Pseudotumour after arteriovenous malformation embolisation

The association between venous outflow obstruction and the development of pseudotumour syndrome is well known, although the mechanism by which the rise in CSF pressure is brought about is less certain. Although there is much evidence that the manifestations are a result of a disturbance of CSF dynamics, previous reports have focused solely on a disturbance to absorption. We present a case in which it is proposed that alterations in CSF formation, and to a lesser extent absorption, are responsible for the development of the syndrome.

At 2 years of age, as part of investigating a failure of normal growth, a female underwent cerebral CT. This showed an unexpected arteriovenous malformation involving the vein of Galen. Although there was no evidence of cardiac failure or hydrocephalus associated with this, assessment by angiography was advised. This, initially declined by the parents, was not undertaken until the age of 5 years when vertigo and intermittent numbness of the left arm and leg had been present for about 12 months.

Angiography showed a deep right temporal lobe arteriovenous malformation consisting of three separate fistulae supplied by the right posterior cerebral and posterior communicating arteries. These drained into a large venous varix which subsequently drained into the Galenic venous system. A cerebral blood flow study showed a steal syndrome affecting the right frontoparietal area, and a decision was made to attempt embolisation. Complete occlusion of the fistulae was achieved by transarterial platinum coil embolisation.

The patient complained of right sided headache for 24 hours after the procedure, resolving with minor analgesia. Brain CT the next day was reported as normal. A full ophthalmological review was undertaken before discharge showing normal fundi and fields.

Ten days after the embolisation the patient presented with a generalised, pounding headache, present since discharge. Examination showed mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense brain CT showing mild left papilloedema, with no focal neurological signs. Brain CT showed a dense

It is well known that obstruction to a major portion of the cranial venous outflow can produce intracranial hypertension, presumably by impairing CSF absorption across the arachnoid villi. In the present case it would seem that sluggish flow in the venous varix after embolisation has resulted in thrombosis, which has propagated to the vein of Galen. As all investigations seem to have the thrombus confined to this region, a region of relative paucity of arachnoid granulations, and the major outflow tracts seem normal, it is difficult to accept that impairment of absorption is the mechanism responsible in the current case. An alternative mechanism must be considered.

It is held that one of the determinants of the rate of CSF production is the pressure gradient across the choroidal plexus capillaries. Reduction in this pressure has been shown to decrease the rate of CSF formation, and it is possible that increases in the transcapillary pressure will, as in other parts of the body, result in increased transudation from the capillaries, leading to increased CSF formation. The malformation in the present case, haemodynamically important enough to result in symptoms of steal, and present since birth, may have resulted in a subnormal transcapillary gradient, and hence a possibly decreased CSF production. If this were the case, with decreased production serving to retard the normal development of absorptive capacity, then the increase in the pressure in the choroid plexus capillaries brought about by both the closure of the fistulae and the subsequent venous thrombosis may have resulted in a rate of CSF production greater than could be handled by the absorptive system. Resection of the thrombus, recruitment of venous collaterals, and possibly an increase in absorptive capacity would have resulted in the resolution of the syndrome.

Dandy and Blackfan, in one of the first experiments of its type, attempted to produce hydrocephalus in dogs by ligating the vein of Galen. Their aim was to increase production, rather than impair absorption, of CSF. Their failure, a result conclusively demonstrated by Bedford, was taken to show that venous obstruction would not result in hydrocephalus. It is, however, worth noting that Bedford was able to demonstrate both the fact that dogs have extensive collaterals in the Galenic venous system, not present in humans, and that whereas Galenic venous obstruction produced little change, obstruction of the jugular veins resulted in increased CSF formation. Since these experiments little, if any, work has been done in the area of the relation between CSF formation and venous occlusion.

Although the above report is somewhat speculative, it could serve to explain the facts which at this stage of our understanding of CSF dynamics cannot be conclusively accounted for. A case of pseudotumour developing in the setting of minimal venous thrombosis, particularly in part of the venous system not thought to play a major part in the absorption of CSF, must force us to reconsider our opinions as to the relation between venous obstruction and CSF dynamics.

This research was supported by the Madeline Foundation for Neurosurgical Research.

CHRISTOPHER D KOLLAR
Madeline Foundation Laboratory,
University of Sydney, Australia

IAN H JOHNSTON
Department of Neurosurgery, Royal Alexandra Hospital for Children, Sydney, Australia

Correspondence to: Correspondence to: Dr Christopher Kollar, Madeline Foundation Laboratory, Room 323, Building D06, University of Sydney, Sydney, Australia. Telephone 0061 2 9351 3359; fax 0061 2 9351 4887; kollar@surgery.usyd.edu.au

1 Symonds CP. Hydrocephalic and focal cerebral symptoms in relation to thrombophlebitis of the dural sinuses and cerebral veins. Brain 1914;68:251–50.
5 Bedford THB. The great vein of Galen and the syndrome of increased intracranial pressure. Brain 1934;57:1–24.

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis established by culture

The polymerase chain reaction (PCR) has been reported to be of diagnostic value when performed on CSF samples in tuberculous meningitis. Rapid amplification of Mycobacterium tuberculosis specific DNA enables results to be available within 48 hours and can influence treatment decisions.

Recently two patients presented to our hospital with symptoms and signs suggestive of tuberculous meningitis. Examination of CSF disclosed a lymphocytic exudate. Repeated samples were sent to a British referral laboratory where CSF PCR for Mycobacterium tuberculosis was reported negative. Despite this, antituberculous treatment was continued for 12 months and both patients responded clinically. Several weeks after the negative PCR result, Mycobacterium tuberculosis was cultured on Lowenstein-Jensen slopes from CSF taken from both patients. False negative CSF PCR in tuberculous meningitis established by culture has rarely been reported. The two patients are described to emphasise the dangers of overreliance on PCR in cases of suspected tuberculous meningitis. Premature cessation of treatment would have had tragic consequences for the two patients concerned.

The first patient was a 28 year old Asian man, last in India 8 years previously. He was sent from a clinic to hospital for incision and drainage of two deep seated Staphylococcus
examination she had mild neck stiffness and a low CSF/blood glucose ratio. At the same referral laboratory CSF PCR for *M. tuberculosis* grew 12 weeks later from the first sample on Lowenstein-Jensen slopes.

The second patient was a 21 year old Kenyan woman living in the united Kingdom for 3 years and had received antituberculosis medication for 1 month only. On examination she had mild neck stiffness and a partial left third cranial nerve palsy. Brain CT was normal. Lumbar puncture results showed a high opening pressure (15 cm CSF), 90 white blood cells/μl, predominantly lymphocytes, a raised protein concentration (1.62 g/l), and a low CSF/blood glucose ratio. At the same referral laboratory CSF PCR for *M. tuberculosis* was negative although a fully sensitive organism grew 8 weeks after the first sample on Lowenstein-Jensen slopes.

Adequate volumes of both patients' CSF (0.5 ml) were sent to our referral laboratory where PCR was performed using three primer sets and appropriate controls. The assay included primers for the target IS6110, an insertion sequence of 162 base pair DNA fragment from *M. tuberculosis*. DNA was isolated from clinical samples by using polymerase chain reaction amplification of 162 base pair DNA fragment from *M. tuberculosis* and 10 μl of DNA was used for PCR. The amplification of the polymerase chain reaction product was detected by ethidium bromide staining of agarose gels. The PCR products were then purified with Nucleospin Extraction kit (Macherey-Nagel).

Detection of *M. tuberculosis* DNA in the CSF of patients with tuberculous meningitis was performed using the polymerase chain reaction (PCR) to identify and confirm the presence of the nucleic acid of the mycobacterial pathogen directly from clinical samples.

The PCR was performed to detect the equivalent of 1–10 *Mycobacterium* in vitro. However, lower sensitivity is found with clinical specimens. The positive sensitivity of PCR may be the result of inhibitors of PCR present in the reaction, poor lysis of mycobacteria, and the uneven distribution of mycobacteria in clinical specimens.

We are grateful to Dr Deborah Binzi-Gasconne of the Leeds mycobacterium laboratory, where the PCR tests were performed and who provided additional information for the manuscript.

Correspondence to: Dr M Melzer, Department of Microbiology, St Thomas’ Hospital, Lambeth Palace Road, London SE1 7EH, UK

References

False negative polymerase chain reaction on cerebrospinal fluid samples in tuberculous meningitis

There have been few studies in the literature concerned solely with the use of the polymerase chain reaction (PCR) to identify *Mycobacterium tuberculosis* DNA directly from CSF. These studies suggest that in some cases, PCR may be more sensitive than culture; however, in the largest study, performed by Nguyen et al., 1 specimens from seven patients who were culture positive for *M. tuberculosis* were not positive by PCR. The study did report on 22 culture negative, PCR positive patients, suggesting that PCR can be more sensitive than culture. Studies comparing PCR with culture in the detection of *M. tuberculosis* using other clinical specimens, particularly respiratory specimens, have reported that PCR may be less sensitive than culture for the detection of *M. tuberculosis* and that the low sensitivity correlated with low colony counts on culture.

A novel mutation of the myelin P gene segregating Charcot-Marie-Tooth disease type 1B manifesting as trigeminal nerve thickening

Charcot-Marie-Tooth disease (CMT) is the most common type of hereditary peripheral neuropathy. It is classified into two types based on pathological and electrophysiological findings: type 1 and type 2. CMT type 1 has a prevalence of 1 in 2,500 individuals and is the most common form of neurologic hereditary neuropathy in Western populations. It is caused by mutations in the genes encoding myelin proteins, including myelin-associated glycoprotein (MAG), myelin basic protein (MBP), and myelin oligodendrocyte glycoprotein (MOG). These mutations result in a decrease in myelination, leading to a variety of clinical manifestations, including weakness, sensory loss, and tremor.

In this study, we report a novel mutation in the P gene of a patient with Charcot-Marie-Tooth disease type 1B (CMT1B) and discuss its potential implications for understanding the pathogenesis of this disease.

Correspondence to: Dr D M Gascoyne-Binzi, Department of Microbiology, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EK, UK

References

Other clinical specimens, particularly respiratory specimens, have reported that PCR may be less sensitive than culture for the detection of *M. tuberculosis* and that the low sensitivity correlated with low colony counts on culture. Dalvi et al. also reported that multiple specimens may be required to improve the sensitivity of the test in some patients. In the two cases described above, colonies were seen after incubation for 12 and 8 weeks on LJ slopes, suggesting a low inoculum.
been recognised in Dejerine-Sottas disease, peripheral neuropathy with an early onset in childhood, and a more severe phenotypere than CMT1. CMT1 and Dejerine-Sottas disease are characterised by thickening of peripheral nerves, and thickening of the cauda equina, nerve roots, and ganglia have often been found. 1, 2 Although cranial nerves are generally spared in CMT, thickening of the acoustic or optic nerve has been reported in some cases. We report here on a Japanese patient who exhibited severe polyneuropathy, bilateral trigeminal thickening on MRI, and an abnormality of the auditory brain stem response. Gene analysis disclosed a novel nonsense mutation (His81Arg) of P0. The cranial nerve involvements in this patient may be associated with the novel missense mutation of P0 (His81Arg).

A 15 year old Japanese girl presented with CMT disease. She showed delayed motor development. Although she became ambulant at 1 year and 8 months of age, she was never able to run. She was referred to our hospital due to progression of her gait abnormality. Her mentality and higher brain function were normal. Neurological examination disclosed weakness in both proximal and distal muscles of the legs, decreased grasping power, sensory disturbance of distal lower limbs, and cardiac involvement were not evident. Although her facial sensation, mastication power, and hearing acuity were normal. She also had atrophy of the lower limbs, drop foot, a steppage gait, claw hands, and deformities. Optic atrophy, incoordination, autonomic dysfunction, and cardiac involvement were not evident.

In laboratory findings, creatinine kinase was 343 IU/l. A peripheral nerve conduction study showed undetectable sensory and motor action potentials in all limbs. Auditory brain stem response showed abnormal prolongation of the I-III interpeak (2.81 ms on the right side, 2.88 ms on the left side). Brain MRI (figure) showed significant thickening of bilateral trigeminal nerves (7 mm) compared with that of controls (3.15 ± 1.62 mm (mean ± 2 SD), n=20). However, other cranial, spinal nerves and roots were not thick on physical examination or MRI study. Sural nerve biopsy was not performed. Although no detailed familial information was available, her mother (49 years old) showed normal findings on neurological examination and peripheral nerve conduction study.

Blood samples were obtained from the patient and her mother with informed consent. DNA was extracted from the blood by a standard phenol/chloroform protocol.

Axial T1 weighted (TR 600/TE 15) brain MRI at 1.5 Tesla of our patient with CMT. Note the thickness of the bilateral trigeminal nerves.

The six exons of the P0 gene were amplified by the polymerase chain reaction using primers, and analysed by single strand conformational polymorphism (SSCP) and sequencing analyses. DNA sequencing of exon 3 showed a novel point mutation (A to C at codon 81) resulting in substitution of arginine for histidine only in the patient. A DNA duplication in chromosome 17p11.2-p12, including the peripheral myelin protein-22 (PMP 22) gene, was not present. The patient’s mother did not show any mutations in the P0 gene.

CMT type 1 is caused by abnormalities in myelin protein of Schwann cells. Repeated demyelinating and remyelinating responses in the peripheral nerves result in diffusely enlarged diameters of nerves in CMT type 1, and thickening of the cauda equina, nerve roots, and ganglia has also been found. 1, 2 Although blepharoptosis, ophthalmoplegia, facial weakness, deafness, dysphagia, and dysphonia in CMT have been previously reported,2 clinical involvement in the cranial nerves is rare and thickening of cranial nerves has not been reported except for the acoustic or optic nerves in some cases. In the present study, our patient showed severe clinical manifestations of early onset and undetectable conduction velocities. Therefore, this patient was considered to have a severe variant of CMT or Dejerine-Sottas disease. Although her facial sensation, mastication power, and hearing acuity were normal, the thickness of bilateral trigeminal nerves on MRI and prolongation of the I-III interpeak interval in auditory brain stem response were found. The I-III interpeak interval represents the conduction time from the eighth nerve to the pontomedullary portions of the auditory pathway. Prolongation of the auditory brain stem response suggested peripheral conduction delay of the auditory nerve.

Trigeminal neuralgia with CMT has been reported. 3 In these rare cases, trigeminal neuralgia was inherited, suggesting a partial symptom of CMT. Although some patients were surgically treated, it was not clear whether a thickened trigeminal nerve was present. Moreover, on electrophysiological studies of facial and trigeminal nerves in CMT, Kimura4 reported that the sensory component of the trigeminal nerve was relatively spared, despite extremely delayed conduction of the facial nerve. However, the MRI study of our patient suggested that the fifth cranial nerves were subjected to the same pathological process that affects other peripheral nerves.

Our patient showed no DNA duplication on chromosome 17p11.2 and we found a novel mutation (A to C) representing an Arg81 to His substitution in the P0 gene. Histidine 81 is conserved among many other species, including cows, rats, chickens, and sharks. This mutant allele was absent in the DNA from 100 controls. Therefore we identified this mutation as pathogenic. Arg81His was located in exon 3, which codes for the extracellular domain of P0. The extracellular domain plays a part in myelin compaction by homophilic interaction and many mutations in this area have been reported. Although the phenotypic variability is related to the position and nature of the P0 mutation, the patient with cranial nerve involvement are rare in CMT with a P0 mutation. Therefore, the unique thickening of trigeminal nerves and the clinical severity in this patient may be related to this novel missense mutation. A careful comparison of the clinical, electrophysiological, and histopathological data between patients with CMT should be conducted.

We are indebted to the families studied for their cooperation and support. This work was partly supported by Uehara Memorial Foundation, the Sasaki Health Science Foundation, the Primary Amyloidosis Research Committee, and the Ministry of Education, Science and Culture of Japan 10832002, 18832993.

MASAMI SHIZUKA
YOSHIRO IKEDA
MITSUNORI WATANABE
KOICHI KAMACHI
MIKO SHOJI
Department of Neurology, Gunma University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan

TORU IKEGAMI
KIYOSHI HAYASAKA
Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan

toruk@news.sb.gunma-u.ac.jp

Correspondence to: Dr Masami Shizuka, Department of Neurology, Gunma University School of Medicine, 3–39–22 Showa-machi, Maebashi, Gunma 371–8511, Japan. Telephone 0120 27 220 801, fax 0188 27 220 806, email mshizuka@news.sb.gunma-u.ac.jp

Intracranial extracefacial follicular lymphoma mimicking a sphenoid wing meningioma

Primary lymphoma in the brain is uncommon, accounting for only 2% of primary intracranial neoplasms. Although its incidence seems to be dramatically increasing, 1, 2 leptomeningeal lymphomas are even rarer and have been described 1, 2, 3; however, no leptomeningeal lymphoma of the follicular type has previously been reported. We present a case of a primary meningeal follicular lymphoma which mimicked a sphenoid wing meningioma, both radiologically and intraoperatively.

A 77 year old Ghanaian woman was referred with a 3 year history of worsening bitemporal headache, followed by a 6 month history of daily right frontal headache lasting for 2–3 hours associated with mild photophobia. There were no reports of seizures, nausea, or other visual disturbances. Her medical history was 3 years of treated hypertension, sickle cell carrier trait, and a cataract extraction. The patient was obese but physical examination was otherwise normal. Neurological examination showed no papilloedema and there were no cranial nerve or long tract signs.

Brain CT showed an enhancing mass consistent with a right sided sphenoid wing
Histological appearances and immunohistochemistry

Bcl-2 protein, which is an inhibitor of apoptosis and is expressed in 90% of follicular lymphomas. Staining for Bcl-2 protein is often used for the differentiation between primary intracranial lymphoma and meningioma. The tumour and the adherent dura was identified. It was entirely extracerebral, measuring 6 × 6 × 6 cm, with the greyish colour and hard consistency typical of a meningioma. The tumour was mistaken for more common lesions: the cerebellopontine angle: Case report. J Neurol Neurosurg Psychiatry 1994;56:959–56.

Histologically the lesion consisted of lymphoid follicles. Haematoxylin and eosin, original magnification ×30. (C) Follicle centre composed of a mixture of centrocytes and centroblasts with mitotic activity (arrow). Haematoxylin and eosin, original magnification ×500.

malignant cerebral lymphoma is the most common diagnosis of a focal intracranial lesion in patients with AIDS. 4 Malignant primary lymphoma can occur throughout the CNS and they often have a periventricular distribution. Multifocality seems to be more common in patients with AIDS. The CT scan usually shows hyperdense masses with peritumourous oedema and 92% enhancement after administration of contrast medium. 5 Leptomeningeal lymphoma is usually encountered as a late complication of systemic non-Hodgkin’s lymphoma, although primary leptomeningeal lymphoma is occasionally seen. The prognosis for these tumours is poor. 6 Diffuse primary lymphomas have been mistaken for more common lesions: solitary primary B cell lymphoma of the cerebellopontine angle mimicking acoustic neuromioma or meningioma has been reported; Vigusin et al reported a patient with a calcified temporoparietal lymphoplasmacytic lymphoma which resembled a meningioma; however, this tumour was entirely extracranial. There is only one previous report of a follicular rather than diffuse low-grade intracranial lymphoma. 7 Rubinstein described a case of follicular lymphoma metastasis found in the dura of a 61 year old man at necropsy.

We thank Professor Francesco Scaravalli, National Hospital for Neurology and Neurosurgery and Dr Mark Naps, The Meyerstein Institute of Oncology, Middlesex Hospital, for their help with this report.

We thank Professor Francesco Scaravalli, National Hospital for Neurology and Neurosurgery and Dr Mark Naps, The Meyerstein Institute of Oncology, Middlesex Hospital, for their help with this report.

Determinants of the copper concentration in cerebrospinal fluid

The measurement of CSF copper concentration can serve as an indicator of brain copper concentration. 1, 2 However, the complex mechanisms by which copper crosses into the CSF, and the factors determining the CSF copper concentration in humans are largely obscure. Copper can pass into and out of the CSF by various mechanisms. For example, active transport through the blood-brain barrier or the blood-CSF barrier, or passive diffusion of the free or the bound fraction (bound to albumin or coeruloplasmin) through the blood-CSF barrier. We studied the factors influencing CSF copper concentration using a stepwise multiple linear regression model. The independent variables were age, plasma coeruloplasmin, CSF/serum albumin ratio, total serum copper concentration, and calculated free copper concentration (based on serum coeruloplasmin and total serum copper concentration). The CSF copper concentration was calculated as a dependent variable of continuous type. We investigated lumbar CSF samples from 113 patients. These patients had dementia, extrapyramidal, or tremor symptoms; lumbar puncture was performed to exclude Wilson’s disease, and none of the patients had the disease. Copper was measured by flameless atomic absorption (Perkin Elmer, HGA 500, Uebraingen, Germany). Coeruloplasmin was determined nephelometrically (Beckman Instruments, Brea, CA, USA). The age of the patients was 50.0 (SD15.5) years; 50 were women and 65 were men. Mean serum coeruloplasmin concentrations were 394.3 (SD 77.7) µg/l. Mean serum total copper concentrations were 1194 (SD 335) µg/l. Mean calculated free copper concentrations in serum were 78.5 (SD 1285) µg/l. Mean CSF copper concentrations were 14.16 (SD 6.6) µg/l. The mean albumin ratio (AR) was 6.63 × 10^{-5}. The mean ratio of calculated free copper concentration to total serum copper was 6.6%, the ratio of CSF copper to serum copper was 1.2%, and the ratio of free serum copper to CSF copper was 18%. In the

Correspondence to: Mr Michael Powell, Department of Surgical Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom. Telephone 0044 171 837 3611; fax 0044 171 209 3875.

null
myoglobin. Ultrastructural examination showed elongated cells with surrounding collagen fibrils, some showing intracytoplasmic myofilaments.

Solitary lesions of infantile myofibromatosis are more common than multiple lesions, with twice as many males as females being affected, and generally involve the skin and soft tissues, especially of the head and neck. Solitary lesions are less commonly found in viscera or bones. Involvement of the CNS is exceedingly rare and only one other case of a solitary mass is reported along with few cases of CNS involvement in the generalised form of infantile myofibromatosis.

The pathological diagnosis for solitary lesions with solitary masses and less favourable for multicentric cases, particularly where visceral lesions are present, in which morbidity and mortality derived predominantly from pulmonary involvement or mass effect.

The differential diagnosis for this lesion included meningeoma, schwannoma, and haemangiopericytoma. Regionally, the histology was reminiscent of the rare microcystic haemangiopericytoma. Unlike this tumour, this lesion was not meningeal based and such lesions are extremely rare in this age group, this lesion was not meningeal based and such lesions are usually reactive for epithelial membrane antigen unlike this tumour. This lesion, unlike some others, showed no immunoreactivity for S100 protein. Intrafusal solitary-type infantile myofibromatosis. Childs Nerv Syst 1993;9:246–9.

Axonal polyneuropathy and encephalopathy in a patient with verotoxin producing Escherichia coli (VTEC) infection

Escherichia coli serotype O157:H7 causes serious food poisoning worldwide, especially in children and elderly people. It is also called verotoxin producing E. coli (VTEC), which produces a cytotoxic Shiga-like toxin. Gastrointestinal, haemorrhagic, and urological effects are well known in VTEC infection, and neurological problems are likely to be more frequent than is generally recognised. Here we describe axonal polyneuropathy and encephalopathy in a young female patient associated with haemolytic-uraemic syndrome caused by VTEC infection.

A 26 year old woman began to have abdominal pain and haemorrhagic diarrhoea. She was admitted to an emergency hospital within 24 hours of surgery, secondary to cardiopulmonary arrest.

We present a patient with a solitary intracranial myofibroma with an excellent postoperative outcome. Although rare, infantile myofibroma should be included in the differential diagnosis of intracranial neoplasms in children.

We acknowledge the expert assistance of Des Lucy Roarte and Dr Louis Dehner in diagnosing this case.

Letters, Correspondence, Book reviews
spreading into the hippocampus and the brainstem. The convulsions in our patient were successfully treated with 250 mg/day diphenylhydantoin, and her encephalopathy gradually improved during plasma exchange and haemodialysis. After recovering consciousness, she began to complain of numbness of her limbs, and a burning pain which exacerbated in the night. Nerve conduction studies and the clinical features confirmed the diagnosis of sensory-dominant, axonal polyneuropathy. At this stage metabolic abnormalities were not detected and serum concentrations of vitamins B1, B6, and B12 were normal. Her numbness and tingling sensation ameliorated after 2 weeks administration of 300 mg/day oral mevinolin, an agent with a membrane stabilizing effect. Up to now, to our knowledge, peripheral neuropathy has not been reported in VTEC infection other than in one patient, by Hamano et al, who showed bilateral phrenic nerve palsy for 2 weeks after recovering consciousness. The above experimental evidence suggests that microcircular disturbances of nerve conduction to the neuromuscular cells by verotoxin could cause axonal neuropathy in VTEC infection.

RYUJI SAKAKIBARA
TAMAKI HATTORI
KEIKO MIZOBUCHI
SATOSHI KUWABARA
Department of Neurology
MITSUGU OGAWA
First Department of Internal Medicine, Chiba University, 1–8–1 Inohana Chuo-ku, Chiba 260, Japan.

Correspondence to: Dr Ryuji Sakakibara, Department of Neurology, University of California at Los Angeles, West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA.

Address for correspondence: KEIKO MIZOBUCHI, Department of Neurology, University of California at Los Angeles, West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA 90073, USA.

Crying or dacyratic seizures also occur but are rare. These seizures are part of the range of complex partial seizures and usually emanate from the right temporolimbic system. Crying seizures may result from prior cerebrovascular infarctions. Although our patient had mild haemorrhages of his left frontal lobe, he did not show other evidence suggesting definite seizure activity.

It is likely that this patient had a single transient ischaemic attack with multiple crying spells. The localisation of his attack is unclear; involvement of the right thalamus or neighbouring internal capsule is a possibility. Similar to spells of laughter, spells of crying may occur in relation to unilateral cerebrovascular events. Although most reports of crying after unilateral strokes have reported left hemispheric lesions, crying also may result from right hemispheric strokes. Even more similar to our patient, sudden laughing spells, “le fou rire prodromique,” rarely precede strokes involving the left capsular-thalamic, lenticulocaudate, or pontine regions. Our patient may have had a comparable phenomenon, aside from the right hemispheric seizures. Crying as a manifestation of this phenomenon may have been temporary activation or stimulation of ischaemic motor pathways.
We used a Swan-Ganz catheter to investigate the haemodynamics in three patients with orthostatic hypotension of the continuous drop type (figure). The other five patients could not remain standing for more than 5 minutes because of symptoms of orthostatic hypotension. No patient showed the sudden drop in blood pressure and heart rate seen in vasovagal syncope. In the continuous drop type, there were no decreases between 5 and 20 minutes in heart rate (+2.3 bpm) and the noradrenaline (norepinephrine) level (+0.05 ng/ml) during the decrease in blood pressure. A slight increase in packed cell volume during the continuous drop in blood pressure and heart rate seen in vasovagal syncope that occurs some time after standing should be considered symptoms of a continuous drop in blood pressure.

Most patients with continuous drop type orthostatic hypotension reported reduced endurance for more than 10 minutes of exercise (easy fatiguability). Two experienced syncope more than 20 minutes after standing.

We think that more than a 20 minute tilt up study is needed to evaluate orthostatic hypotension and that reduced endurance of exercise and the syncope that occurs some time after standing should be considered symptoms of a continuous drop in blood pressure.

CORRESPONDENCE

Respiratory aspects of neurological disease

An account of respiratory aspects of neurological disease, such as the highly informative one presented,\(^1\) would be incomplete without mention of breathlessness resulting from neurogenic pulmonary oedema, characterised by an “increase in extravascular lung water in patients who have sustained a change in neurological condition”.\(^2\) Neurological disorders associated with this syndrome include subarachnoid haemorrhage, middle cerebral artery stroke, and cerebellar haemorrhage.\(^3\) Brain stem stroke, acute hydrocephalus due to colloid cyst of the third ventricle, closed head injury, and status epilepticus, were also documented as risk factors in a literature review by Smith and Matthey,\(^2\) who proposed, on the basis of their own study, that increased pulmonary vascular hydrostatic pressure might be a more significant aetiopathogenic mechanism than increased pulmonary capillary permeability.\(^4\) A more direct link between neurogenic myocardial damage and pulmonary oedema can be postulated when subarachnoid haemorrhage is complicated by reversible severe left ventricular dysfunction, as documented in two cases reported by Wells et al.\(^5\)

Letters, Correspondence, Book reviews

TAKANORI YOKOTA

KAZUO MITANI

YUKINOBU SAITO

Department of Neurology

TOSHIYUKI ONIKI

Third Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113, Japan

MICHYUKI HAYASHI

Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo 183, Japan

Correspondence to: Dr Takanori Yokota, Department of Neurology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Telephone +81-3-5803-5234; fax +81-3-5808-0169.

CORRESPONDENCE

O M P JOLUBE

Department of Medicine for the Elderly, Tameside General Hospital, Fountain Street, Ashton under Lyne OL6 9RW, UK
Idiopathic cerebellar ataxia associated with celiac disease: lack of distinctive neurological features

Although applauding the contribution of Pellecchia et al to the more widespread recognition of the association between gluten sensitivity and ataxia we disagree that ataxia associated with gluten sensitivity lacks "distinctive neurological features". Both their data and our own indicate that this group of patients can be distinguished by the late (non-childhood) onset of gait ataxia with relatively mild upper limb signs, analogous to Harding's group.\(^1\) Again, coexistent neurophysiological evidence, common in these patients, found in two out of three of the patients of Pellecchia et al and 21 of our 28.\(^2\) We agree that gastrointestinal symptoms are rare: rather than entitling their paper "lack of distinctive neurological features", perhaps "lack of distinctive gastroenterological features" might have been more appropriate!

We were surprised at the high specificity and sensitivity of increased antigliadin antibody titres in their hands. Although we found both IgA and IgG antigliadin antibodies to be invaluable screening tools in patients with ataxia, only 11 of our 28 patients with idiopathic cerebellar ataxia had histology of overt coeliac disease on duodenal biopsy, the remainder having normal or non-specific inflammatory changes but with an HLA genotype in keeping with gluten sensitivity. It is interesting to note that despite the often quoted high sensitivity for coeliac disease of increased antidiemysum antibody titres, such was found in only one of three patients of Pellecchia et al with coeliac disease. This concurs with our impression of very modest sensitivity of antidiemysum antibodies in gluten ataxia.

Gluten sensitivity is common in patients with ataxia, and can be identified by an increased antigliadin antibody titre in the presence of appropriate histocompatibility antigens.\(^3\) Although the clinical features of gluten ataxia are not entirely specific, they are distinctive.

1 M Hadjivassiliou, R A Grunewald, G A B Davies-Jones, Department of Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK

Correspondence to: Dr G A B Davies-Jones, Department of Neurology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK

Polkey replies:

We thank Dr Jolobe for his interest in our article; we did not cover neurogenic pulmonary oedema. We agree, however, that it can be a difficult clinical problem and therefore appreciate his contribution.

M I POLKEY
the EMG pattern in patients with myotonic dystrophy show a multitude of defects including expression of myotonia, myopathy, muscular atrophy, and neural abnormalities. 1, 2

The possible management of myotonia and some of its clinical manifestations, such as dysphonia, 1 is in myotonic dystrophy (disopyramide and procainamide), justifies the use of the same pharmacological approach in anal sphincter dysfunction manifested in a few cases of myotonia dystrophy. We conclude that treatment of faecal incontinence with procainamide should always be attempted before any surgical option in patients with myotonic dystrophy.

G PELLICCIIONI
O SCARPINO
Department of Neurology, IRNCA, Geriatric Hospital, Ancona, Italy

VI PILONI
Department of Radiology, Ac. N 7, Ancona, Italy

Correspondence to: Dr Giuseppe Pelliccinoni, Department of Neurology, Geriatric Hospital, via della Magione 110000, Ancona, Italy. Telephone 0039 071 8003432; fax 0039 071 8003553; email: o.scarpino@fastnet.it

Flail arm syndrome or Vulpian-Bernhardt's form of amyotrophic lateral sclerosis

We read with interest the article by Hu et al concerning flail arm syndrome, a distinctive variant of amyotrophic lateral sclerosis. The authors presented a subgroup of patients affected by amyotrophic lateral sclerosis that presented signs of lower motor neuron disease in the upper limbs without significant functional involvement of other regions upon clinical presentation. This subgroup of patients is clinically characterised by the display of progressive atrophy and weakness in the arms with little effect on the bulbar muscles or legs. Atrophy and loss of strength affect the upper limb muscles in a more or less symmetric manner, prevalent in the proximal muscles. The competitive study with the rest of the amyotrophic lateral sclerosis group supplies very interesting details for the physician, such as a clear predominance among men, and a longer median survival. They conclude by suggesting that this syndrome could be a new variant of amyotrophic lateral sclerosis. Finally, the authors carry out a historical review and refer to the fact that this distinctive amyotrophic lateral sclerosis variant was probably first described by Gowers in 1886, furnished with exquisite graphic illustrations. To this effect, we draw attention to prior descriptions of the same syndrome, reported by Vulpian in 1886, known in Franco-German literature as Vulpian-Bernhardt's form.

In his book Maladies du Systeme Nerveux Vulpian described a patient who showed signs of weakness and symmetric proximal atrophy of neurogenic origin, and called it chronic anterior poliomyelitis. The patient showed symptoms of proximal amyotrophy, and signs of denervation and upper motor neuron involvement. Since then, in those countries and other countries under their influence, 1, 2 we have come to use the eponym of Vulpian-Bernhardt's syndrome to describe those forms of amyotrophic lateral sclerosis with more or less symmetric involvement of the upper limbs at the clinical onset. A certain enigma exists surrounding the characteristic distribution of weakness and muscle atrophy. The reason for the prevalence in the proximal muscles of the upper limbs is unknown. We can furnish little more information in this respect. However, in the 1960s, in the differential diagnosis of this syndrome, it was realised that the muscles predominantly affected in Vulpian-Bernhardt's form were the deltoideus, the infraspinatus, the supraespinaus, the sternocleidomastoideus, and the teres minor. The predominant involvement in these muscles permitted its distinction from that previously called Erb's dystrophy. 2

As a consequence of the atrophy of these muscles, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation. As the illness progresses, the hand muscles are affected, with atrophy of the following muscles: opponens pollicis, flexor brevis, adductor pollicis brevis, adductor pollicis, interossei, and lumbricales, which leads to the formation of the characteristic Aran-Duchenne hand.

Obviously, signs of corticospinal involvement with hyperreflexia in the lower limbs and Babinski’s sign both appear. In the initial stages of the illness, there is no effect on the diaphragm. The presence of signs of involvement of the upper motor neuron, its different clinical evolution, and the data supplied by genetic molecular investigation allow us to distinguish the syndrome previously known as Vulpian-Bernhardt's, rebaptised as flail arm syndrome from other motor neuron syndromes such as of the spinal muscular atrophies, Kennedy’s disease, multifocal motor neuronopathy, and monoclonal amyotrophy.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODINA
Servicio de Neurologia, Hospital General Universitario Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain

Correspondence to: Dr Josep Gavíez, Servicio de Neurologia, Hospital General Universitario Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain. email: 178748@comcast.net

Pain after whiplash

This latest study from Lithuania is an answer to many questions—namely, that the previous difficulties that these researchers had with identifying the late whiplash syndrome in Lithuania is that they were not looking “in the right place”. As it turns out, the problem is that Lithuanians simply are not behaving the way many in western countries, surrounding mythology would like. There are some methodological issues which can be considered, as below, but the lesson of discarding “unsightly” data because it is too disturbing to one’s personal view and vested interest in the whiplash epidemic has already been taught elsewhere. 3 Suffice it to say that the truth has been laid bare and we (those of us struggling with epidemic proportions of the late whiplash syndrome in our own countries) now need to enlighten ourselves and put this data to practical use in helping whiplash patients rather than resisting the inevitable.

After completion of the first historical cohort study, this more recent study selects an entirely separate, distinct sample of these “misbehaving” Lithuanians, but in a more intriguing fashion. This is the first true inception cohort study where people who have not been preselected by their attendance at emergency departments, or contaminated by therapists or lawyers, can be studied to appreciate the natural evolution of the injury which underlies whiplash associations worldwide.

The Swiss study may be useful for comparison because it too has only 117 subjects, yet is much quoted. Setting aside for the moment that the Swiss study is hampered by the selection atrocity of advertising for subjects, and has a host of other reportedly fatal faults, and giving some benefit of the doubt, the study is said to be an accurate representation of the state of affairs in Switzerland at that time. Yet, in Switzerland, not even 60% manage to recover fully by 3 months and many of these were reporting total disability during that time, whereas the Lithuanians fully recover in 4 weeks or less, with little or no therapy, and no disability. Studies in other western countries disclose an even greater contrast, with 50%–70% of patients reporting pain even after 3–6 months, despite the fact that all these studies are examining the same grades (1 and 2) of whiplash associated disorders. 1, 4 Thus, while the sample size is small in this Lithuanian study, it is comparable with others reporting the prognosis of whiplash, and yet gives a different picture of outcome.

A second consideration is that perhaps these Lithuanians are in very minor collisions. True, some of their vehicles were completely wrecked, but perhaps the vehicles were not very good quality and so were easily damaged. Perhaps that is why this cohort had such a good outcome and only minor injuries. This is an unhelpful consideration however, as studies in Canada have shown that with absolutely no vehicle damage, in very low velocity collisions, are just as likely to result in whiplash as those in more severe collisions. Lithuanians seem to behave appropriately then for minor collisions (if that is what they indeed had), but Canadians seem unable to behave appropriately. Again, another culture in the rate of recovery from whiplash injury is demonstrated.

Thirdly, there are sex differences and even differences in seat belt usage between this population and some others, but even then, it does not depend on what sex, age, or use of seat belts there is in other western countries, none of these preclude chronic pain. In Lithuania, those who were female, and who did not wear seat belts, still insisted on behaving as the rest of the cohort.

Finally, perhaps the Lithuanians simply refuse to report their chronic pain, and chronic pain cannot be studied in other cultures in this way. The Lithuanians have no reluctance to report acute pain, but perhaps for some reason wish to “suffer in silence” in spite of chronic pain and disability. This would be a potential flaw if it was not simultaneously shown in this study that the general Lithuanian population reports the same prevalence, frequency, and character of neck pain and headache as does the general population in western countries. If there were such design barriers to identifying symptoms, the control population would have grossly underreported their symptoms. Indeed, chronic pain can and is reported by studies in many different cultures and languages, including Japan, France, Italy, and others. If researchers in these non-English speaking populations can use simple questionnaires to document the late whiplash syndrome so effectively there, then the same should be possible in Lithuania.

And so, despite the potential limitations of this study as outlined, there is no way to get around the stark realisation that the natural history of acute whiplash injury in Lithuania is a benign syndrome with 4 weeks or less of pain. Equally compelling is the fact that Lithuania is not the only place where researchers are having difficulty identifying epidemics of chronic pain. Recovery from acute whiplash injury without neurological injury or fracture routinely occurs within 4–6 weeks in Germany and Greece. The time has not yet come for a reconciliation of these epidemiological observations with our own experience of late whiplash syndrome in western countries. The truth has been laid bare and it is our responsibility to utilise this time to help prevent the chronic pain and the suffering we otherwise encounter.

R FERRARI

The standard of illustrations is excellent and the style generally very readable. I shall certainly find it extremely useful as a work of reference and for teaching purposes. The editor is to be complimented on producing such a delightful work.

JOHN HODGES

I very much enjoyed reviewing this textbook of instrumented spinal surgery written by Giuseppe Tabasso under the auspices of Jürgen Harms. Dr Harms is well known to all spinal surgeons and has made a very important contribution to the development of spinal surgery over the past 20 years, based on strong personal convictions. Many surgeons who manage spinal disorders would not choose to implement all of Professor Harms’ solutions but all who have a serious interest in the surgical treatment of the spine admire and are grateful for his contribution. Within this book spinal surgeons will find a rational and practical approach which will allow them to treat a wide range of spinal disorders according to well thought out principles.

The opening chapter describes spinal biomechanics under normal and pathological circumstances mainly by using easily understood drawings and diagrams. Some of these drawings reminded me of images that I have recently seen on an interactive CD ROM that I bought for my 4 year old son. This is not a criticism and I fully support any attempt to simplify the science of biomechanics which is often cloaked in seemingly contradictory jargon. Most spinal surgeons will be able to assimilate the two basic principles which underpin much of instrumented spinal surgery—namely, that the anterior column resists load compression forces and that the posterior column acts as a tension band which when disrupted should be reconstructed in compression. The remaining chapters cover fracture management, late kyphosis, metastatic tumours, spondylolisthesis, degenerative spinal disease, and infection. Each chapter sets out the principles of management which are illustrated schematically. There then follow case studies illustrated by radiological images including CT and MRI. These have reproduced well and surgeons will admire the technical precision and excellent anatomical reductions illustrated by these clinical cases. It is, however, a source of constant annoyance to spinal surgeons that perfect postoperative films do not always correlate with good clinical results and this discrepancy remains a source of fascination and mystery.

It is in the degenerative spine that this discrepancy between radiological and clinical findings is most apparent and it is partly for this reason that the management of these conditions is often controversial. It is difficult to disagree with much of the logic presented by the authors in planning their interventions but there is a danger that inexperienced surgeons may be misled into adopting complex solutions when often more simple operations will suffice. The authors’ description of their approach to failed back surgery syndrome illustrates this problem and the inadequacies of attempting to treat a complex clinical problem by focusing on one aspect of it.

This book will be a useful addition to the shelves of spinal surgery textbooks and many orthopaedic and neurosurgical departmental libraries will wish to buy a copy.

RODNEY LAING

I wondered, when I received this book, how I could possibly say anything adverse about a book written by three such world renowned experts. I have heard them all lecture often and have seen them all at work. They have a vast knowledge and experience of treating disorders of peripheral nerves. In clinic and the operating theatre, they have shown myself and many trainees a clarity in their planning of management of complex problems that humbles one’s own thoughts. That clarity has continued in this text book of over 500 pages. The field of peripheral nerve surgery is covered comprehensively, commencing with descriptions of anatomy, physiology, and pathological reaction to injury. This is followed in subsequent chapters with descriptions of approaches to virtually all the main peripheral nerves, and the operative management of brachial plexus injury and outcomes is covered in three detailed chapters. These are followed by chapters on nerve entrapment, neuropathy, iatropathic injury, and neoplasm within the peripheral nerve. The final section covers electrodagnosis, pain, nerve recovery, reconstruction techniques, and rehabilitation.

The text is well written, easy to read, and supplemented by some excellent line drawings similar to those used in Lundborg’s text. There are detailed plates showing histology and various imaging techniques. Each chapter is comprehensive, containing important historical aspects as well as up to date techniques, and there is an extensive reference section. I would recommend that trainees of all specialties dealing with peripheral nerve injuries should read much of this text and it would be extremely useful as a regular reference. It would also make an important and necessary addition to most medical libraries. All clinicians would be well advised to read the chapters on iatropathic injuries, not only for the extensive causes of such injuries encompassing all medical and surgical departments, but also for the précis of the changes occurring in medical negligence claims. This text represents good value for money.

IAN WHITWORTH
Respiratory aspects of neurological disease

O M P JOLOBE

J Neurol Neurosurg Psychiatry 1999 67: 256-257
doi: 10.1136/jnnp.67.2.256

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/2/256

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/67/2/256#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/