LETTERS TO THE EDITOR

Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management [J Neurol Neurosurg Psychiatry 1999; 67: 549–559]

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralyzis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory frontal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language,1 to assess the risk of severe postsurgical amnesia and to predict postsurgical material specific memory changes.2 More recently, the use of the IAP has been extended to complement EEG localisation and radiological data by lateralisng temporal lobe dysfunction.

In Wada’s De Duve recognised role in patients with refractory frontal lobe epilepsy being considered for frontal lobectomy. Specifically, observation of behavioural function during the period of the ablation may provide useful information about the integrity of the contralateral frontal lobe. This is particularly relevant in those candidates with a history of cerebral trauma in whom damage to the bifrontal lobe is known or suspected. A review of the IAP studies performed on patients with temporal lobe epilepsy in our comprehensive epilepsy programme (1991–8) suggests that the emergence of frontal lobe behavioural features is common in patients in whom the astology leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features rarely occur in cases of non-traumatic astology, in which the integrity of frontal lobes is preserved. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome.

A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures postdated a road traffic accident at the age of 12 years when he sustained a head injury with an ill defined period of loss of consciousness. Seizures commenced within months of that injury and, although initially well controlled, became refractory within a few years. The seizure types included staring spells, violent tonic-clonic seizures, and tonic drop attacks. He had complications from his epilepsy including a fractured jaw, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and probable postictal psychosy, a lung abscess secondary to aspiration, and episodes of status epilepticus. Interictal EEG recordings showed bilateral generalisation, and episodes of status epilepticus. Interictal FDG PET and HMPO SPECT disclosed hyperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive function was normal. At a behavioural level, however, he presented as very peculiar in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild frontal lobe syndrome consistent with the history of trau- matic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advanced education), he had remained unemployable due to his seizures. He was socially isolated and his interpersonal relationships were limited.

He had severe life threatening epilepsy with the surgical exclusion of the remaining seizure source. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe involvement, a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting which could not be influenced by the examiner. Despite normal comprehension, he showed severely impaired capacity for motor regulation (for example, he persevered in a left hemispheric manner, with marked behavioral disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to control these responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

On the basis of the IAP findings, a selective cortical resection (as opposed to more extensive frontal lobectomy) restricted to the region of damage was advised. Intraoperative electrocorticography showed active focal epileptiform discharges maximal in the inferior frontal lobe in the electrodes closest to the lesion. A cortical resection was performed with frameless stereotaxy guidance excision of the frontal lesion. Histopathology on the resected tissue showed an old post-traumatic cyst involving the cortex and white matter. His postoperative course was unremarkable. When reviewed 5 months after surgery he was seizure free. His performance on neuropsychological evaluation remained commensurate with preoperative status. There were no novel subjective complaints. Mood, behaviour, and temperament remained stable.

Despite its undoubtedly valuable in many individual cases of temporal lobe epilepsy, the IAP has remained a controversial assessment instrument.1 Amid this controversy its potential usefulness in other patient groups seems to have been overlooked. A primary criticism of its use in temporal lobe epilepsy has been the question of irrigation and whether the medial temporal lobe is adequately “dis- abled” during the procedure. This particular limitation is not applicable to the patient with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the contralateral ante- rior cerebral artery via the anterior communi- cating artery. When such crossflow is present, the ability to assess validly the integrity of contralateral frontal lobe function will be compromised by virtue of the fact that crossflow issues of behavioural regulation would seem most useful.

It should be borne in mind that the degree of frontal lobe dysfunction induced by the IAP represents the “worst case” scenario, in which the entire frontal lobe is included in the ablation. There are likely to be few surgical scenarios in which a comparable extensive resection of tissue is likely to be considered, and results must be interpreted in this context. This limitation notwithstanding, the IAP does seem to have a role in separating out those patients in whom more extensive front- ral lobe resections could be considered as opposed to those in whom a more conserva- tive approach is warranted.

This case report forms only the basis for a novel hypothesis that clearly requires more rigorous scientific research before its clinical utility can be reliably established. Nonetheless, we think that it is worth drawing the attention of the epileptological community to the potential application of IAP in the surgical management of extratemporal cases.

MARIE F O’SHEA
MICHAEL M SALING
Department of Neuropsychology

SAMUEL F BERKOVIC
Department of Neurology, Austin and Repatriation Medical Centre, Melbourne, Australia. Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O’Shea, Department of Neuropsychology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9496 5913; Fax 613 3 03 9457 2654.

Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibition

Tetrabenazine (TBZ), a synthetic benzoxazinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is conveniently characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ. We here report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine (6 mg/day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was indicated by a mixed anxious-depressive mood, low self-esteem, a complete loss of drive, and intermittent suicidal ideations. After switching from TBZ to reboxetine (6 mg/day), a new and selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine, the patient recovered from depression caused by TBZ and related (neuroleptic) compounds.

WOLFGANG SCHREIBER
JURGEN-CHRISTIAN KRIEG
Department of Psychiatry and Psychotherapy, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany

TOBIAS EICHHORN
Department of Neurology, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany
Correspondence to: Dr Wolfgang Schreiber, Department of Psychiatry and Psychotherapy, Philippus-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany. Telephone 0049 6421 285307; Fax 0049 6421 285329; email schreibe@mailer.uni-marburg.de

Spinal sulcal artery syndrome due to spontaneous bilateral vertebral artery dissection

In young adults vertebral artery dissection (VAD) is an important cause of brain infarction.1,2 A known mechanism is microtrauma due to abrupt head movements for example, osteochondroarthrosis. In addition a pathogenetic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated.3 VAD initial neck pain is often overlooked which may be slight. Lesions caused by VAD are cerebellar or brainstem infarcts, unilateral or bilateral thalamic infarcts (top of the basilar syndrome), or infarctions in the posterior cerebral artery territory due to intra-arterial embolism or haemodynamic decompensation when collaterals are insufficient.4 Lesions of the cervical spinal cord are rare because of its good collateral supply.5 We report on a patient with a syndrome of the spinal sulcal artery (incomplete Brown-Séquard syndrome) caused by spontaneous bilateral VAD. A 43 year old man with a history of arterial hypertension presented with left sided numbness sparing the face, which had evolved suddenly while he was walking. In addition, he reported on dull right sided neck pain irradiating into the occiput, which had been initiated by a head rotation while he was working at a computer 2 weeks before. The neck pain had spontaneously ceased 6 days later. Neurological examination disclosed dissociated sensation defect on the left with an indistinct level around C4 to C6. Below this level on the left he had a marked hypalgesia and nearly a loss of temperature sense. The right limbs were warmer than the left ones. In addition, we found mild right sided motor system deficits. Cranial nerve function was intact, despite a right sided paramedian right sided medullary infarction. Hemiparesis and the different temperature sensation in the limbs resolved completely within 3 weeks. Tibal nerve somatosensory evoked potentials (SSEPs) had regular N22 and P40 latencies and amplitudes. Central motor conduction time (CMCT) and transcranial magnetic stimulation was prolonged to the right abductor digiti minimi (9.2 ms) and tibialis anterior (23.1 ms). The CMCT of the left target muscles was normal. Duplex sonography showed increased flow velocity on the level of the cervical vertebrae 3 to 5 with a maximum of 214 cm/s in the right and 197 cm/s in the left vertebral artery. Colour mode showed irregular narrowings of the lumen indicating dissections.

Cervical MRI showed a spinal cord infarction at the level C2 (figure). The circumference and dorsal part of the cord were not affected. In digital subtraction angiography (DSA) both vertebral arteries had string signs in the V1 and V2 segments with collateral flow to the distal V2–4 segments via the thyrocervical trunk (cervical ascending artery) and the costocervical trunk also. The anterior spinal artery was incompletely contrasted by unilateral spinal branches of the right vertebral artery. They originated at the level of dissection. The intradural origins of the anterior spinal artery (V1 and V2) and the V3 segments are often not detectable by MRI. Bilateral spontaneous VAD is not rare, but often missed. In most cases, microtrauma preceding the dissection can be recalled by the patients. Due to the mild mechanical impact, the action of predisposing factors might be postulated. Among these may be changing in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy.6 Magnetic resonance imaging with typical semilunar mural hae- matoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an irregular narrowing or tapering occlusion have a high sensitivity and specificity in cases of internal carotid artery dissection.7 By contrast, mural haematomas of the VA especially in the V1 and the V3 segments are often not detectable by MRI. In cases of unclear non-invasive findings, DSA is still the method of choice.8 In addition to consecutive brain infarctions, cervical spinal cord infarctions and nerve root compression syndromes may occur in cases of unilateral or bilateral VAD. Probably as a result of the pial collateral network and the dual posterior spinal artery, spi-
American descent with a strong founder effect. Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four members had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nineteen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an

<table>
<thead>
<tr>
<th>Marker</th>
<th>Hispanic American</th>
<th>QE2</th>
<th>QE3</th>
<th>QE4</th>
<th>QE10</th>
<th>QE24</th>
<th>QE25</th>
<th>QE28</th>
<th>QE17</th>
<th>QE29</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7S2410</td>
<td>279</td>
<td>273</td>
<td>265</td>
<td>269</td>
<td>265</td>
<td>265</td>
<td>263</td>
<td>265</td>
<td>263</td>
<td>269</td>
</tr>
<tr>
<td>D7S2409</td>
<td>ND</td>
<td>221</td>
<td>219</td>
<td>215</td>
<td>221</td>
<td>219</td>
<td>223</td>
<td>219</td>
<td>223</td>
<td>219</td>
</tr>
<tr>
<td>D7S1813</td>
<td>137</td>
<td>123</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>131</td>
<td>125</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>D7S1789</td>
<td>137</td>
<td>131</td>
<td>133</td>
<td>133</td>
<td>129</td>
<td>131</td>
<td>129</td>
<td>129</td>
<td>129</td>
<td>133</td>
</tr>
<tr>
<td>M565B</td>
<td>ND</td>
<td>133</td>
<td>133</td>
<td>131</td>
<td>135</td>
<td>133</td>
<td>132</td>
<td>129</td>
<td>129</td>
<td>133</td>
</tr>
<tr>
<td>D7S5646</td>
<td>185</td>
<td>185</td>
<td>185</td>
<td>187</td>
<td>197</td>
<td>183</td>
<td>185</td>
<td>181</td>
<td>187</td>
<td>197</td>
</tr>
<tr>
<td>D7S558</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>D7S5689</td>
<td>129</td>
<td>127</td>
<td>125</td>
<td>129</td>
<td>127</td>
<td>139</td>
<td>127</td>
<td>125</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>

(A) Pedigrees of the nine families with cerebral cavernous malformations. Black symbols=symptomatic patients with cavernous angiomas on MRI; half filled symbols=symptomatic members with cavernous angiomas on MRI; empty symbols=asymptomatic members with normal MRI; question mark=members with unknown status. (B) Comparison of the Hispanic-American CCM1 haplotype and the haplotypes segregating with the disease phenotype within Spanish families. Polymorphic markers are shown on the left. Numbers indicate the sizes in base pairs. Primers used to amplify D7S2409 were different from those in the Hispanic-American families resulting in a different size of the amplified fragment. M65B was not studied in the Hispanic-American families. Family CVE24 was not informative for D7S646. For families CVE17 and CVE29, the two haplotypes of the affected siblings are indicated. ND=not determined.

Letters, Correspondence, Book reviews, Correction

Department of Neurology
M. GARTENSCHLAGER
Institute for Radiology, Klinikum Darmstadt,
Teaching Hospital University Frankfurt, Germany
Correspondence to: Professor D Claus, Department of Neurology, Klinikum Darmstadt, Teaching Hospital University Frankfurt, Heidelberger Landstrasse 379, 64297 Darmstadt, Germany.

7 Around 50% of non-Hispano-American families showed linkage to CCM1 but no common haplotype was found.
8 A recent study showed linkage of cerebral cavernous malformations to two additional loci.
9 No Spanish family with cerebral cavernous malformations has been analysed so far.
10 Quadrilaterals indicate the configuration of medullary infarction. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29).
cerebral cavernous malformations, this haplotype is more likely not predominant in Spain, and the strong founder effect seen in all published Hispano-American families with cerebral cavernous malformations might be specific for this population.

HJ is supported by the Schweizerische Stiftung für medizinisch-biologische Studien (Switzerland), SL, by the Fonds de Recherche en Santé (Canada), PL, by the Consejo Nacional de Investigaciones Científicas y Técnicas and ZENECA pharmaceutical group. The work was founded by INSERM, Ministère de l’Enseignement Supérieur et de la Recherche, CSIC, and the Fondo de Investigacion de la Seguridad Social (Fiss: 990407).

H H JUNG
P LABAUGE
S LABERGE
E MARECHAL
E TOURNIER-LASSERVE
INSERM U25, Faculté de Médecine Necker, Paris, France

M LUCAS
Laboratorio de Molécula Humana
J M GARCIA-MORENO
M A GAMERO
G IZQUIERDO
Servicio de Neurología, Hospital Universitario Virgen Macarena, Avenida Dr Fedriani, 40171 Sevilla, Spain

E TOURNIER-LASSERVE
Hôpital Lariboisière, Paris, France

Correspondence to: E. Tournaire-Lasserve, INSERM U25, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France. Telephone 0033 1 45 67 22 95; fax 0033 1 40 56 01 07; email: toumier@necker.fr

Hydrocephalus caused by metastatic brain lesions: treatment by third ventriculostomy

Metastasis to the brain occurs in 20%–40% of cancer patients.1 About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic disease to periventricular brain tissue can obstruct the flow of cerebrospinal fluid (CSF) and cause obstructive hydrocephalus. This is comparable with the presence of the Hispano-American haplotype.

In conclusion, linkage analysis of Spanish families with cerebral cavernous malformations did not show any evidence for Hispanic-American haplotype sharing or a founder effect. Although our sample was limited in size and does not therefore formally exclude the presence of the Hispano-American haplotype in additional Spanish families with cerebral cavernous malformations, this haplotype is more likely not predominant in Spain, and the strong founder effect seen in all published Hispano-American families with cerebral cavernous malformations might be specific for this population.
as 50%, with the highest failure rate in the first few months after shunt placement. The complication rates for both procedures are low. Third ventriculostomy and shunting can potentially cause a stroke, bleeding, ventriculitis, meningitis, a subdural haematoma, CSF leak, diabetes insipidus, and SIADH. However, shunting has additional risks of mechanical malfunction, complications associated with implanting a foreign body, and overdrainage syndrome.

Because third ventriculostomy restores near normal CSF dynamics, overdrainage is prevented. The procedure is also minimally invasive and safe. The procedure’s low morbidity, high efficacy, and potentially short hospital stay are well suited as a palliative treatment of hydrocephalus for patients with an expected shortened life span. We propose that third ventriculostomy should be offered as a first treatment to patients suffering from obstructive hydrocephalus from unresectable tumours.

Neuronal activity alters local blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours. Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxy-Hb). NIRS is an optical method to measure concentration changes of oxy-Hb, deoxy-Hb, and total-Hb in cerebral vessels by means of the characteristic absorption spectra of haemoglobin in the near infrared range. In the present study, we measured changes of oxygenation and haemodynamics in the brain tumour adjacent to the activating cortex by means of NIRS. We found transient decreases in oxy-Hb and total-Hb in the tumour during neuronal activation, suggesting that the local blood flow of the tumour was decreased by a transient increase of rCBF induced by neuronal activation.

The patient was a 35 year old right handed man who presented with complaints of headache and dizziness. A neurological examination showed no abnormalities and a decline in language functions. A postcontrast CT showed a well defined large enhancing tumour (4x5 cm) compressing the left frontal lobe. Computed tomographic angiography showed that the branches of the left middle cerebral artery supplied the tumour (figure A). The patient underwent a left frontal craniotomy for removal of the tumour; the pathological diagnosis was meningioma. The NIRS measurement was performed before the operation.

We measured haemodynamic changes in the brain tumour during neuronal activation in the left frontal lobe induced by cognitive activity.

Table 1 Clinical characteristics of patients who underwent third ventriculostomy for obstructive hydrocephalus

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y), Sex</th>
<th>Diagnosis</th>
<th>Result*</th>
<th>Postoperative stay in hospital (days)</th>
<th>Survival time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70,M</td>
<td>Lung mixed adenocarcinoma and squamous cancer metastasis to thalamus</td>
<td>Improved</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>46,F</td>
<td>Ovarian adenocarcinoma metastases to cerebrum and medulla</td>
<td>Improved</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>38,F</td>
<td>Breast ductal carcinoma metastases to brainstem and cerebellum</td>
<td>Improved</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75,M</td>
<td>Rectal adenocarcinoma metastasis to cerebellum</td>
<td>Failed</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>39,F</td>
<td>Breast adenocarcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>60,M</td>
<td>Lung adenocarcinoma metastasis to thalamus</td>
<td>Failed</td>
<td>6</td>
<td>6+†</td>
</tr>
<tr>
<td>7</td>
<td>64,M</td>
<td>Osteophagocytic carcinoma metastatic to cerebellum</td>
<td>Improved</td>
<td>7+</td>
<td>1+†</td>
</tr>
</tbody>
</table>

*Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.

†Patient is currently alive.

Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex

Characteristics of blood flow in brain tumours have been studied extensively; these studies are important for diagnosis of malignancy and therapy monitoring. Our study is the first to consider how activity dependent changes of regional cerebral blood flow (rCBF) alter tumour blood flow in the brain tumour adjacent to the activating cortex.

Such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours. Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxy-Hb). NIRS is an optical method to measure concentration changes of oxy-Hb, deoxy-Hb, and total-Hb in cerebral vessels by means of the characteristic absorption spectra of haemoglobin in the near infrared range. In the present study, we measured changes of oxygenation and haemodynamics in the brain tumour adjacent to the activating cortex by means of NIRS. We found transient decreases in oxy-Hb and total-Hb in the tumour during neuronal activation, suggesting that the local blood flow of the tumour was decreased by a transient increase of rCBF induced by neuronal activation.

The patient was a 35 year old right handed man who presented with complaints of headache and dizziness. A neurological examination showed no abnormalities and a decline in language functions. A postcontrast CT showed a well defined large enhancing tumour (4x5 cm) compressing the left frontal lobe. Computed tomographic angiography showed that the branches of the left middle cerebral artery supplied the tumour (figure A). The patient underwent a left frontal craniotomy for removal of the tumour; the pathological diagnosis was meningioma. The NIRS measurement was performed before the operation.

We measured haemodynamic changes in the brain tumour during neuronal activation in the left frontal lobe induced by cognitive activity.
tasks. We monitored concentration changes of oxy-Hb, deoxy-Hb, and total-Hb, using an NIRO-500 instrument (Hamamatsu Photonics KK, Japan). The optodes were placed at an interoptode distance of 3.5 cm on the left forehead so that the centre of the two optodes was placed on the centre of the tumour. With an interoptode distance of 4 cm, correlations of oxy-Hb and total-Hb measured by NIRS and rCBF measured by PET suggested that the reliable penetration depth of near infrared light in brain tissue is about 1.3 cm; thus the present NIRS measurement area was restricted in the tumour. The patient was seated and had his eyes open during the NIRS measurement. Informed consent was obtained from the Neurosurgery patient.

To activate the left frontal lobe, we used the following four tasks: (1) semantic verbal fluency, which entails naming as many items in a semantic category (for example, animals) as possible; (2) confrontational naming, which involves naming ordinary items presented by the tester; (3) backward digit span, a working memory task which involves reporting of digits (2 to 8) in the reverse order, which entails reading a short descriptive passage aloud. The speech responses of the patient to the tasks were normal.

Figure B shows an example of changes in NIRS during the naming task. After the beginning of the task, oxy-Hb and total-Hb decreased to negative values during the task, and deoxy-Hb also decreased. These changes returned to the control level gradually after the end of the task. The other tasks also caused similar changes of oxy-Hb, total-Hb, and deoxy-Hb. The rCBF in the left frontal lobe is generally increased by all the tasks used in the present study. To activate the left frontal lobe, we used the parietal lobe of the patient. Our present NIRS activation study using the cognitive tasks showed increases in oxy-Hb and total-Hb in the left frontal lobe in most normal adults—for example, increases in oxy-Hb and total-Hb—were found in 92.3% of young adult subjects (mean SD) 28.8 (4.4) years during the word fluency task (unpublished data). Therefore, although we could not measure the changes in rCBF in the left frontal lobe of the patient, the evidence from our previous studies strongly suggests that the tasks caused an increase in rCBF in the left frontal lobe of the patient.

A decrease in oxy-Hb and total-Hb recorded from the brain tumour indicates a decrease of local blood flow in the tumour because the NIRS measurement area was restricted to the brain tumour. The decreases in oxy-Hb and total-Hb were found only during the tasks; consequently, these changes were probably not due to changes in systemic blood pressure, which can alter tumour blood flow. Based on these assumptions, we suggest that the increase of rCBF in the left frontal lobe induced by the tasks stole the local blood flow of the brain tumour through the cortical branches, leading to the decrease of local blood flow in the tumour. Therefore, we suggest that activity dependent increase in rCBF can steal blood flow from the adjacent tissues including non-activating cortex. Recent NIRS activation studies have shown that cognitive tasks cause decreases in oxy-Hb and total-Hb in the left frontal lobe in some normal subjects; these decreases indicate a decrease in rCBF. Although the physiological mechanisms of the decrease in rCBF during neuronal activity have not yet been elucidated, we hypothesise that a stealing of blood flow is one of the mechanisms. The present report supports this hypothesis.

Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population. In one fourth of total migraineurs, headache is preceded by an aura.1 We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms described by an aura.2 We describe a patient with recurrent episodes of migraine in whom headache was preceded by a constellation of visual symptoms described by an aura.2 This syndrome, consisting of a triad of simultanopsia, optic ataxia, and oculomotor apraxia, is seen with bilateral lesions of occipitoparietal cortices affecting connections between visual cortical regions and the frontal eye field.3

A 29 year old female teacher presented with an 8 year history of paroxysmal alternating hemicontral hemihypalgia which was often associated with nausea and photophobia. Patients fulfilled the requisite criteria for establishing the diagnosis of migraine with aura as devised by the International Headache Society (1988).4 She used to have six to eight episodes of headache a month. There was no history of status migrainous during these years. On several occasions, headache was preceded by a peculiar constellation of visual symptoms comprising distortion of visual images followed by inability to perceive simultaneously objects in the visual field and touch an object under direct visual guidance. However, she could see the component parts of objects during the episode. These visual symptoms lasted for about 10–25 minutes and were followed by a hemihypalgia, throbbing headache which was often associated with nausea, photophobia, and occasionally vomiting. Headache used to last for about 4 to 18 hours and would respond to either ergot drugs or sumatriptan, especially if taken at the beginning of the episode. Occasionally these visual symptoms were not followed by headache.

The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Her general physical and neurological examination in between the episodes was unremarkable. Neurological examination during the aura symptoms disclosed that she was unable to see simultaneously all the objects in the visual field (simultanopsia). She did omit several words while reading a paragraph. However, she could comprehend and read each and every word individually. On being shown a complex picture comprising multiple subunits she was not able to comprehend and perceive the entire picture but was able to perceive a part of the picture individually (seeing in piecemeal). These aforementioned features were consistent with simultanopsia. Besides simultanopsia, she had optic ataxia as evidenced by her inability to coordinate hand-eye movements. Optic ataxia was tested as follows: each eye was tested separately and the hand ipsilateral to the eye being tested was used. The target stimulus was a 5 mm long pin with a white head placed at preselected locations. The patient was asked to touch this pin with her index finger without shifting her gaze from the fixation point. The patient had difficulty in performing this test but had no problems in reaching out to her own body parts or an auditory stimulus with her eyes closed. These features were consistent with optic ataxia. Moreover, gaze apraxia was evident by her inability to look at an object on command. However, she could do it spontaneously. In addition, she had impaired smooth pursuit and voluntary saccades in all directions. Reflex eye movements were normal. Visual acuity during the episode was 6/6 bilaterally. Visual fields were normal during the episode as demonstrated by the confrontation method. Ophthalmological examination, including perimetry performed during a symptom free period, was normal. There was no clinical evidence of Gerstmann syndrome, prosopagnosia, object agnosia, or colour agnosia. Her cranial CT and magnetic resonance angiography were unremarkable.

Electroencephalography was also non-contributory. The frequency of visual aura symptoms and headache decreased considerably after the patient was started on flunarizine which was often associated with nausea, photophobia, and occasionally vomiting. Headache used to last for about 4 to 18 hours and would respond to either ergot drugs or sumatriptan, especially if taken at the beginning of the episode. Occasionally these visual symptoms were not followed by headache.

The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Letters, Correspondence, Book reviews, Correction
involve visual association areas and their association pathways. Optic ataxia, gaze apraxia, and simultagnosia seem to represent a dissociation of visual information from the frontal eye field and dorsal parietal regions.

Parvaiz A Shah, Firdousah, and showed no evidence of change in the basal ganglion and right cerebellum throughout the white matter, and cystic-like lesions 6.01p, 0.064 Tesla) showed areas of high signal intensity as a result of an animal excerting the virus in the saliva. Rabies manifests as an acute encephalomyelitis, the development of which is almost invariably fatal. The distinction between rabies and postvaccination encephalitis is difficult and may be helped by antigen detection via a skin biopsy; however, this technique is not available in Vietnam. Paralytic rabies could not be excluded in this patient and hence steroids were not used initially. Steroids have been reported to increase mortality in experimental animals with rabies, and it has been suggested that they may abrogate the immune response to the postexposure vaccine, thus precipitating uncontrollable rabies. There are three types of postexposure vaccine in use worldwide. The Semple type (STV) is obtained from inactivated virus prepared on adult animal nerve tissue; it is inexpensive and relatively easy to produce. In India 3 million people receive postexposure courses of STV (phenolised sheep brain) antirabies vaccine each year. These produce neurological reactions, including postvaccination encephalomyelitis, in up to 1 in 200 courses, with a 3% mortality. Clinical forms include a reversible mononeuritis multiplex, and meningoencephalitic and encephalomyelitic reactions. Myelin basic protein and related neural proteins from the nervous tissue of the animal on which the virus was cultured stimulate an autoimmune reaction in the human nervous system.

Tolerance has been improved by the development of the suckling mouse brain vaccine (SMBV). The attenuated virus is cultured on immature mouse brain tissue, which contains little myelin, thus reducing the risk of complications. SMBV is inexpensive (US$1.5 per treatment course) and easily manufactured locally; it is the most widely used postexposure vaccine in Vietnam. Rare neurological reactions do occur with SMBV. Complications of the CNS have been reported to occur after vaccination with an incidence of 1:2700 treated people, with a 22% mortality. The mortality was particularly high (90%) if there was extensive CNS involvement. The third type of vaccine available is the human diploid cell tissue culture vaccine (HDCV), which is both safe and efficacious. However, the recommended regimen is not affordable in most developing countries.

When we approached the Rabies Laboratory, Ministry of Agriculture and Fisheries, United Kingdom for advice in this case their response was “why do you use the SMBV, can’t you use another vaccine”. Worldwide about 10 million people each year receive rabies vaccine after exposure; at the Centre for Tropical Diseases we treat 300 people with dog bites annually. The cost of an HDCV in Vietnam, administered in its present regimen (1ml given for 5 days on days 0, 3, 7, 14, and 28 with an optional booster on day 90) is US$ 125, making the use of this vaccine unaffordable.

This is the first report to show the demyelinating CNS lesions on MRI, and their resolution after steroid therapy. It is relatively rare for patients to survive if they develop severe CNS effects after postexposure rabies vaccination. Although the incidence of reactions to SMBV is very much lower than STV, this report confirms that it does still occur. Both SMBV and STV are widely used throughout the developing world, and would be the vaccine administered to travellers exposed to animal bites in such countries. This case stresses the need for high dose steroids in postexposure vaccine encephalitis and the urgent need for the development and deployment of a safe, and critically, affordable postrabies exposure vaccine regimen. The economic low dose multisite intradermal regimen using the HDCV provides an example of how this goal may be achieved although it is not yet widely accepted. Such a vaccine regimen (0.1 ml HDCV given at multisite injections on days 0, 7, 28, and 90) could be made affordable, and offers excellent protection without the risks of postexposure immune mediated encephalitis.

Can’t you use another vaccine? postrabies vaccination encephalitis

A healthy 39 year old man was bitten on the ankle by his own apparently normal dog. After the incident the dog disappeared into the forest and was not seen again. Three days later the patient was seen at a provincial hospital in Vietnam and started on an alternate day regimen of suckling mouse brain postrabies exposure vaccination (SMBV). After the second dose, he felt unusually lethargic although he was still able to work. After the third dose, he became unrousable, and was transferred to the Centre for Tropical Diseases, Ho Chi Minh City, the referral hospital for infectious diseases in southern Vietnam. On admission, he was afebrile, confused, had slurred speech, and his Glasgow coma score was 13. He had mild spastic weakness of his left face, left arm, and both legs. Full blood count and results from routine biochemistry and chest radiography were all normal. The CSF: blood glucose ratio was 0.47 (63/140 mg/dl), the protein content was raised (78 mg/dl), and there was one lymphocyte/ml in the CSF. Screens for malaria, toxoplasmosis, cryptococcus, and neurocysticercosis were negative, as was a CSF gram stain. The CSF was sterile after 2 weeks of culture. Brain MRI (Access Toshiba LPT 6.01p, 0.064 Tesla) showed areas of high signal in the cerebral white matter. Bilateral subcortical and periventricular lesions are seen. Brain MRI in May 1997. (A) T2 weighted image showing multiple areas of high signal in the cerebral white matter. Bilateral subcortical and periventricular lesions are seen. (B) Brain MRI in July 1997, T2 weighted image shows resolution of the white matter lesions.
The leaves are also chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali communities in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment.

We report a case in which khat chewing had been associated with a severe and disabling neurological illness. The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.

Leukoencephalopathy associated with khat misuse

The leaves of the tree Catha edulis, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Sabran and sub-Sabran Africa. The leaves are also chewed by members of the Yemeni and Somali community in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcoephrine), cathinone, and cathinone (an alkaloid with a structure resembling ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a psychoactive substance and has been reported to cause cognitive impairment. We report a case in which khat chewing had been associated with a severe and disabling neurological illness.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, MRI appearance, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be his use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man was contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.
M-protein, direct and indirect Coombs tests, cryoglobulin, antibodies to myocpmys, myelin associated glycoprotein, gangliosides (GM1, GD1b, asialo-GM1, GT1b, GQ1b, Gal-C), P-ANCA, and C-ANCA. The CSF was normal. Titre of cold agglutinins was detectable at 1:128 at 4°C (normal <1:256). The patient’s serum agglutinated adult group O red blood cells, but not O red blood cells or human cord red blood cells, signifying cold specificity with 1:1 specificity. Immunelectrophoresis of the eluate confirmed IgM composition.

The initial nerve conduction study showed severe diminution or absence of compound muscle potentials (CMAPs) with mildly diminished conduction velocities. F wave latencies were mildly prolonged. There were no evoked sensory nerve action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electromyographic studies performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of their wall. The small vessels in the endoneurium showed sludging of red blood cells, and interstitial edema associated with mononuclear cell infiltration. The small vessels in the endoneurium. (bar=30 µm).

Some vessels had focal necrosis of their wall. The small vessels in the endoneurium showed sludging of red blood cells, and interstitial edema associated with mononuclear cell infiltration. The small vessels in the endoneurium. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).

Titre of cold agglutinins was reduced to 1:64. The motor nerve conduction velocity (MCV) of the right median nerve was mildly prolonged. There were no evoked sensory nerve action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electromyographic studies performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of their wall. The small vessels in the endoneurium showed sludging of red blood cells, and interstitial edema associated with mononuclear cell infiltration. The small vessels in the endoneurium. (bar=30 µm).

1. Sural nerve (toluidine blue staining) showing epineural vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (D) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).

Pathophysiological explanations for association of vasculitis and conduction block may be as follows. Firstly, conduction block may occur as a consequence of nerve ischaemia due to small vessel occlusion. There have been reports of conduction block occurring in vasculitic neuropathy which support this possibility. Secondly, humoral factors including cold agglutinins may induce immunemediated demyelination in the peripheral nervous system. Taken together, neuropathy with cold agglutinins may involve immunologically mediated demyelination, microcirculation occlusion, and vasa nervorum vasculitis. The diversity of pathomechanisms may come from the difference target antigens recognised by cold agglutinins. Plasmapheresis proved effective in all cases. These findings strongly suggest that humoral factors including cold agglutinins may play an important part in the induction of neuropathy with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Tashima and N Hirata for their technical assistance, Dr S Kusunoki (Department of Neurology, Institute for Brain research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Mug (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.

The authors reply:

We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence arising from clinical trials to suggest that cholinomimetic drugs as a whole may have a beneficial effect on some non-cognitive behavioural symptoms. This has now been reported for at least two cholinesterase inhibitors, and two muscarinic agonists. In particular, a clear link is emerging between psychotic symptoms and cholinergic dysfunction. Thus, Boidick et al. have shown that the M2/M4 agonist xenonolamine causes a dose-dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kauffer have shown that the cholinesterase inhibitor metrifonate is effective in reducing psychotic features compared to controls. Thus, it seems that the beneficial effect of donepezil in particular clinical trials should be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, our impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease. The same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, our impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease. There is a need to be extremely cautious about prescribing donepezil to patients with Alzheimer’s disease accompanied by behavioural disturbances.

Finally, donepezil was never investigated in a 36 week randomised double blind study as was mentioned in the review. The authors are probably referring to the randomised 24 week double blind placebo controlled trial with an additional 6 week single blinded placebo phase.

T BABIC
Department of Neurology, Medical School University of Zagreb, Kliševica 12, 10000 Zagreb, Croatia.
Telephone 00385 1 217280, fax 00385 1 217280, email tommabac@zg.et.hr

The authors reply:

We are grateful to your correspondent for providing us with the opportunity to clarify these points.

PAUL T FRANCIS
Neuroscience Research Centre, GKT School of Biomedical Science, King’s College London, London SE1 9RT, UK

ALAN M PALMER
MICHAEL SNAPIE
Cerebrus Pharmaceuticals Ltd, Winsford, Cheshire, RG42 5SU, UK

GORDON K WILCOCK
Department of Care of the Elderly, Frimley Hospital, Sidcup, BR5 1EF, UK

BOOK REVIEWS

The neuropathies of diabetes are common (as the chapters in this book repeatedly remind us) and can be very disagreeable. Symptomless neuropathy underlies foot ulceration and sepsis as the commonest clinical consequence of diabetic neuropathy but other extremely unpleasant disorders range from exceptionally severe pain to the whole range of problems resulting from autonomic failure. This book comprehensively covers every aspect of the subject, systematically (and at times exhaustively) from its epidemiology and pathogenesis (exhaustingly) to structural, functional, and clinical problems and their treatment. Most of the authors are well known in the field and their accounts are up to date and authoritative.

Unfortunately, struggle as they might, all authorities have difficulty in defining what they mean by diabetic neuropathy, in particular, understanding of this complication both in clinical and pathological terms, as well as with regard to treatment, lags far behind that of the other classic diabetic complications, nephropathy and retinopathy. Even its classification presents problems and attempts to do so are found in four different chapters, describing four classifications. Repetition is an unfortunate feature of this book and—quite apart from the confusion over classification—aspects of pathogenesis, structural changes, epidemiology, diagrams, and some reference to treatment (for example, that of pain) appear repeatedly in different chapters in greater or lesser detail.
This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to some extent, comprehensive but lack specificity—that is, normal values for simple tests are difficult to find. The huge subject of the diabetic foot is covered in these chapters and "the impact of micro and macrovascular disease" is compressed into the last nine pages of the book.

The bibliography is important and often very up to date with references ranging from 33 to 283 per chapter. If this book is at times confusing, this reflects the confusion regarding the nature and treatment of the diabetic neuropathies as much as the overlap and repetition found in its different chapters. It is a book of reference for the specialist who will be well served by the comprehensiveness of some of its reviews and their assembly of the appropriate literature.

PETER WATKINS

The quest for a means of accurate localisation of structures during neurosurgery has taxed the minds of clinicians from early in the history of the specialty, starting with Zernov's encephalometer more than a century ago. Just as the solution to the mariners' problem takes its name, neuronavigation ("the surgeon's sextant") has relied on the advent of functional imaging. The following section discusses clinical applications of equipment of which many of those in the brainstem or posterior fossa, and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to some extent, comprehensive but lack specificity—that is, normal values for simple tests are difficult to find. The huge subject of the diabetic foot is covered in these chapters and "the impact of micro and macrovascular disease" is compressed into the last nine pages of the book.

The bibliography is important and often very up to date with references ranging from 33 to 283 per chapter. If this book is at times confusing, this reflects the confusion regarding the nature and treatment of the diabetic neuropathies as much as the overlap and repetition found in its different chapters. It is a book of reference for the specialist who will be well served by the comprehensiveness of some of its reviews and their assembly of the appropriate literature.

K Sudo, N Fujiki, S Tsuji, M Aijki, T Higashi, M Niiho, S Kikuchi, F Moriwaka, K Tashiro.

Focal (segmental) dyshydrosis in syringomyelia. J Neurol Neurosurg Psychiatry 1999;67:106-8. During the editorial process the footnote to table 1(p 107) was wrongly transcribed. The last line—¶p value for each pair of items: hyperhydrosis v normohydrosis 0.0007; hypohydrosis v normohydrosis 0.7282; normohydrosis v hypohydrosis 0.0012 should read—¶p value for each pair of items: hyperhydrosis v hyperhydrosis 0.0007; hypohydrosis v hypohydrosis 0.7282; normohydrosis v hypohydrosis 0.0012.
Leukoencephalopathy associated with khat misuse

P K MORRISH, N NICOLAOU, P BRAKKENBERG and P E M SMITH

J Neurol Neurosurg Psychiatry 1999 67: 556
doi: 10.1136/jnnp.67.4.556

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/4/556.1

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/67/4/556.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/