considering extending the treatment course to 20 sessions, each at 30 Hz for 1 second, at 90% of motor threshold. It was also suggested that other positions of the coil and other kinds of coils might give better results.

The clinical change in our cohort after the RTMS could be attributed to both the treatment and the supportive environment of the psychiatric ward, and even to enhance compliance to medication during hospital admission. We are aware that this small sample size and lack of controls compel a very careful interpretation of the results. Nevertheless, in the light of these, we suggest further controlled studies to evaluate the efficacy of RTMS in negative symptoms of schizophrenia, not only as an add-on technique but also as a sole therapeutic procedure. Research on RTMS also requires some controlled studies aimed to the complexity of the methodology (dosage, duration, and localisation), as this form of intervention may prove to be an economical and convenient therapy in treating several psychiatric disorders.

E COHEN
M BERNARDO
J MASANA
F J A R R U F A T
V NAVARRO
Department of Psychiatry
J VALLS-SOLÉ
Department of Neurophysiology
T BOGET
N BARRANTES
S CATARRINCA
M FONT
Department of Psychology
F J LOMENA
Department of Nuclear Medicine, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic i Provincial. Universitat de Barcelona, Spain

Correspondence to: Dr M Bernardo, Servicio de Psiquiatría, Hospital Clínic i Provincial, Villarroel 170, 08036 Barcelona, Spain. Telephone 0034 2275400, ext 2405; fax 00 34 32275477; email bernardo@medicina.ub.es

In this aspect of alien hand syndrome that I suggest also incorporates into its neurological explanations, and which provides a clue as to why our everyday experience of being in charge of our bodies, and so initiating all personal action, itself has a neurological basis. In other words, while the brain is the seat of all our actions and experiences, there is also a part of our nervous system which is responsible for our belief that we have free will over our behaviour. Patients with alien hand syndrome think that they are no longer in control of a limb because the part of the brain that gives us the sensation of control over our bodies has been damaged. When that happens, our limbs seem to act independently of us.

Research conducted in the 1980s has found that the same electrical brain wave changes that characteristically precede all limb movements, occur several 100 ms before we seem to consciously decide to move a limb. If our conscious decision to act is preceded by brain changes that anticipate action, then our “decision” to choose how to behave or “freedom”, as in free will, is in fact illusory. Our choices have in a sense been decided beforehand by our brains.

Spence’ asserts that evidence such as this, combined with phenomena such as alien hand syndrome, means that philosophers have to reconsider whether we have free will. He argues that these data suggest that our sense of agency is illusory and it follows that most of us share in common the useful delusion that we have free will. Patients with alien hand syndrome have lost this experience in relation to a particular limb. There is a sense then that those who experience the syndrome are closer to the reality of how much we are responsible for our actions than the rest of us. This is because their brains have assumed the function of the part of the brain that normally works to make us think that we have conscious freedom of will. They develop the experience, therefore, of becoming mere remote spectators to the actions of their bodies.

Defenders of human “free will” argue what happens before the brain itself decides to act is still unknown, and there may be a role for our own autonomy there. But even these free will guardians concede the neurological research indicates that whatever happens before the brain is roused, must occur below our conscious awareness.

Yet in alien hand syndrome the patient thinks that the hand has hostile motivations; it is invariably the case that the patient not only thinks that the limb is “not self” but finds that the limb behaves towards the self in a destructive and aggressive manner. This could be explained by the stress that we lose our conscious sense of voluntary control over our bodies, our minds have to come up with an explanation for the location of action of our movements. We decide that if ourselves are not in control, then someone or something else must be; therefore, we no longer have a sense of the limb belonging to us.

Because to lose control over our bodies is one of the most terrifying experiences, our attempt to explain this finding occurs in the context of fear. It may be that our apprehension leads us to misinterpret innocent reflexive acts of our hands, such as scratching or rubbing, as malevolently inspired. Plus it could be that our interpretation of spurious possession in turn inspires the patient, and only this is beyond our conscious awareness.

It may therefore be that we need to believe in our own free will and personal control over our actions, because if we did not, the experience of our bodies acting as if we merely came along for the ride, too frightening. Also, we may no longer believe that our bodies or its relevant parts belong to us. All neurologists who have reported alien hand syndrome remark on how psychologically disturbing the symptom is for the patient. Psychiatrists would be interested in the parallels between alien hand syndrome and the motor phenomena in the patients. The fact that every case, plus the fact that the two diseases may share corpus callosum pathology, could go some way to explaining why schizophrenic symptoms are frightening to the patient. So it seems we know that our limbs belong to us because they obey us. When they seem to stop responding to our wills, we conclude that our limbs are no longer our own, and try to fend them off. Hence it would seem that one of the prices we had to pay for consciousness, awareness of ourselves to evolve as a function of the brain, is the delusion that we are responsible for all our actions. If we had conscious awareness of ourselves, but no sense of free will, our bodies would feel alien to us.

The philosophical importance of alien hand syndrome is that it shows emphatically via neurology that it is possible to drive a wedge between consciousness and the experience of free will. The brain had to develop the sensation of free will after developing consciousness, because being without the sensation of free will produces extremely negative emotional experiences. So the fact that every case, far reported of alien hand syndrome imputes negative intent to the alien limb might not be an incidental finding, but a core aspect of the disorder.

R PERSAUD
The Maudsley Hospital, Croydon Mental Health Services, Wzsays Rehabilitation Unit, 49 St James’s Road, West Croydon, Surrey CR9 2BR, UK. Telephone 0044 181 700 8512; fax 0044 181 700 8504; email rajendra@btinternet.com

The authors reply: We appreciate Persaud’s comments regarding the alien hand syndrome, “the perceived malevolence of the affected limb towards its victim, and the question of whether with loss of the conscious sense of voluntary control over our bodies, our minds... decide that if ourselves are not in control then someone or something else must be”. We would offer that the value of our particular case is that it was due to a central deafferentation—therefore the term “sensory alien hand syndrome”. As
opposed to the idea that “we know our limbs belong to us because they obey us”, we know that our limbs belong to us because they provide us with sensory input that is recognised as self. Many patients with movement disorders or paralysis lose control of their limbs but still have no difficulty in recognising them as self. Indeed even in “phantom limb” there is sense of self due to central processes in the absence of a limb. Our patient, as do others with anosognosia and primary abnormalities of central sensory systems, shows perhaps that it is central sensory processes that are the key to identifying “self”. We know our limbs not because they obey us but because of a pattern of sensory activation that accompanies our own limb movements. When this pattern never reaches specific cortical regions, then the limb is not perceived as self; called “amorphosynthesis” by Denny-Brown and Banker. Sensation by the centrally deafferented limb in “sensory” or “posterior” alien hand syndrome, or kinaesthetic stimuli due to movement of the limb in the “anterior” or “motor” alien hand syndrome, is perceived as due to another person or thing without critical questioning. This raises the most interesting question of what brain region is deafferented in the anterior alien hand syndrome whereas the central processing is intact. It is not our clinical experience nor the conclusions based on published reports that all patients suffering with alien hand syndrome or with TIAs were irrigated by the affected limbs. In one author’s experience (BHP), two patients with alien hand syndrome and related intermural conflict were irritated by but not terrified by their opposing limbs simultaneously, without any response to book, to the other patient was amused but rather indifferent to his affected left side. The most terrifying situation we have heard is when the patient identified his affected left side as belonging to his mother in law! A patient reported by Heilman’s group evoked left side as belonging to his mother in law. A patient reported by Heilman’s group evoke the centrally deafferented left side as belonging to his mother in law! In contradistinction, a 72 year old right handed man administered our hospital with a 3 month history of episodic weakness and numbness of the right arm. The patient then had six discrete stereotypic episodes of right arm weakness and clumsiness that were also associated with the patient’s speaking. Several episodes of dysarthria, numbness and weakness of the right arm and leg (MRC grade 4/5) were seen, unrelated to posture, some of which occurred when the patient was supine. Movements decried were characterised by slight tremulousness and asterixis-like movements of the outstretched right arm. There was a return to baseline functioning between events. Video/EEG monitoring, however, showed low voltage spikes in the left central-parietal head regions contralateral to the facial twitching and the right arm and right leg weakness. Although ongoing clinical and EEG seizure activity stopped after 2 mg intravenous lorazepam, they reoccurred after loading with phenytoin. Because angiography disclosed a greater than 95% stenosis of the left internal carotid artery (while the patient was treated with phenytoin at a concentration of 16.5 mg/l), the patient was anticoagulated with heparin, but episodes continued. It was only after a left carotid endarterectomy that all episodes disappeared, tremulousness, and EEG epileptiform activity stopped. They have not recurred over the past 5 years. The literature includes several cases of focal motor inhibitory seizures causing weakness. Although it is impossible to prove a negative, it could be argued that although no epileptiform or other evidence of seizure activity is present in a particular case, the abolition of ongoing clinical and EEG evidence of inhibitory motor activity by intravenous diazepam argues in favour, at least in part, of an ictal contribution. The fact that in virtually all reported cases, abnormal movements are more definitively resolved by carotid endarterectomy argues for an underlying ischaemic aetiology that induces focal seizures. There are few reports that clearly delineate the interaction and association of inhibitory focal motor seizures and transient ischaemic attacks, as there are few sequential trials of antiepileptic drugs or anticoagulation (under EEG monitoring) and finally carotid endarterectomy. Several authors support the concept of an inhibition of motor function in parietal and secondary somatosensory re- gions by seizure activity which then interrupts the sensory feedback loop to motor integration with inhibition of subcortical and cortical areas.1

Vasomotor reactivity is exhausted in transient ischaemic attacks with limb shaking

The article of Baumgartner and Baumgartner entitled “Vasomotor reactivity is exhausted in transient ischaemic attacks with limb shaking” provides interesting new information regarding patients with involuntary limb movements contralateral to haemodynamic failure from severe carotid artery occlusive disease. The authors evoke an “exhausted cerebral vasoreactivity in the hemispheres opposite the involuntary limb movements”. In their report, involuntary movements affected only the limbs, and displayed no tonic contraction, tonic-clonic jerking, or Jacksonian march and no epileptic activity during attacks. These findings led the authors to strongly argue against seizures as the cause of limb shaking in these transient ischaemic events.

In contradistinction, a 72 year old right handed man administered our hospital with a 3 month history of episodic weakness and numbness of the right arm. The patient then had six discrete stereotypic episodes of right arm weakness and clumsiness that were also associated with the patient’s speaking. Several episodes of dysarthria, numbness and weakness of the right arm and leg (MRC grade 4/5) were seen, unrelated to posture, some of which occurred when the patient was supine. Movements decried were characterised by slight tremulousness and asterixis-like movements of the outstretched right arm. There was a return to baseline functioning between events. Video/EEG monitoring, however, showed low voltage spikes in the left central-parietal head regions contralateral to the facial twitching and the right arm and right leg weakness. Although ongoing clinical and EEG seizure activity stopped after 2 mg intravenous lorazepam, they reoccurred after loading with phenytoin. Because angiography disclosed a greater than 95% stenosis of the left internal carotid artery (while the patient was treated with phenytoin at a concentration of 16.5 mg/l), the patient was anticoagulated with heparin, but episodes continued. It was only after a left carotid endarterectomy that all episodes disappeared, tremulousness, and EEG epileptiform activity stopped. They have not recurred over the past 5 years. The literature includes several cases of focal motor inhibitory seizures causing weakness. Although it is impossible to prove a negative, it could be argued that although no epileptiform or other evidence of seizure activity is present in a particular case, the abolition of ongoing clinical and EEG evidence of inhibitory motor activity by intravenous diazepam argues in favour, at least in part, of an ictal contribution. The fact that in virtually all reported cases, abnormal movements are more definitively resolved by carotid endarterectomy argues for an underlying ischaemic aetiology that induces focal seizures. There are few reports that clearly delineate the interaction and association of inhibitory focal motor seizures and transient ischaemic attacks, as there are few sequential trials of antiepileptic drugs or anticoagulation (under EEG monitoring) and finally carotid endarterectomy. Several authors support the concept of an inhibition of motor function in parietal and secondary somatosensory re- gions by seizure activity which then interrupts the sensory feedback loop to motor integration with inhibition of subcortical and cortical areas.1

BOOK REVIEWS

To the MRCP candidate neurology is one of the more daunting specialties. The unfamiliar nerve conduction study and the frankly mysterious EEG can distress an otherwise well round the sides house officer. Despite the fact that much of neurology is commonly seen on a general medical ward—strokes, dementia and so forth—the general perception is of an unimaginable list of eponymous syndromes and obscure signs. Rather than dwell on the last, in this book Dr Smith tries to address the commoner complaints as examination style questions each with a "simple clinical less"

The "grey case" section, for instance, includes questions on multiple sclerosis, cluster headache, and HSV encephalitis, while broadening the topics to include postinfective demyelination, chronic hemi, crania, and acute haemorrhagic encephalomyelitis. There is, however, a tendency for the discussion after each question to be rather brief. A fuller explanation, with more allowance for the reader's ignorance, would have been appreciated. The data interpretation section is somewhat better, covering CSF, EEG, and other data extremely well. Perhaps a little too well; would an MRCP candidate really be expected to recognise the character-istic EEG of Creutzfeldt-Jakob disease I surely hope not. Finally, the slide tests are disappointing. If anything, neurology lends itself best to this section of the written exam ination but it is let down by the poor quality of some of the images in this book. This is especially unfortunate, as other images in the same section are remarkably impressive. The Sturge-Weber skull radiograph and central pontine myelolysis MRI are beautiful. In summary, this is a creditable first edition. I look forward to the second.

STEFAN MARCINIAK

This book, after a short introduction to some of the fundamental features of the disease goes on to provide some 117 illustrations of aspects of the disease from Cruveihier's plates to histopathological specimens and also a heavy leaning to imaging particularly magnetic resonance scanning, as might be expected. There is no doubt the aesthetic impact of this short book. In addition, the fact that these illustrations emanate from a well established figure in the multiple sclerosis world and are likely to be a representative set of personal teaching slides from a successful academic career all vouch for the provenance and informative nature of the atlas. However the place of such a book within a neurologist's library has to be questioned. There are a plethora of high quality textbooks devoted to all aspects of multiple sclerosis all well illustrated and most in colour. They provide in depth analysis of all aspects of the disease and although their illustrations tend to be smaller this is where I would choose to put my money. It may be that the circulation of this book will be higher than expected as it is likely to be a popular choice for some pharmaceutical companies.

NEIL ROBERTSON

This monograph is the latest to be produced by the American Association of Neurological Surgeons as part of its Neurosurgical Topics series. It begins by tracing the history of cal- varial reconstruction from ancient times. There follows a discussion of the different autologous donor sites and synthetic materi-alcs currently available. A chapter on calvarial and facial defects. The merits, disadvantages, and contraindications of each are considered. Dural substitutes are then dealt with in simi-lar fashion. Specific problems, such as scalp reconstruction, are dealt with in communi-trated frontal sinuses fractures, and reconstruction of the anterior skull base are the subject of separate chapters. The final part of the book is devoted to craniosynostosis. A review of current knowledge on pathogenesis is followed by a good account of some of the more common techniques used to treat single suture synostosis. Understandably, in a book of this type there is space only for an overview of the treatment and complications of multi-suture involvement, but the chapter provides well chosen references for further reading.

The reconstruction of traumatic and post-surgical calvarial defects occupies the bulk of this volume, and is dealt with very effectively. Operative techniques and the relative merits of various materials are covered in a clear and concise manner. By contrast, the section on aural substitutes is a little disappointing because it does not provide the reader with a reasoned argument on how to select the most appropriate graft from the sometimes bewildering variety of autologous, synthetic, and xenograft materials which are available when vascularised pericranial tissue is not an option.

Craniosynostosis is a topic which is covered very well in standard paediatric neuro-surgical texts and it is not worth buying this book for that section alone. However, the account of techniques for repair of calvarial defects is excellent and merits the inclusion of this text in a departmental library.

ROBERT MACARLAME

Transcranial colour duplex sonography is an ultrasonic technique which is becoming increasingly available for the non-invasive imaging of intracranial structures, particularly the basal cerebral arteries. There are now four principal components to the technique: B mode ultrasound which can be used to image the brain parenchyma; colour coded Doppler which provides a colour image of the basal vessels; spectral analysis of pulsed wave Doppler which is used to derive blood flow velocities; and latterly "power" Doppler which is also used by plotting follow ing analysis of the amplitude rather than the frequency of the reflected ultrasound beam. In addition, echocontrast agents are now available which can increase the signal to noise ratio and thus help eliminate the detrimental acoustic effects of the skull.

This volume of 400 pages and liberal colour diagrams and prints is edited by three exponents of the technique. Thirty one chapters contain by a further 16 experts on areas which may be imaginative list of eponymous syndromes that much of neurology is commonly seen on a general medical ward—strokes, dementia and so forth—the general perception is of an unimaginable list of eponymous syndromes and obsolete signs. Rather than dwell on the last, in this book Dr Smith tries to address the commoner complaints as examination style questions each with a "simple clinical less"

The "grey case" section, for instance, includes questions on multiple sclerosis, cluster headache, and HSV encephalitis, while broadening the topics to include postinfective demyelination, chronic hemi, crania, and acute haemorrhagic encephalomyelitis. There is, however, a tendency for the discussion after each question to be rather brief. A fuller explanation, with more allowance for the reader's ignorance, would have been appreciated. The data interpretation section is somewhat better, covering CSF, EEG, and other data extremely well. Perhaps a little too well; would an MRCP candidate really be expected to recognise the character-istic EEG of Creutzfeldt-Jakob disease I surely hope not. Finally, the slide tests are disappointing. If anything, neurology lends itself best to this section of the written exam ination but it is let down by the poor quality of some of the images in this book. This is especially unfortunate, as other images in the same section are remarkably impressive. The Sturge-Weber skull radiograph and central pontine myelolysis MRI are beautiful. In summary, this is a creditable first edition. I look forward to the second.

STEFAN MARCINIAK

This book, after a short introduction to some of the fundamental features of the disease goes on to provide some 117 illustrations of aspects of the disease from Cruveihier's plates to histopathological specimens and also a heavy leaning to imaging particularly magnetic resonance scanning, as might be expected. There is no doubt the aesthetic impact of this short book. In addition, the fact that these illustrations emanate from a well established figure in the multiple sclerosis world and are likely to be a representative set

Letters, Correspondence, Book reviews, Correction

This is volume 47 of a series entitled Neurological Disease and Therapy, series editor W C Koller. This volume is edited by an American surgeon and two British neurophysiologists. Most of the 45 contributors are American or British, almost half of whom, including Dr Cole, are from Southampton. The book begins with a pathophysiological

Downloaded from http://jnnp.bmj.com/ on June 16, 2017 - Published by group.bmj.com
introduction setting the scene for the five main disease sections covering developmental/genetic disease, spinal injury, infection, tumour, and the effect of neurological and systemic disease on the spinal cord. This chapter covers a wide area from multiple sclerosis to motor neuron disease to vascular disease to metabolic diseases. Then follows a section on investigation considering imaging, neuropsychology, and urodynamics. Finally, there is a miscellaneous section covering clinically important entities such as pain, sexual problems, and terminal care associated with spinal cord disease but also including a highly specialised chapter on the role of occupational therapy in spinal cord injury.

This is an ambitious attempt at being comprehensive. The editors themselves worry that the emphasis favours surgical conditions. Although this might be the case, many surgical conditions are dealt with by the neurosurgeon or rheumatologist, care for spinal disease often falling between several specialties. Therefore, it is of benefit to the clinician to have all aspects of spinal disease in one volume. The standard and style of the individual chapters varies, that on motor neuron disease being up to date and topical, malignancies being covered in depth. That on sexual problems associated with spinal cord disease is excellent for particularly practical, and a must for both doctors dealing with spinal disease and for patients themselves who are often uninformaed (our fault, not theirs). The chapter on depression illness will be looked for thought for many doctors who enjoy recreational diving, for although studies have not yet shown adverse affects on the quality of life in those who dive frequently but without incident, the evidence for cumulative neurological damage from neurophysiological, imaging, and pathological studies is compelling.

The quality of illustration is high. Perhaps not surprisingly, this is particularly evident in the imaging section (where there is a rather spectacular sagittal T2 weighted MRI of a intramedullary arteriovenous malformation). In addition to imaging many of the chapters also make good use of schematic diagrams and line drawings to enhance the text.

Drs Engler, Cole, and Merton end their preface by commenting that “Our main hope, however, is that the chapters will read as a series of views on the spinal cord and its disease, so that a surgeon may learn about the clinical picture that are outside his specialty, and that not all neurological diseases attack the sexes equally. There are also wider socio-economic and legal issues that play a part in the complete disease picture which many of us neglect too often but which this book is careful to address (see below). Leaving aside women and men (40 in total) are exclusively American, and east coast American at that with only occasional forays westward. The text is divided into three sections. The first, entitled General Disease in Women includes an anatomical chapter considering the sex differences of regional brain structure and function. More novel for this type of text, it contains two thoughtful chapters considering women’s health within the context of their lifestyles and women’s health and its relation with the law. This chapter considers issues such as coercive approaches to preventing foetal harm, those relating to informed consent to medical treatment, and difficult choices with neurological implications. The law and the case examples are exclusively American but the issues are universal. This opening section leaves no doubt that this is a book that has taken female issues extremely seriously.

The second section looks at neurological diseases as they affect females at different life stages, from birth through menopause, pregnancy, and menopause, to the elderly woman. As well as considering genetic diseases that strike at a particular age, these chapters consider the influence of changing physiology and hormonal balance on neurological disease. The third section is the most conventional. Each chapter considers a neurological disease representing these diseases with emphasis on their effect on women and there is, by necessity, some overlap between this and the previous section. As a non-American, I would feel more comfortable to believe that the high number of female patients with peripheral nerve injuries secondary to physical burnings, knife wounds, or gunshot wounds reflected the country of origin of this book!

If pushed to critique, the indexing could be more complete and certain conditions considered in more detail, in particular, paraneoplastic conditions associated with breast and gynaecological malignancies. However, that aside, I think this a rather special book and not only a good addition to any neurological library but a useful purchase for anyone interested in female medical issues.

GILLIAN HALL

The reader may be interested in the following:

CORRECTION

During the editorial process the descriptions of the histograms in figure 4 (p 614) were wrongly ascribed. The corrected figure is reproduced below.
Electrical inexcitability of nerves and muscles in severe infantile spinal muscular atrophy

ALICE A KUO, STEFAN-M PULST, DAWN S ELIASHIV and CAMERON R ADAMS

J Neurol Neurosurg Psychiatry 1999 67: 122
doi: 10.1136/jnnp.67.1.122

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/1/122.1

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/67/1/122.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/