N18 in median somatosensory evoked potentials: a new indicator of medullary function useful for the diagnosis of brain death

Masahiro Sonoo, Yasunobu Tsai-Shozawa, Makoto Aoki, Toshio Nakatani, Yuuki Hatanaka, Atsuko Mochizuki, Mikio Sawada, Kunio Kobayashi, Teruo Shimizu

Abstract

Objectives—To record N18 in median somatosensory evoked potentials (SEPs) for deeply comatose or brain dead patients and to demonstrate the usefulness of N18 for the diagnosis of brain death in comparison with auditory brain stem responses (ABRs) and P13/14 in median SEPs, which have been conventionally used as complementary tests for the diagnosis of brain death.

Methods—Subjects were 19 deeply comatose or brain dead patients. Thirteen recordings were performed in deeply comatose but not brain dead conditions, and 12 recordings were performed in brain death. N18 was evaluated in the Cpi-C2S lead (or other scalp-C2S leads) to obtain a flat baseline.

Results—N18 was preserved in 12 of 13 non-brain dead comatose recordings whereas it was completely lost for all of the 12 brain death recordings. P13/14 in median SEPs was preserved for all the comatose recordings, whereas apparent P13/14-like potentials, usually of low amplitude, were seen in nine of 12 brain death recordings—that is, frequent false positives. The ABRs already showed features which were characteristic for brain death (loss of components other than wave 1 or small wave 2) for four comatose recordings, in three of which N18 was preserved. The last result not only corresponds with the fact that ABRs can evaluate pontine and midbrain functions and not medullary function, but further supports the medullary origin of N18. In the four patients followed up for the course of progression from coma to brain death, N18s preserved in normal size during the comatose state were completely lost after brain death was established.

Conclusions—The N18 potential is generated by the cuneate nucleus in the medulla oblongata in the preceding studies. N18 is suggested to be a promising tool for the diagnosis of brain death because there were no false positives and rare false negatives in the present series for detecting the remaining brain stem function.

Keywords: somatosensory evoked potentials; N18; brain death; cuneate nucleus
Slight negative deflection after 27 ms was not interpreted as N18. CPi-C2S lead because the wave returned to the baseline after the preceding positivity. The electrode potential where P13/14 in the Cpi electrode and upper cervical N13 (ucN13) in the C2S was continuous from the ascending limb of the preceding positivity, which is a complex potential that was determined in reference to the baseline before P9 and prestimulus baseline. N18 onset was continuous from the ascending limb of the preceding positivity, which is a complex potential where P13/14 in the Cpi electrode and upper cervical N13 (ucN13) in the C2S electrode reversed are summated. N20 or other cortical components were not identified in the CPc-Fz lead. The small negativity in this lead (asterisk) roughly corresponding to the latency of P13/14 is a potential generated because the overall P13/14 potential is deeper in the frontal electrodes, and we named this potential ‘broad N13’ in our previous report.

The SEPs were recorded after median nerve stimulation at the wrist at a rate of 5 Hz. The site of stimulation was selected so that the less affected side of the brain would be stimulated when there was laterality of the lesion. Recording electrodes were placed on several points including C2S (second cervical vertebrae), CPc, and Cpi (centroparietal electrodes contralateral and ipsilateral to the stimulated limb, respectively, as defined by the guideline of the American Electroencephalographic Society), Fz, and NC (non-cephalic reference on the contralateral shoulder). Evoked potentials were amplified and filtered between 5 and 1500 Hz (−3 dB). Totals of 1000–4000 (usually 2000) responses were averaged and two averages were superimposed.

N18 was evaluated by the CPi-C2S or other scalp-C2S leads, the second being used when cortical components were lost. These derivations with C2S reference are crucial to the evaluation of N18 because they give sufficiently flat baselines which enable us to correctly identify the long lasting N18 potentials. The baseline of scalp-NC leads, which have been conventionally used to record N18, often shows a constant incline due to slow ECG artifacts (fig 1). P13/14 was evaluated by the CPc-NC or other scalp-NC leads.

N18 was judged to be preserved only when there was a definite increase over the baseline continuous from the ascending limb of the preceding positivity, which is a complex potential contributed by scalp P13/14 and upper cervical N13. N18 thus had a rather steep onset and reached its maximal amplitude within several milliseconds of the first upward crossing over the baseline, and then slowly returned to the baseline around 20 milliseconds. The amplitude of N18 was measured from the baseline, usually within several milliseconds of its onset as described above (fig 1). The duration of N18 was also measured although the end of N18 was sometimes difficult to define accurately. In some brain death recordings, the wave returned to baseline after the preceding positivity and then showed a slight increase over the baseline after several milliseconds (fig 2). Such a negativity was not interpreted as N18 in the present study and N18 was judged to be lost in such cases. Although we cannot completely ignore the possibility that such a delayed negativity is a delayed and depressed N18, it was so different from the typical configuration of N18 and was difficult to distinguish from a residual minimal incline of the baseline.

The ABRs were recorded after a 105 dB NHL click sound given to both ears at a rate of 13 Hz. Fz-A1 and Fz-A2 leads were recorded (Fz was substituted for Cz to spare the number of electrodes). Totals of 2000–4000 responses were averaged and two averages were superimposed.

Figure 1 Example of SEPs in the comatose but not brain dead condition. In the CPi-NC lead, three far field potentials, P9, P11, and P13/14, were seen and N18 followed P13/14, although it was difficult to convincingly judge the presence of N18 or to evaluate its amplitude because of the incline of baseline due to a slow ECG artifact. By contrast, the CPc-NC lead gave a sufficiently flat baseline which enables us to correctly identify the long lasting N18 potential. N18 amplitude was measured in this lead from the baseline, which was determined in reference to the baseline before P9 and prestimulus baseline. N18 onset was continuous from the ascending limb of the preceding positivity, which is a complex potential where P13/14 in the Cpi electrode and upper cervical N13 (ucN13) in the C2S was continuous from the ascending limb of the preceding positivity, which is a complex potential that was determined in reference to the baseline before P9 and prestimulus baseline. N18 onset was continuous from the ascending limb of the preceding positivity, which is a complex potential that was determined in reference to the baseline before P9 and prestimulus baseline.

Figure 2 Preserved P13/14 in a brain death patient. Apparent P13/14 potential was seen in the CPc-NC lead after P9 and P11 far field potentials. N18 was judged to be lost in the CPi-C2S lead because the wave returned to the baseline after the preceding positivity. The slight negative deflection after 27 ms was not interpreted as N18.
Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely

Results

The results are summarised in the table. N18 was definitely preserved for all but one of the comatose recordings. The only comatose recording with absent N18 was found in a patient with pontine haemorrhage, in whom involuntary facial myoclonus excluded brain death but spontaneous respiration and all the brain stem reflexes were already lost, suggesting very limited survival of brain stem function. N18 was lost for all the brain death recordings. The amplitude of N18 was 0.94 (SD 0.38) µV (range 0.43–1.67 µV) and its duration was 25.8 (SD 3.0) ms (range 21–31 ms) for 12 comatose recordings with preserved N18. N18 of the above size was always definitely identifiable because no negativity exceeding 0.1 µV over the baseline was identified directly after the preceding positivity for recordings in which N18 was judged to be lost. P13/14 was preserved for all the comatose recordings, whereas apparent P13/14-like potential, usually of low amplitude, was definitely
N18 for the diagnosis of brain death

377

PONTINE AND MEDULLARY LEVELS12–15 whereas it was lost in patients with C1–2 dorsal column lesions.27 28 or nasopharyngeal recordings.29 In contrast to N18, such as conspicuous occlusion induced by adjacent nerve stimulation and lack of inhibition induced by vibration interference, which are compatible with primary afferent depolarisation.34 35 Recent investigations showed special physiological characteristics of N18, such as conspicuous occlusion induced by adjacent nerve stimulation and lack of inhibition induced by vibration interference, which are compatible with primary afferent depolarisation.34 35

THE N18 POTENTIAL WAS FIRST DESCRIBED BY Desmedt and Cheron11 as a long lasting negativity widely distributed over the scalp, and its generator has long been attributed to brain stem nuclei receiving collaterals from the medial lemniscus, especially the tectal nuclei at the midbrain.21 22 However, we have shown that N18 was preserved in normal size and shape for patients with medial lemniscal lesions at pontine and medullary levels27–29 whereas it was lost in patients with C1–2 dorsal column lesions.14 21 Especially, in a patient with unilateral medial medullary syndrome in whom subsequent cortical components were severely disturbed unilaterally, N18 after stimulation of the affected side had a similar size and shape to that after stimulation of the unaffected side.15 Based on these results, we concluded that at least the major part of N18 lasting around 20 ms is principally generated around the medulla oblongata.12–14 Medullary origin of N18 has also been supported by other investigators based on findings in patients with brain stem lesions27–28 or nasopharyngeal recordings.29 Intraoperative recordings in humans and direct recordings in animals showed a long lasting potential dipole around the cuneate nucleus similar to N18 in polarity and time course.30–32 Andersen et al.30 showed that in cats this second phase of the cuneate potential with ventrorostral negative polarity is generated by the primary afferent depolarisation of presynaptic terminals of the dorsal column fibres, by contrast with the first phase due to postsynaptic depolarisation of relay cells. Taking these studies into consideration, we presented an opinion that the long lasting negativity of N18 is generated at the cuneate nucleus by the mechanism of primary afferent depolarisation.13 14 Recent investigations showed special physiological characteristics of N18, such as conspicuous occlusion induced by adjacent nerve stimulation and lack of inhibition induced by vibration interference, which are compatible with primary afferent depolarisation.34 35

The cuneate nucleus is located at the caudal part of the medulla oblongata and is close to the respiratory centre at the medulla oblongata (nucleus solitarius and area reticularis superficialis ventrolateralis36). Therefore, N18 is expected to be an indicator of function of the medulla oblongata, especially for the state of vital centres close by.

The present results support this idea. N18 was preserved for all but one non-brain dead recording, whereas it was never found in patients judged to be brain dead. In this sense, N18 was a fully specific and sensitive indicator for the remaining brain stem function (no false positives and rare false negatives). In the patients in whom we followed the course of progression from coma to brain death, loss of N18 seemed to parallel loss of spontaneous respiration as expected from the proximity between the N18 generator and the respiratory centre, although more intensive observation of the course of sequential loss of individual variables is necessary to confirm the above hypothesis.

The ABRs were indistinguishable from those in brain death (no more than wave I and small wave II) in four of 13 comatose recordings in the present series, indicating a higher percentage of false negatives for detecting remaining brain stem function. This must be due to the fact that ABRs reflecting pontine and midbrain functions cannot reflect medullary function because in three of four recordings in which ABRs failed and brain stem activities, N18 was preserved together with spontaneous respiration, cough reflex, or decerebrate response. The last result further supports our hypothesis that N18 is generated at the medulla oblongata.

There was no recording where N18 was preserved when clinical signs indicated brain death. Namely, it never happened that N18 could detect remaining brain stem function in the patient clinically diagnosed as brain dead, at least within the present series. In this sense, the clinical determination of brain death was sufficiently safe and N18 gave no additional information. However, this does not mean that N18 has no value. The situation was the same for ABRs because there was no recording in the present series where ABRs showed preserved brain stem functions (preservation of III or later waves) despite the clinical diagnosis of brain death.

As a principle, the diagnosis of brain death is a rule out diagnosis and each clinical or neurophysiological variable can evaluate the function of only a part of the brain stem or the whole brain. Namely, it is an inherent limitation of not only neurophysiological37 but also clinical indices used for the diagnosis of brain death that no single index is so powerful that it can unequivocally diagnose brain death by itself. Accordingly, we have no reason to exclude an index which can reliably and non-invasively evaluate an aspect of brain stem function. There is actually a report of rare cases in which evoked potentials excluded brain death despite clinical diagnosis of the event.37 An index which gives rare false negatives and no false positives, such as N18, must be especially useful because its preservation definitely excludes brain death and its loss strongly suggests brain death. In any event, it is of value that we have obtained an electrophysiological measure which is...
considered to be an indicator of medullary function. Further investigation is necessary to establish the usefulness of N18 as a new crite

d of brain death.

This study is supported by Grants-in-Aid for Scientific Research (09670669) from the Ministry of Education, Science, Sports and Culture of Japan and by The Nakabayashi Trust for ALS Research.

2. Goldberg WD, Chappa KH, Young RR, et al. Brainstem audi-
tory and short-latency somatosensory responses in adults in
latency evoked potentials: new criteria for brain death. J Neu-
activity evoked potentials and brain death. Electroencepha-
5. Shogai T. Evaluation of electrophysiological neuromonitor-
ing in the diagnosis of brain death: part 1. Brainstem audi-
tory evoked potentials. Brain and Nerve (Tokyo) 1989;41:
73-83.
37:222-5.
7. Belsh JM, Chokroverty S. Short-latency somatosensory evoked potentials in brain-dead patients. Electroencepha-
8. Buchner H, Ferbert A, Hacke W. Serial recording of median
erve stimulated subcortical somatosensory evoked poten-
tials (SEPs) in developing brain death. Electroencepha-
9. Wagner W. SEP testing in deeply comatose and brain dead
patients: the role of nasopharyngeal, scalp and earlobe
derivations in recording the P14 potential. Electroencepha-
10. Wagner W. Scalp, earlobe and nasopharyngeal recordings of
the median nerve somatosensory evoked P14 potential
in coma and brain death: detailed latency and amplitude
changes in patients with diffuse brainstem lesions.
11. Desmedt JE, Cheron G. Non-cephalic reference recording of
early somatosensory potentials to finger stimulation in
adults or older normal man: differentiation of widespread
N18 and contralateral N20 from the prerolandic P22 and
N30 components. Electroencephalogr Clin Neurophysiol
N18 in median nerve SEP. Electroencephalogr Clin Neuro-
spread N18 and progressive loss of P13/14 of median nerve
SEPs in a patient with unilateral median medullary
syndrome. Electroencephalogr Clin Neurophysiol 1996;98:
488-92.
criteria for determination of brain death in Japan. Acta
Neurochir (Wien) 1987;87:93-8.
16. Belsh JM, Blatt R, Schullman PL. Apnea testing in brain
17. Ropper AH, Kennedy SK, Russell L. Apnea testing in the
diagnosis of brain death: clinical and physiological observa-
18. American Electroencephalographic Society. Guideline nine:
1:40-73.
median nerve SEP has two components. Electroencepha-
analysis of the latencies of median nerve somatosensory
evoked potential components, 2; analysis of subcompon-
te qualities of the P13/14 and N20 potentials. Electroencepha-
distribution of P13 and P14 far-field potentials after
median nerve stimulation. Scalp, nasopharyngeal and neck
recording in healthy subjects and in patients with cervical
and cervico-medullary lesions. Electroencephalogr Clin
earlobe montage as standard in routine SEP recording:
comparison with the non-cephalic reference in patients
with lesions of the upper cervical cord. Electroencephalogr
23. Chatran GE, Bengamano B, Brdoc A, et al. IFCN recom-
manded standards for electrophysiologic monitoring in
comatose and other unresponsive states. Report of an
IFCN committee. Electroencephalogr Clin Neurophysiol
24. Mauguière F, Desmedt JE, Courjon J. Neural generators of
N18 and P14 far-field somatosensory evoked potentials
studied in patients with lesion of thalamus or thalamocor-
tical radiations. Electroencephalogr Clin Neurophysiol 1983;
56:283-92.
25. Mauguière F, Desmedt JE. Bilateral somatosensory evoked
potentials in four patients with long-standing surgical
origin of the median nerve N18 potential. Electroencephalogr
far-fields of median nerve somatosensory evoked potentials
studied in patients with a brain-stem lesion. Electroencepha-
recording of somatosensory evoked potentials document
waves produced in the cuneate nucleus by cutaneous
vibrations and cortical stimulation. J Neurophysiol 1964;27:78-
91.
30. Suzuki I, Mayanagi Y. Intracranial recording of short latency
somatosensory evoked potentials in man: identification of
origin of each component. Electroencephalogr Clin Neuro-
physiol 1984;90:286-96.
31. Moriya T, Tobimatsu S, Fujii K, et al. Origin and distribu-
tion of brain-stem somatosensory evoked potentials in
humans. Electroencephalogr Clin Neurophysiol 1991;80:221-
25.
32. Andersen P, Eccles JC, Schmidt RF, et al. Depolarization of
presynaptic fibers in the cuneate nucleus. J Neurophysiol
1964;27:92-106.
33. Manzano GM, Negrao N, Nóbrega JAM. The N18 compo-
nent of the median nerve SEP is not reduced by vibration.
34. Manzano GM, Negrao N, Nóbrega JAM. Some functional
observations related to the N18 component of the median
nerve SEP. Electroencephalogr Clin Neurophysiol 1998;108:
440-5.
35. Long SE, Duffin J. The medullary respiratory neurons: a
36. Faccio E, Baratto F, Munari M, et al. Short latency evoked
potentials in the diagnosis of brain death. Electroencephalogr
N18 in median somatosensory evoked potentials: a new indicator of medullary function useful for the diagnosis of brain death

Masahiro Sonoo, Yasunobu Tsai-Shozawa, Makoto Aoki, Toshio Nakatani, Yuuki Hatanaka, Atsuko Mochizuki, Mikio Sawada, Kunio Kobayashi and Teruo Shimizu

doi: 10.1136/jnnp.67.3.374

References

This article cites 34 articles, 6 of which you can access for free at: http://jnnp.bmj.com/content/67/3/374#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Brain stem / cerebellum (670)
- Coma and raised intracranial pressure (146)
- End of life decisions (palliative care) (24)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/