Pseudotumour after arteriovenous malformation embolisation

The association between venous outflow obstruction and the development of pseudotumour syndrome is well known, although the mechanism by which the rise in CSF pressure is brought about is less certain. Although much evidence that the manifestations are a result of a disturbance of CSF dynamics, previous reports have focused solely on a disturbance to absorption. We present a case in which it is proposed that alterations in CSF formation, and to a lesser extent absorption, are responsible for the development of the syndrome.

At 2 years of age, as part of investigating a familial pattern of abnormal growth, a female infant underwent cerebral CT. This showed an unexpected arteriovenous malformation involving the vein of Galen. Although there was no evidence of cardiac failure or hydrocephalus associated with this, assessment by angiography was advised. This, initially declined by the parents, was not undertaken until the age of 5 years when vertigo and intermittent numbness of the left arm and leg had been present for about 12 months. Angiography showed a deep right temporal lobe arteriovenous malformation consisting of three separate fistulae supplied by the right posterior cerebral and posterior communicant arteries. These drained into a large venous varix which subsequently drained into the Galenic venous system. A cerebral blood flow study showed a steal syndrome affecting the right frontoparietal area, and a decision was made to attempt embolisation. Complete occlusion of the fistulae was achieved by transarterial platinum coil embolisation.

The patient complained of right sided headache for 24 hours after the procedure, resolving with minor analgesia. Brain CT the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal. A full ophthalmological review was undertaken before the next day was reported as normal.

It is well known that obstruction to a major portion of the cranial venous outflow can produce intracranial hypertension, presumably by impairing CSF absorption across the arachnoid villi.1 In the present case it would seem that sluggish flow in the venous varix after embolisation has resulted in thrombosis, which has propagated to the vein of Galen. As all investigations seem to have the thrombus confined to this region, a region of relative paucity of arachnoid granulations,2 and the major outflow tracts seem normal, it is difficult to accept that impairment of absorption is the mechanism responsible in the current case. An alternative mechanism must be considered.

It is held that one of the determinants of the rate of CSF production is the pressure gradient across the choroid plexus capillaries.3 Reduction in this pressure has been shown to decrease the rate of CSF formation, and it is possible that increases in the transcapillary pressure will, as in other parts of the body, result in increased transudation from the capillaries, leading to increased CSF formation. The malformation in the present case, haemodynamically important enough to result in symptoms of steal, and present since birth, may have resulted in a subnormal transcapillary gradient, and hence a possibly decreased CSF production. If this were the case, with decreased production serving to retard the normal development of absorptive capacity, then the increase in the pressure in the choroid plexus capillaries brought about by both the closure of the fistulae and the subsequent venous thrombosis may have resulted in a rate of CSF production greater than could be handled by the absorptive system. Resolution of the thrombus, recruitment of venous collaterals, and possibly an increase in absorptive capacity would have resulted in the resolution of the syndrome.

Dandy and Blackfan,1 in one of the first experiments of its type, attempted to produce hydrocephalus in dogs by ligating the vein of Galen. Their aim was to increase production, rather than impair absorption, of CSF. Their failure, a result conclusively demonstrated by Bedford, was taken to show that venous obstruction would not result in hydrocephalus. It is, however, worth noting that Bedford was able to demonstrate both the fact that dogs have extensive collaterals in the Galenic venous system, not present in humans, and that whereas Galenic venous obstruction produced little change, obstruction of the jugular veins resulted in increased CSF formation. Since these experiments little, if any, work has been done in the area of the relation between CSF formation and venous occlusion.

Although the above report is somewhat speculative, it could serve to explain the facts which at this stage of our understanding of CSF dynamics cannot be conclusively accounted for. A case of pseudotumour developing in the setting of minimal venous thrombosis, particularly in part of the venous system not thought to play a major part in the absorption of CSF, must force us to reconsider our opinions as to the relation between venous obstruction and CSF dynamics.

This research was supported by the Madeline Foundation for Neurosurgical Research.

CHRISTOPHER D KOLLAR
Madeline Foundation Laboratory, University of Sydney, Australia

IAN H JOHNSTON
Department of Neurosurgery, Royal Alexandra Hospital for Children, Sydney, Australia

Correspondence to: Correspondence to: Dr Christopher Kollar, Madeline Foundation Laboratory, Room 323, Building D06, University of Sydney, Sydney, Australia. Telephone 0061 2 9351 3359; fax 0061 2 9351 4887; kollar@surgery.usyd.edu.au

1 Symonds CP. Hydrocephalic and focal cerebral symptoms in relation to thrombophlebitis of the dural sinuses and cerebral veins. Brain 1937;60:531–50.
5 Bedford THB. The great vein of Galen and the syndrome of increased intracranial pressure. Brain 1934;57:1–24.

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis established by culture

The polymerase chain reaction (PCR) has been reported to be of diagnostic value when performed on CSF samples in tuberculous meningitis.4–6 Rapid amplification of Mycobacterium tuberculosis specific DNA enables results to be available within 48 hours and can influence treatment decisions.

Recently two patients presented to our hospital with symptoms and signs suggestive of tuberculous meningitis. Examination of CSF disclosed a lymphocytic exudate. Repeated samples were sent to a British referral laboratory where CSF PCR for M tuberculosis was reported negative. Despite this, antituberculous treatment was continued for 12 months and both patients responded clinically. Several weeks after the negative PCR result, M tuberculosis was cultured on Lowenstein-Jensen slopes from CSF taken from both patients. False negative CSF PCR in tuberculous meningitis established by culture has rarely been reported. The two patients are described to emphasise the dangers of overreliance on PCR in cases of suspected tuberculous meningitis. Premature cessation of treatment would have had tragic consequences for the two patients concerned.

The first patient was a 28 year old Asian man, last in India 8 years previously. He was sent from a clinic to hospital for incision and drainage of two deep seated Staphylococcus...
examination she had mild neck stiffness and a 6 year period during laparotomy for an episode of photophobia and occipital headaches. She grew 12 weeks later from the first positive sample on Lowenstein-Jensen slopes. At the same referral laboratory CSF PCR for Mycobacterium tuberculosis was again negative although a fully sensitive and specific polymerase chain reaction (PCR) was performed by polymerase chain reaction. A CSF PCR for Mycobacterium tuberculosis was negative and a nonradioactive detection system (0.5 ml of CSF) was sent to our referral laboratory for the Leeds mycobacterium laboratory, where the samples were spun and PCR tests were performed and who provided additional information for the manuscript.

We are grateful to Dr Deborah Binzi-Gascoyne of the Leeds mycobacterium laboratory, where the PCR tests were performed and who provided additional information for the manuscript.

M MELZER
T J BROWN
Department of Microbiology, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK

J FLOOD
S LACEY
L R BAGG
King George Hospital, Barley Lane, Goodmayes, Essex IG1 6YB, UK

Correspondence to: Dr M Melzer, Department of Microbiology, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK.

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis

There have been few studies in the literature concerned solely with the use of the polymerase chain reaction (PCR) to identify Mycobacterium tuberculosis DNA directly from CSF.** These studies suggest that in some cases, PCR may be more sensitive than culture; however, in the largest study, performed by Nguyen et al., specimens from seven patients who were culture positive for Mycobacterium tuberculosis were not positive by PCR. The study did report on 22 culture negative, PCR positive patients, suggesting that PCR can be more sensitive than culture. Studies comparing PCR with culture of M tuberculosis using other clinical specimens, particularly respiratory specimens, have reported that PCR may be less sensitive than culture for the detection of M tuberculosis*** and that the low sensitivity correlated with low colony counts on culture.† Dalovisio et al also reported that multiple specimens may be required to improve the sensitivity of the test in some patients. In the two cases described above, colonies were seen after incubation for 12 and 8 weeks on LJ slopes, suggesting a low inoculum.

The PCR has been reported to detect the equivalent of 1–10 mycobacteria in in vitro testing. However, lower sensitivity is found with clinical specimens.### PCR may be the result of inhibitors of PCR present in the reaction, poor lysis of mycobacteria, and the uneven distribution of mycobacteria in clinical specimens.††

D M GASCOYNE-BINZI
P M HAWKEY
Department of Microbiology, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EX, UK

Correspondence to: Dr D M Gascoyne-Binzi, Department of Microbiology, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EX, UK.
been recognised in Dejerine-Sottas disease, peripheral neuropathy with an early onset in childhood, and a more severe phenotype than CMT1. CMT1 and Dejerine-Sottas disease are characterised by thickening of peripheral nerves, and thickening of the cauda equina, nerve roots, and ganglia have often been found. Although cranial nerves are generally spared in CMT, thickening of the acoustic or optic nerve has been reported in some cases. We report here on a Japanese patient who exhibited severe polyneuropathy, bilateral trigeminal thickening on MRI, and an abnormality of the auditory brain stem response. Gene analysis disclosed a novel missense mutation (His81Arg) of P0. The cranial nerve involvements in this patient may be associated with the novel missense mutation of P0 (His81Arg).

A 15 year old Japanese girl presented with CMT disease. She showed delayed motor development. Although she became ambulant at 1 year and 8 months of age, she was never able to run. She was referred to our hospital due to progression of her gait abnormality. Her mentality and higher brain function were normal. Neurological examination disclosed weakness in both proximal and distal muscles of the legs, decreased grasping power, sensory disturbance of distal limbs and hands, and autonomic dysfunction. Facial sensation, mastication power, and hearing acuity were normal. She also had atrophy of the lower limbs, drop foot, a steppage gait, claw hands and pes cavus deformities. Optic atrophy, incoordination, autonomic dysfunction, and cardiac involvement were not evident.

In laboratory findings, creatinine kinase was 343 IU/l. A peripheral nerve conduction study showed undetectable sensory and motor action potentials in all limbs. Auditory brain stem response showed abnormal prolongation of the I-III interpeak (2.81 ms on the right side, 2.88 ms on the left side). Brain MRI (figure) showed significant thickening of bilateral trigeminal nerves (7 mm) compared with that of controls (3.15 ± 1.62 mm (mean ± 2 SD), n=20). However, other cranial, spinal nerves and roots were not thick on physical examination or MRI study. Sural nerve biopsy was not performed. Although no detailed familial information was available, her mother (49 years old) was available, her mother (49 years old) was referred with a 3 year history of worsening bitemoral headache, followed by a 6 month history of daily right frontal headache lasting for 2–3 hours associated with mild photophobia. There were no reports of seizures, nausea, or other visual disturbances. Her medical history was 3 years of treated hypertension, sickle cell carrier trait, and a cataract extraction. The patient was obese but physical examination was otherwise normal. Neurological examination showed no papilloedema and there were no cranial nerve or long tract signs. Brain CT showed an enhancing mass consistent with a right sided sphenoid wing meningioma.

The six exons of the P0 gene were amplified by the polymerase chain reaction using primers, and analysed by single strand conforma-
tional polymorphism (SSCP) and sequencing analyses. DNA sequencing of exon 3 showed a novel point mutation (A to C at codon 81) resulting in the substitution of arginine for histidine only in the patient. A DNA duplication in chromosome 17p11.2-p12, including the peripheral myelin protein-22 (PMP 22) gene, was not present. The patient’s mother did not show any mutations in the P0 gene.

CMT type 1 is caused by abnormalities in myelin protein of Schwann cells. Repeated demyelinating and remyelinating responses in the peripheral nerves result in diffusely enlarged diameters of nerves in CMT type 1, and thickening of the cauda equina, nerve roots, and ganglia has also been found. Although blepharoptosis, ophthalmoplegia, facial weakness, deafness, dysphagia, and dysphonia in CMT have been previously reported, clinical involvement in the cranial nerves is rare and thickening of cranial nerves has not been reported except for the acoustic or optic nerves in some cases.

In the present study, our patient showed severe clinical manifestations of early onset and undetectable conduction velocities. Therefore, this patient was considered to have a severe variant of CMT1 or Dejerine-Sottas disease. Although her facial sensation, mastication power, and hearing acuity were normal, the thickness of bilateral trigeminal nerves on MRI and prolongation of the I-III interpeak interval in auditory brain stem response were found. The I-III interpeak interval represents the conduction time from the eighth nerve to the pontomedullary junction, and the I-III interpeak interval is increased in some cases of demyelinating neuropathy of the auditory brain stem. In our patient, prolongation of the I-III interpeak interval suggested partial or complete peripheral conduction delay of the auditory nerve.

Trigeminal neuralgia with CMT has been reported. In these rare cases, trigeminal neuralgia was inherited, suggesting a partial symptomatic CMT. Although some patients were surgically treated, it was not clear whether a thickened trigeminal nerve was present. Moreover, on electrophysiological studies of facial and trigeminal nerves in CMT, Kimura et al. reported that the sensory component of the trigeminal nerve was relatively spared, despite extremely delayed conduction of the trigeminal system. However, the MRI study of our patient suggested that the fifth cranial nerves were subjected to the same pathological process that affects other peripheral nerves.

Our patient showed no DNA duplication on chromosome 17p11.2 and we found a novel mutation (A to C) representing an Arg to His substitution in the P0 gene. Histidine 81 is conserved among many other species, including cows, rats, chickens, and sharks. This mutant allele was absent in the DNA from 100 controls. Therefore we identified this mutation as pathogenic. Arg81His was located in exon 3, which codes for the extracellular domain of the protein. The extracellular domain plays a part in myelin compaction by homophilic interaction and many mutations in this area have been reported. Although the phenotypic variability is related to the position and nature of the P0 mutations, patients with cranial nerve involvement are rare in CMT with a P0 mutation. Therefore, the unique thickening of trigeminal nerves and the clinical severity in this patient may be related to this novel missense mutation. A careful comparison of the clinical, electro-physiological, and histopathological data between patients with CMT should be conducted.

We are indebted to the families studied for their cooperation and support. This work was supported by Ichihara Memorial Foundation, the Sasaki Health Science Foundation, the Primary Amelioration Research Committee, and the Ministry of Education, Science and Culture of Japan 1832993.

MASAMI SHIZUKA
YOSHIKOE IKEDA
MITSUNORI WATANABE
KOICHI KAKAHIKO
MIKI HOJOI
Department of Neurology, Gunma University School of Medicine, 5–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan

TORU KUEGAMI
KIYOSHI HAYASAKA
Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan

Correspondence to: Dr Masami Shizuka, Department of Neurology, Gunma University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan. Telephone 0081 27 220 8061; fax 0081 27 220 8068; email mshizuka@news.sb.gunma-u.ac.jp

Intracranial extracerebral follicular lymphoma mimicking a sphenoid wing meningioma

Primary lymphoma in the brain is uncommon, accounting for only 2% of primary intracranial neoplasms. Although its incidence seems to be dramatically increasing, leptomeningeal lymphomas are even rarer but have been described; however, no leptomeningeal lymphoma of the follicular type has previously been reported. We present a case of a primary meningeal follicular lymphoma which mimicked a sphenoid wing meningioma, both radiologically and intraoperatively.

A 57 year old Ghanaian woman was referred with a 3 year history of worsening bitemoral headache, followed by a 6 month history of daily right frontal headache lasting for 2–3 hours associated with mild photophobia. There were no reports of seizures, nausea, or other visual disturbances. Her medical history was 3 years of treated hypertension, sickle cell carrier trait, and a cataract extraction. The patient was obese but physical examination was otherwise normal. Neurological examination showed no papilloedema and there were no cranial nerve or long tract signs.

Brain CT showed an enhancing mass consistent with a right sided sphenoid wing meningioma.
chemical profile confirmed a follicular lymphoma. The patient made an uneven recovery and was referred for staging investigations and consideration of postoperative therapy. An LDH estimation was within normal limits and HIV serology was negative. Whole body CT including repeat CT of the brain did not show any evidence of lymphadenopathy or lymphomatous deposit. Bone marrow examination was declined. Postoperative adjuvant whole brain or localised radiotherapy was discussed with the patient, however, she declined any further intervention. She has been closely reviewed in the follow up clinic and after 6 months there has been no clinical or radiological evidence of relapse.

Primary intracerebral lymphomas represent about 2% of intracranial neoplasms and 2% of all lymphomas. They occur most commonly in the 6th decade of life with a female to male ratio of 2:1. The association between primary intracerebral lymphoma and immunodeficiency has long been established, and it is not surprising, therefore, that the incidence has increased 10-fold over the past 3 decades with the onset of transplant surgery and, particularly, the AIDS epidemic. In postmortem studies, these neoplasms are found, on average, in 5.5% of AIDS cases, and malignant cerebral lymphoma is the most common diagnosis of a focal intracranial lesion in patients with AIDS. Malignant primary lymphoma can occur throughout the CNS and they often have a periventricular distribution. Multifocality seems to be more common in patients with AIDS. The CT scan usually shows hyperdense masses with peritumoral oedema and 92% enhance after administration of contrast medium.

Leptomeningeal lymphoma is usually encountered as a late complication of systemic non-Hodgkin’s lymphoma, although primary leptomeningeal lymphoma is occasionally seen. The prognosis for these tumours is poor. Diffuse intracerebral lymphomas have been mistaken for more common lesions: solitary primary B cell lymphoma of the cerebellum associate mimicking acoustic neuromelieoma or meningioma has been reported; Vigushin and co-workers described a case with a calcified temporopontine lymphoplasmacytic lymphoma which resembled a meningocele; however, this tumour was entirely extradural. There is only one previous report of a follicular rather than diffuse intracerebral lymphoma. Rubinstein described a case of follicular lymphoma metastasis found in the dura of a 61-year-old man at necropsy. We found no report of a primary follicular extracerebral lymphoma. Similar radiological and intraoperative appearances of the tumour in our case to sphenoid wing meningioma suggest that this entity should be considered as a rare differential diagnosis.

We thank Professor Francesco Scaravalli, National Hospital for Neurology and Neurosurgery and Dr Mark Nazeri, The Meyerstein Institute of Oncology, Middlesex Hospital, for their help with this report.

DOMINIC J HODGSON
CAROLY M DAVID
MICHAEL POWELL
Department of Surgical Neurology

IAN L HOLTON
Department of Neopathology, The National Hospital for Neurology and Neurosurgery

FRANCESCO PEZZELLA
Department of Pathology, University College Hospital, London, UK

Correspondence to: Mr Michael Powell, Department of Surgical Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom. Telephone 0044 171 837 3611; fax 0044 171 209 3875.

Determinants of the copper concentration in cerebrospinal fluid

The measurement of CSF copper concentration can serve as an indicator of brain copper concentration. However, the complex mechanisms by which copper crosses into the CSF, and the factors determining the CSF copper concentration in humans are largely obscure. Copper can pass into and out of the CSF by various mechanisms. For example, active transport through the blood-brain barrier, or passive diffusion of the free or the bound fraction (bound to albumin or ceruloplasmin) through the blood-CSF barrier. We studied the factors influencing CSF copper concentration using a stepwise multiple linear regression model. The independent variables were age, plasma ceruloplasmin, CSF/serum albumin ratio, total serum copper concentration, and calculated serum free copper concentration (based on serum ceruloplasmin and total serum copper concentration). The CSF copper concentration was calculated as a dependent variable for the continuous type. We investigated lumbar CSF samples from 113 patients. These patients had dementia, extrapyramidal, or tremor symptoms; lumbar puncture was performed to exclude Wilson’s disease, and none of the patients had the disease. Copper was measured by flameless atomic absorption (Perkin Elmer, HGA 500, Ueberringen, Germany). Ceruloplasmin was determined nephelometrically (Beckman Instruments, Brea, CA, USA). The age of the patients was 50.0 (SD15.5) years; 50 were women and 65 were men. Mean serum ceruloplasmin concentrations were 394.3 (SD117.7) mg/l. Mean serum copper concentrations were 1194 (SD 335) µg/l. Mean calculated free copper concentrations in serum were 78.5 (SD 1285) µg/l. Mean CSF copper concentrations were 14.16 (SD 6.0) µg/l. The mean albumin ratio (AR) was 6.63×10⁻³. The mean ratio of calculated free serum copper concentration to total serum copper was 6.6%, the ratio of CSF copper to serum copper was 1.2%, and the ratio of free serum copper to CSF copper was 18%. In the
The formula for the CSF copper concentration and CSF copper concentration is actually represented as the fraction entering the CSF by passive diffusion (bound to coerusoloplasmin) tends towards zero. It can be concluded from this that, when the aim of therapy is considered in terms of the total CSF copper concentration, a region around 30% lower than the upper limit of the normal range should be aimed for. This is supported by the clinical finding that patients report feeling better when the CSF copper concentration is below this value. This analysis also shows that the raised copper concentration in the CSF can only originate from the brain. In particular, it is not associated with free serum copper, but evidently only via storage in the brain. The investigation here also shows that, after determining the CSF copper concentration, the coerusoloplasmin-bound fraction originating from the plasma should be subtracted according to the formula we have given, or better, all measured copper concentrations in the CSF should be adjusted using the CSF/serum albumin ratio and serum coerusoloplasmin concentration. A statistical relation with a low correlation (p<0.05) between CSF protein content and CSF copper was already shown in 1988; this has not been confirmed in various neurological diseases; our study shows a much higher significance and, in addition, the effect of serum coerusoloplasmin (therefore of bound serum copper). Furthermore, we have been able to determine quantitatively the relation of CSF copper which enters the CSF across the blood-CSF barrier.

HANS JOERGSTUERKENBURG
MATTHIAS OECHSNER
SVEN SCHROEDER
KLAUS KUNZIE
Neurological Department, University Hospital Hamburg-Eppendorf, Martinstrasse 52, 20246 Hamburg, Germany

Correspondence to: Dr Hans Joerg Stuerenberg. Neurological Department, University Hospital Hamburg-Eppendorf, Germany

correlation results in vascular or bronchial obliteration.

Central nervous system involvement is exceptionally rare and has been reported as a finding in the multileofic form of myofibromatosis which presented as an intracranial mass in a 20 month old child. To our knowledge, only one other case of solitary intracranial myofibroma has been reported.2

A 20 month old Irish boy, the only son of healthy, unrelated parents, was admitted for investigation of a large head. He had one previous hospital admission at the age of 6 weeks for a respiratory tract infection. He was born at 39 weeks gestation by forceps delivery. Muscle hypotonia was noted at that time as was his skull circumference of 43 cm. At 6 months there was no hypotonia, neurological examination was normal, and the head circumference was 49 cm. There was no significant growth and the head circumference was 61 cm and he stated that all of his family had “big heads”. By 20 months, the patient’s head circumference measured 55.6 cm and was diverging from the 97th centile. Brain CT showed a well circumscribed, contrast enhancing mass in the midline and left frontal lobe, with surrounding oedema. There was evidence of left sided hydrocephalus due to displacement of the right fornmen of Monro by tumour. The radiological differential diagnosis included a primary meningeal tumour, glioma, and leukaemic deposit. The patient underwent a left frontal craniotomy and a firm, rounded mass was resected from between the hemispheres. The mass was not attached to the falx, but was firmly adherent to the left pericapsal lobe. A fragment (4 mm x 2 mm) had to be left attached to the vessel of origin. The pathology showed faint transverse paresis of the right leg, which subsequently resolved completely. Repeat CT 6 months later and at 4 years after the operation showed no evidence of recurrence or mass effect. His head circumference persisted on the 97th centile 4 years after operation. His development and clinical examination otherwise remained normal 6 years after surgery. A younger sibling is normal.

A rare case of solitary interhemispheric myofibroma with excellent outcome in a 20 month old boy is described. The clinicopathological features of this unusual condition are reviewed with emphasis on the CNS manifestations.

A case of congenital fibrosarcoma was first diagnosed by William and Schram and was subsequently renamed congenital generalised fibromatosis by Stout in 1954 as a distinct form of juvenile fibromatosis characterised by tumour-like nodules involving the skin, soft tissues, bones, and viscera. Based on the ultrastructural and immunohistochemical features of the tumours and the occurrence of this condition in infants, as well as congenital, it was renamed infantile myofibromatosis by Chung and Enzinger in 1981. This disorder is considered to represent a hamartomatous myofibroblastic prolif-
myoglobin. Ultrastructural examination showed elongated cells with surrounding collagen fibrils, some showing intracytoplasmic myofilaments.

Solitary lesions of infantile myofibromatosis are more common than multiple lesions, with twice as many males as females being affected, and generally involve the skin and soft tissues, especially of the head and neck. Solitary lesions are less commonly found in viscera or bones. Involvement of the CNS is exceedingly rare and only one other case of a solitary mass is reported along with few cases of CNS involvement in the generalised form of infantile myofibromatosis. The prognostic role is best for cases with solitary masses and less favourable for multicentric cases, particularly where visceral lesions are present, in which morbidity and mortality derive predominantly from pulmonary involvement or mass effect.

The differential diagnosis for this lesion included meningioma, schwannoma, and haemangiopericytoma. Regionally, the histology was reminiscent of the rare microcystic variant of meningioma. Meningiomas are extremely rare in this age group, this lesion was not meningoidal and such lesions are usually reactive for epithelial membrane antigen unlike this tumour. This lesion, unlike some of these other lesions, showed no immunoreactivity for S-100 protein. Haemangiopericytoma is a diagnosis of exclusion and shows no reactivity for actin, unlike this tumour.

Axonal polyneuropathy and encephalopathy in a patient with verotoxin producing Escherichia coli (VTEC) infection

Escherichia coli serotype O157:H7 causes serious food poisoning worldwide, especially in children and elderly people. It is also called verotoxigenic E coli (VTEC), which produces a toxic Shiga-like toxin. Gastrointestinal, haemorrhagic, and uraemic effects are well known in VTEC infection, and neurological problems are likely to be more frequent than is generally recognized. Here we describe axonal polyneuropathy and encephalopathy in a young female patient associated with haemolytic-uraemic syndrome caused by VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital and diagnosed as having haemorrhagic collitis due to probable food poisoning. Then her urine volume gradually decreased, serum creatinine increased, and she was transferred to our hospital. On the 9th day she had a high fever of 39.7°C and increased C reactive protein (7.6 mg/l) and a leukocytosis of 17 800/mm³. She was in a state of anuria and her blood analysis showed severe kidney dysfunction (increased serum creatinine of 6.76 mg/l). She had severe anaemia (haemoglobin 6.0 g/dl), fragmentation, and tear drop deformation of red blood cells in the blood smear and increased lactate dehydrogenase concentration of 4095 IU (normal range 250–460 IU), suggestive of haemolytic anaemia. Her platelet count was decreased to 21 000/mm³. The culture of her stool showed the growth of E coli O157:H7 and analysis of the bacterial toxins showed the presence of verotoxin, which confirmed the diagnosis of VTEC infection.
Crying spells as symptoms of a transient ischaemic attack

In the absence of depression, crying spells associated with neurological disease usually result from pseudobulbar palsy or, more rarely, from crying seizures. To our knowledge, there are no prior reports of crying spells heralding or signifying a transient ischaemic attack. On examination between recurrent crying spells, his blood pressure was 143/92 with a regular pulse of 62, and there were no carotid bruits. His mental status was normal. Cranial nerve examination showed no flattening of the left nasolabial fold and decreased pinprick sensation over his left face and arm. The rest of the neurological examination showed mild weakness in his left upper arm, and decreased pinprick and temperature sensation over the left half of his body. The reflexes were +2 and symmetric with downgoing toes.

The patient lacked prior depression, new depressive symptoms, or prior crying spells as an adult except for a single episode during dental anaesthesia. At the time of his admission, he had not had any recent adverse events in his life, and was totally surprised by his reaction.

The patient’s crying spells, paroxysms, and neurological findings entirely resolved within about 3 hours. Routine laboratory tests, EEG, and CT were normal. Two days after admission, MRI disclosed a mild degree of white matter edema covering the right frontotemporal cortex, and an EEG showed frontotemporal intermittent rhythmic delta activity but no epileptiform changes. Carotid Doppler studies showed atherosclerotic changes without haemodynamically relevant obstruction. He was discharged on antplatelet therapy with aspirin.

These results suggest that crying spells can be a manifestation of a transient ischaemic attack. He presented with paroxysmal crying spells followed by a left sided hypoaesthesia and a mild left sided weakness, all of which resolved. His crying was non-emotional, inappropriate to the context, and did not correspond to his underlying mood. Moreover, the patient had multiple vascular risk factors supportive of a cerebrovascular aetiologiy for his episode.

The most common cause of pathological crying is pseudobulbar palsy, a complication of strokes and other diffuse or bithermogenic brain damage. 1 Pseudobulbar palsy results from bilateral interruption of upper motor neuron innervation of bulbar motor nuclei and brainstem centres. In addition to crying, pseudobulbar palsy may include dysarthria, dysphagia, bitalcial weakness, increased facial and mandibular reflexes, and weak tongue movements. There were no signs or sympsoms of pseudobulbar palsy in this patient.

Crying or dyscaryotic seizures also occur but are rare. These seizures are part of the range of complex partial seizures and usually emanate from the right temporolimbic system. 2 Crying seizures may result from prior cerebral infarcitons. 3 Although our patient had mild right hemisphere atrophy, he did not have other evidence suggesting definite seizure activity.

It is likely that this patient had a single transient ischaemic attack with multiple crying spells. The localisation of his attack is unclear; involvement of the right thalamus or neighbouring internal capsule is a possibility. Similar to spells of laughter, spells of crying may occur in relation to unilateral cerebrovascular events. Although most reports of crying after unilateral strokes have reported left hemispheric lesions, 4 crying also may result from right hemispheric strokes. 5 Even more similar to our patient, sudden laughing spells, "le fou rire prodromique," rarely precede strokes involving the left capsular-thalamic, lenticular-caudate, or pontine regions. 6 Our patient may have had a comparable phenonem from the right hemisphere. The pathophysiology of crying after stroke is not well understood, although one possibility is that a seizure or other brainstorm phenomena may have been a primary cause of the brain damage. 1

2 Lyo CH, Dennis M, Molyneux A, et al

Continuous drop type of orthostatic hypotension

Orthostatic hypotension has usually been evaluated for 2–10 minutes after standing. 2,3 Multiple system atrophy (MSA: Shy-Drager syndrome) is one of the neurodegenerative diseases which show marked orthostatic hypotension. We studied changes of blood pressure for more than 20 minutes after standing in 30 patients with MSA.

The patients lay down on a tilting table, and an intravenous cannula was introduced into the cubital vein more than 30 minutes before the 25 minute test of 60° head up tilt. Blood pressure and heart rate were recorded every minute with an automatic sphygmomanometer. Patients could clearly be classified into two groups in terms of the time taken to reach the minimum blood pressure. In 12 patients systolic blood pressure fell rapidly, reached a minimum within 5 minutes, and then remained stable or partially recovered (early drop type); whereas, in 13 patients blood pressure fell immediately after tilting but kept decreasing by more than 8 mm Hg from that at 5 minutes (mean 12.9 mm Hg;
We used a Swan-Ganz catheter to investi-
gate the haemodynamics in three patients
with orthostatic hypotension of the continu-
ous drop type. To prevent the concentra-
tion of plasma, saline of calculated volume was
infused during tilting. During the continuous
decease in blood pressure, cardiac output
proportionally decreased but systemic vascu-
lar resistance did not change (figure).

Our results suggest that in many patients
with MSA the blood pressure drops continu-
ously on standing. The continuous blood
pressure drop is caused by continuous reduc-
tion of cardiac output. A part of the
mechanism for continuous reduction of
cardiac output should be lack of reflex tachy-
cardia and no significant release of noradren-
aline which are caused by interruption of the
baroreflex arc, as is known in MSA. However,
further explanation, such as continuous
vasodilatation of the volume vessels,
is necessary for the difference in mechanisms
between the early drop type and the continu-
ous drop type. As we did not record heart rate
and blood pressure continuously and did not
evaluate ventricular function by echocardi-
ography, the final conclusion and its inter-
pretation require further study.

We think that more than a 20 minute tilt up
study is needed to evaluate orthostatic hypo-
tension and that reduced endurance of
exercise and the syncope that occurs some
time after standing should be considered
symptoms of a continuous drop in blood
pressure.
Idiopathic cerebellar ataxia associated with celiac disease: lack of distinctive neurological features

Although applauding the contribution of Pellecchia et al in emphasizing the widespread recognition of the association between gluten sensitivity and ataxia, we disagree that ataxia associated with gluten sensitivity lacks “distinctive neurological features”. Both their data and common sense indicate that this group of patients can be distinguished by the late (non-childhood) onset of gait ataxia with relatively mild upper limb signs, analogous to Harding’s group 1. Again, coexistent neurological features are common in these patients, found in two out of three of the patients of Pellecchia et al and 21 of our 28. We agree that gastrointestinal symptoms are rare: rather than entitling their paper “lack of distinctive neurological features”, perhaps “lack of distinctive gastroenterological features” might have been more appropriate.

We were surprised at the high specificity and sensitivity of increased antigliadin antibody titres in their hands. Although we found both IgA and IgG antigliadin antibodies to be invaluable screening tools in patients with ataxia, only 11 of our 28 patients with idiopathic ataxia had a history of overt coeliac disease on duodenal biopsy, the remainder having normal or non-specific inflammatory changes but with an HLA genotype in keeping with gluten sensitivity. It is interesting to note that despite the often quoted high sensitivity for coeliac disease of increased antidiendymus antibodies to titres, such was found in only one of three patients of Pellecchia et al with coeliac disease. This contrasts with our impression of very modest sensitivity of antidiendymus antibodies in gluten ataxia.

Gluten sensitivity is common in patients with ataxia, and can be identified by increased antigliadin antibody titres in the presence of appropriate histocompatibility antigens. Although the clinical features of gluten ataxia are not entirely specific, they are distinctive.

M HADJIVASSILIOUT R A GRUNEWALD
G A B DAVIES-JONES
Department of Neurology, Royal Hallamshire Hospital,
Glossop Road, Sheffield S10 2JF, UK
Correspondence to: Dr G A B Davies-Jones,
Department of Neurology, Royal Hallamshire Hospital,
Glossop Road, Sheffield S10 2JF, UK

Procarainamide for faecal incontinence in myotonic dystrophy

We read with interest the article by Abercrombie et al which describes the pathophysiology and surgical management of faecal incontinence in two siblings with severe myotonic dystrophy.

In the authors’ experience, long term results of both medical and surgical management of the faecal incontinence of pelvic floor dysfunction, as proved by the fact that postanal sphincter repair restored faecal continence only for a brief time.

The authors’ pessimistic conclusions suggest that “faecal incontinence in myotonic dystrophy is difficult to relieve by any currently available treatment other than colostomy”. It should be noted, however, that the medical treatment used is not specified in the text.

Our experience with medical treatment using procarainamide in a patient with severe myotonic dystrophy and faecal incontinence is less disappointing. The patient—a 19 year old man—had had his illness diagnosed 4 years earlier on clinical grounds and electrophysiological and genetic tests. Early symptoms of sphincteric impairment developed soon after, including mild stress urinary incontinence and minor episodes of poor control of loose stool.

A complete diagnostic investigation, including physical examination, defecography, and electrophysiological tests of pelvic floor musculature, was performed. At physical examination, digital ano-rectal evaluation showed low squeeze pressures. A reduced rectal diameter (4.5 cm), anal gaping, and barium loss at rest were found in defecography. Motor evoked potentials elicited by cortical and lumbar magnetic stimulation and recorded from the external anal sphincter showed a normal latency and decreased amplitude. Somatosensory evoked potentials after anal stimulation and sacral reflex latency were normal. EMG recording of the external anal sphincter showed, as in the first patient of Abercrombie et al, a decreased number of motor units and multiple myotonic discharges. Few motor unit potentials presented polyphasic waveforms and decreased duration and amplitude.

A regular treatment with procarainamide (300 mg twice a day) lead to a dramatic improvement of both systemic myotonia and faecal incontinence. A 13 month follow up assessment has shown a stable clinical improvement. Repeated electrophysiological investigation showed disappearance of myotonic discharges at the external anal sphincter, whereas defecography disclosed an improved rectal compliance (5.2 cm in diameter) at capacity and no more than a barium leak on straining.

The pathophysiology of motor disorders of the gastrointestinal tract in myotonic dystrophy is still debated and controversial. Histological study of the external anal sphincter and neurological study of the external anal sphincter...
Flail arm syndrome or Vulpian-Bernhart's form of amyotrophic lateral sclerosis

We read with interest the article by Hu et al concerning flail arm syndrome, a distinctive variant of amyotrophic lateral sclerosis. The authors presented a subgroup of patients affected by amyotrophic lateral sclerosis that predisposed them to flail limb syndrome. The pathogenesis of this syndrome has been well characterized, and its incidence is known to vary depending on the population studied. The authors report a case of flail arm syndrome occurring in a patient with ALS. The case highlights the importance of recognizing this condition, as it may affect the patient's quality of life and require specific treatment. Further studies are needed to better understand the incidence and risk factors of flail arm syndrome in patients with ALS.
A second consideration is that perhaps these Lithuanians are in very minor collisions. True, some of their vehicles were completely wrecked, but perhaps the vehicles were not very good quality and so were easily damaged. Perhaps that is why this cohort had such a good outcome and only minor injuries. This is an unhelpful consideration however, as studies in Canada have shown that with absolutely no vehicle damage, in very low velocity collisions, are just as likely to report chronic pain as those in more severe collisions. Lithuanians seem to behave appropriately then for minor collisions (if that is what they indeed had), but Canadians seem unable to behave appropriately. Again, another cultural rift in the rate of recovery from whiplash injury is demonstrated.

Thirdly, there are sex differences and even differences in seat belt usage between this population and some others, but even then, it does not seem to matter what sex, age, use of seat belts there is in other western countries, none of these preclude chronic pain. In Lithuania, those who were female, and who did not wear seat belts, still insisted on behaving as the rest of the cohort.

Finally, perhaps the Lithuanians simply refuse to report their chronic pain, and chronic pain cannot be studied in other cultures in this way. The Lithuanians have no reluctance to report acute pain, but perhaps for some reason wish to "suffer in silence" in spite of chronic pain and disability. This would be a potential flaw if it was not simultaneously shown in this study that the general Lithuanian population reports the same prevalence, frequency, and character of neck pain and headache as does the general population in western countries. If there were some design barriers to identifying symptoms, the control population would have grossly underreported their symptoms. Indeed, chronic pain can and is reported by studies in many different cultures and languages, including Japan, France, Italy, and others. If researchers in these non-English speaking populations can use simple questionnaires to document the late whiplash syndrome so effectively there, then the same should be possible in Lithuania.

And so, despite the potential limitations of this study as outlined, there is no way to get around the stark realisation that the natural history of acute whiplash injury in Lithuania is a benign syndrome with 4 weeks or less of pain. Equally compelling is the fact that Lithuania is not the only place where researchers are having difficulty identifying epidemiology of chronic pain. Recovery from acute whiplash injury without neurological injury or fracture routinely occurs within 4–6 weeks in Germany and Greece. The time has now come for a reconciliation of these epidemiological observations with our own experience of late whiplash syndrome in western countries. The truth has been laid bare and it is our responsibility to utilise this time to help prevent the chronic pain and the suffering we otherwise encounter.

R FERRARI

BOOK REVIEWS

This book purports itself to be a comprehensive reference. Certainly the title would suggest so. However, it is clear that this is not a comprehensive text, but a book that is an update on particular timely topics in the field of pain medicine. There are sections on pain mechanisms, a chapter on the pharmacology of acute and chronic pain, and other chapters on postoperative pain, obstetric pain, and acute paediatric pain. There are three further chapters specifically on the management of chronic low back pain, cancer pain, and an overview of interventional pain techniques.

Many of the authors are internationally known and this is perhaps the book's strongest point—one does get a state of the art review and to this end I warmly welcome this book as an addition to the bookshelf to update a busy anaesthetist or pain specialist, though the chapters on chronic low back pain and cancer pain will also be of interest to those in other fields.

The chapter on the anatomy and physiology of pain is excellent in that it has clear explanations and a number of very helpful diagrams. Unfortunately it fails to mention increasing understanding of the role of GABA in mediating analgesia within the spinal cord and furthermore does not mention some of the other pharmacological changes which are well known to occur in chronic pain states such as central sprouting and phentypic switching.

The chapter on pharmacology of acute and chronic pain is well written, but unfortunately a lot of time is spent on non-steroidal drugs. There is a review of the adjuvant drugs such as antidepressants and anticonvulsants that are used in chronic pain, however one is left at the end with a sense of knowing about the drugs but not quite to use them. There is no mention of the increasing use of gabapentin or nor of other drugs that are sometimes used in chronic pain states such as clonidine and other sympatholytic agents or calcium channel blockers.

The chapter on acute postoperative pain management is well written and informative as are the chapters on obstetric and paediatric pain. The chapter on chronic low back pain by Rauck is one of the best I have seen for some time. It is a comprehensive review of both acute and chronic low back pain. It is excellent as it also mentions treatments that are often performed outside the medical specialist arena. I was pleased to see in it the mention of some of the newly evolving techniques such as facet denervations, spinal cord stimulation, and disc denervation. It was a pity that the randomised control trials which have shown facet denervation to be an overwhelmingly useful technique were not mentioned back pain were not mentioned. It was also a pity that the reference to the disc denervation procedure was to another text book rather than any original papers.

The chapter on cancer pain management has been written by internationally known authors and is an excellent summary of the subject. In the section on interventional pain techniques the emphasis was on spinal cord stimulation, radiofrequency, and cryosurgery. Again this chapter has been written by an internationally well known author who concentrated on general overview of the techniques rather than a how to do it approach, which I think many oncologists may refer to a bigger text for. In summary I think that this volume would make an excellent addition to the bookshelf of those involved in the treatment and management of pain.

RAJESH MUNGLANI

This is a really excellent book which is both comprehensive and amazingly up to date, with the inclusion of many references from as late as 1997. As a clinical neurologist and neuropsychologist with a longstanding interest in the dementias, I found it extremely valuable. The editor has done a very good job in posing a coherence, format, and style, which is often lacking from multicontributor textbooks.

The title of the book is perhaps a little misleading in that the book includes, as well as traditional neuropathology, a very comprehensive overview of the molecular biology and genetics of the dementias. As would be expected, a considerable proportion of the book is dedicated to Alzheimer's disease with chapters on both the clinical features, genetics, and the neuropathology. The frontotemporal dementias are also well covered and the book includes a chapter on the new developments related to chromosome 17 linked dementias. There are also sections on progressive supranuclear palsy, Huntington's disease, corticobasal degeneration, dementia with Lewy bodies, and prion diseases and vascular dementia.

The editor has managed to persuade many of the world's experts to contribute. For instance, one of the chapters on prion diseases is by D'Almond and the recent Nobel laureate Prusiner, and the frontotemporal dementias are reviewed by Brun and Gastlson. Genetics of Alzheimer's disease are dealt with by St George-Hyslop and the neuropathology of Alzheimer's disease by Price and coworkers.

I very much enjoyed reviewing this textbook of instrumented spinal surgery written by Giuseppi Tabasso under the auspices of Jürgen Harms. Dr Harms is well known to all spinal surgeons and has made a very important contribution to the development of spinal surgery over the past 20 years, based on strong personal convictions. Many surgeons who manage spinal disorders would not choose to implement all of Professor Harms’ solutions but all who have a serious interest in the surgical treatment of the spine admire and are grateful for his contribution. Within this book spinal surgeons will find a rational and practical approach which will allow them to treat a wide range of spinal disorders according to well thought out principles.

The opening chapter describes spinal biomechanics under normal and pathological circumstances mainly by using easily understood drawings and diagrams. Some of these drawings reminded me of images that I have recently seen on an interactive CD ROM that I bought for my 4 year old son. This is not a criticism and I fully support any attempt to simplify the science of biomechanics which is often cloaked in seemingly contradictory jargon. Most spinal surgeons will be able to assimilate the two basic principles which underpin much of instrumented spinal surgery — namely, that the anterior column resists load compression forces and that the posterior column acts as a tension band which when disrupted should be reconstituted in compression. The remaining chapters cover fracture management, late kyphosis, metastatic tumours, spondylolisthesis, degenerative spinal disease, and infection. Each chapter sets out the principles of management which are illustrated schematically. There then follow case studies illustrated by radiological images including CT and MRI. These have reproduced well and surgeons will admire the technical precision and excellent anatomical reductions illustrated by these clinical cases. It is, however, a source of constant annoyance to spinal surgeons that perfect postoperative films do not always correlate with good clinical results and this discrepancy remains a source of fascination and mystery.

It is in the degenerative spine that this discrepancy between radiological and clinical findings is most apparent and it is partly for this reason that the management of these conditions is often controversial. It is difficult to disagree with much of the logic presented by the authors in planning their interventions but there is a danger that inexperienced surgeons may be misled into adopting complex solutions when often more simple operations will suffice. The authors’ description of their approach to failed back surgery syndrome illustrates this problem and the inadequacies of attempting to treat a complex clinical problem by focusing on one aspect of it.

This book will be a useful addition to the shelves of spinal surgery textbooks and many orthopaedic and neurosurgical departmental libraries will wish to buy a copy.

RODNEY LAING

I wondered, when I received this book, how I could possibly say anything adverse about a book written by three such world renowned experts. I have heard them all lecture often and have seen them all at work. They have a vast knowledge and experience of treating disorders of peripheral nerves. In clinic and the operating theatre, they have shown myself and many trainees a clarity in their planning of management of complex problems that humbles one’s own thoughts. That clarity has continued in this text book of over 500 pages. The field of peripheral nerve surgery is covered comprehensively, commencing with descriptions of anatomy, physiology, and pathological reaction to injury. This is followed in subsequent chapters with descriptions of approaches to virtually all the main peripheral nerves, and the operative management of brachial plexus injury and outcomes is covered in three detailed chapters. These are followed by chapters on nerve entrapment, neuropathy, iatropathic injury, and neoplasm within the peripheral nerve. The final section covers electrodiagnosis, pain, nerve recovery, reconstruction techniques, and rehabilitation.

The text is well written, easy to read, and supplemented by some excellent line drawings similar to those used in Lundborg’s text. There are detailed plates showing histology and various imaging techniques. Each chapter is comprehensive, containing important historical aspects as well as up to date techniques, and there is an extensive reference section. I would recommend that trainees of all specialties dealing with peripheral nerve injuries should read much of this text and it would be extremely useful as a regular reference. It would also make an important and necessary addition to most medical libraries. All clinicians would be well advised to read the chapters on iatropathic injuries, not only for the extensive causes of such injuries encompassing all medical and surgical departments, but also for the precis of the changes occurring in medical negligence claims. This text represents good value for money.

IAN WHITWORTH
Crying spells as symptoms of a transient ischaemic attack

MARIO F MENDEZ and YURI L BRONSTEIN

J Neurol Neurosurg Psychiatry 1999 67: 255
doi: 10.1136/jnnp.67.2.255

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/2/255.1

These include:

References
This article cites 5 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/67/2/255.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/