Behavioural status during the intracarotid amobarbital procedure (Wada test): relevance for surgical management

Presurgical evaluation in many epilepsy programmes often includes the intracarotid amobarbital procedure (IAP). Sodium amytal is injected into the internal carotid artery to produce a temporary “pharmacological paralysis” of hemispheric function. Traditionally, the IAP has been employed in patients with refractory temporal lobe epilepsy being considered for anterior temporal lobectomy. In these cases it is used to determine cerebral dominance for language,1 to assess the risk of severe postsurgical amnesia,2 to predict postsurgical material specific memory changes.3 More recently, the use of the IAP has been extended to complement EEG localisation and radiological data by lateralising temporal lobe dysfunction.

The Wada procedure was performed on patients with temporal lobe epilepsy in our comprehensive epilepsy programme (1991–8) suggests that the emergence of frontal lobe behavioural features is common in patients in whom the aetiology leads to the suspicion of bifrontal compromise (for example, a history of traumatic head injury). By contrast, these features rarely occur in cases of non-traumatic aetiology, in which the integrity of frontal lobe systems is presumed. Although it remains an incidental finding in the context of determining the suitability of a candidate for anterior temporal lobectomy, this outcome may have potential implications for the selection of patients for frontal lobectomy.

We report a case of frontal lobe epilepsy secondary to a traumatic head injury. Out of concern for untoward postoperative behavioural change, we employed the IAP in an attempt to predict the risk of a frontal lobe syndrome.

A 39 year old man had a 23 year history of severe refractory epilepsy. The seizures postdated a road traffic accident at the age of 12 years when he sustained a head injury with an ill defined period of loss of consciousness. Seizures commenced within months of that injury and, although initially well controlled, became refractory within a few years. The seizure types included staring spells, violent tonic-clonic seizures, and tonic drop attacks. He had complications from his epilepsy including a fractured jaw, two episodes of severe burning due to seizures while showering, multiple episodes of postictal confusion and probable postictal psychosis, a lung abscess secondary to aspiration, and episodes of status epilepticus. Interictal EEG was normal but showed bilateral generalised spike and wave discharges at around 2 Hz-5 Hz with some mild increase in bilateral slow activity and no convincing evidence of electrographic focalisation. Video EEG monitoring showed apparent generalised seizures without any focal onset on scalp EEG. Brain MRI disclosed a well defined atrophic lesion involving the right temporal lobe, a finding considered likely to be post-traumatic in origin. Interictal FDG PET and HMPO SPECT disclosed hyperfusion in the left anterior frontal region commensurate with the abnormality shown on MRI. Although his electroclinical pattern was suggestive of symptomatic generalised epilepsy, because of the left frontal lesion, seizure onset from that region was considered likely.

On neuropsychological examination, his general cognitive function was normal. At a behavioural level, however, he presented as very peurile in manner with a very rigid, inflexible cognitive style. The neuropsychological opinion was of a mild frontal lobe syndrome consistent with the history of traumatic head injury. There was no current evidence of psychiatric disorder. Although having successfully passed his final year of secondary school (together with several courses of advanced education), he had remained unemployed due to his seizures. He was socially isolated and his interpersonal relationships were limited.

He had severe life threatening epilepsy with the surgical commencement a remaining avenue of treatment. However, as surgical management would involve resection of the left frontal lobe against a background of traumatic head injury and the possibility of more generalised frontal lobe involvement, a left hemispheric IAP was performed. Sodium amytal (125 mg) was administered via a slow hand injection. Of relevance, no crossflow into the contralateral anterior cerebral artery via the anterior communicating artery was present (as assessed by a separate injection of contrast medium). The injection was accompanied by a dense right hemiplegia and global aphasic arrest. Resolution of language was characterised by a dense perseveration of counting which could not be influenced by the examiner. Despite normal comprehension, he showed severely impaired capacity for motor regulation (giving incongruent responses), together with marked behavioural disinhibition (agitation, swearing, verbosity, childishness). Although seemingly aware of some aspects of his behaviour (apologising for swearing), he seemed unable to suppress these responses. The overall impression was of a pronounced frontal lobe syndrome, suggesting that the right frontal lobe had incurred some damage secondary to the documented head trauma and that he must have been reliant on some left frontal contribution.

On the basis of the IAP findings, a selective cortical resection (as opposed to more extensive frontal lobe resection) to the region of damage was advised. Intraoperative electrocorticography showed active focal epileptiform discharges maximal in the inferior frontal lobe in the electrodes closest to the lesion. A cortical resection was performed, with frameless stereotaxy guidance excision of the frontal lesion. Histopathology on the resected tissue showed an old post-traumatic cyst involving the cortex and white matter. His postoperative course was unremarkable. When reviewed 3 months after surgery he was seizure free. His performance on neuropsychological evaluation remained commensurate with presurgical status. There were no novel subjective complaints. Mood, behaviour, and temperament remained stable.

Despite its undoubted value in many individual cases of temporal lobe epilepsy, the IAP has remained a controversial assessment instrument.1,2 Amid this controversy its potential usefulness in other patient groups seems to have been overlooked. A primary criticism of its use in temporal lobe epilepsy has been the question of irrigation and whether the medial temporal lobe is adequately “disablated” during the procedure. This particular limitation is not applicable when the patient with frontal lobe epilepsy, as the region of interest is clearly ablated via supply from the carotid arterial system. Caution must, however, be exercised with respect to possible crossflow into the hemisphere and the frontal cerebral artery via the anterior communicating artery. When such crossflow is present, the ability to assess validity the integrity of contralateral frontal lobe function will be compromised by virtue of the surgical induced bilateral frontal lobe syndrome. As with the use in cases of temporal lobe epilepsy, only a restricted form of assessment is possible with the frontal lobe patient during the period of ablation.

There are likely to be few surgical scenarios in which a comparable extensive resection of tissue is likely to be considered, and results must be interpreted in this context. This limitation not withstanding, the IAP does seem to have a role in separating out those patients in whom more extensive frontal lobe resections could be considered, as opposed to those in whom a more conservative approach is warranted.

This case report forms only the basis for a novel hypothesis that clearly requires more rigorous scientific research before its clinical utility can be reliably established. Nonetheless, we think that it is worth drawing the attention of the epileptological community to the potential application of the IAP in the surgical management of extratemporal cases.

MARI F O’SHEA
MICHAEL M SALING
Department of Neuropsychology
SAMUEL F BERKOVIC
Department of Neurology, Austin and Repatriation Medical Centre, Melbourne, Australia; and Department of Medicine, University of Melbourne, Grattan Street, Parkville 3052, Australia.

Correspondence to: Dr Marie F O’Shea, Department of Neuropsychology, Austin and Repatriation Medical Centre (Austin Campus), Studley Road, Heidelberg, Victoria 3084, Australia. Telephone 613 3 03 9496 9513; Fax 613 3 03 9455 2654.

Reversal of tetrabenazine induced depression by selective noradrenaline (norepinephrine) reuptake inhibition

Tetrabenazine (TBZ), a synthetic benzoquinolizine, was first introduced as a neuroleptic agent in 1960, and is now widely used in the treatment of hyperkinetic movement disorders such as chorea, tics, or tardive dyskinesia. The side effect profile is uniquely characterised by the triad of drowsiness/fatigue, parkinsonism, and depression; depression is found in about 15% of patients treated with TBZ. We here report on the rapid reversal of depressive symptoms in a patient treated with TBZ for orofacial dystonia by administering the new and highly selective noradrenaline (norepinephrine) reuptake inhibitor (SNRI) reboxetine. On admission, the 64 year old woman presented with perioral and lingual hyperkinesias as well as intermittent and involuntary movements of her lower jaw, which had lasted for about 2 years, causing her a considerable impairment of articulation. No history of neuroleptic treatment or Parkinson’s disease was evident. Her cranial CT and blood chemistry were normal. We diagnosed a segmental dystonia, which improved dramatically after a tetrabenazine medication (60 mg a day). This successful treatment response, however, was accompanied by a severe depressive syndrome, which was treated by a mixed anxiolytic-depressive mood, low self esteem, a complete loss of drive, and intermittent suicidal ideations. After switching from TBZ to tiapride, the patient recovered from depression, but her neurological status worsened significantly with the re-exposure to TBZ again ameliorated hyperkinesia, but provoked a depressive relapse. A comedication with reboxetine (6 mg/day), a new and selective noradrenaline reuptake inhibitor, finally led to a stable remission of the depressive symptoms within a week, without any worsening of the dystonic syndrome.

Tetrabenazine (TBZ) is known to act as a monoamine oxidase type B inhibitor and dopamine receptor blocking drug. In more detail, TBZ binds to and inhibits specifically the human vesicular monoamine transporter isoforms 2 (hVMAT2). Whereas the indolamine serotonin (5-HT) performs a similar a transport function in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 1996;93: 5166–71.

Tobias Eichhorn, Jürgen-Christian Krieg
Department of Neurology, Philipps-University, Rudolf-Bultmann-Straße 8, 35033 Marburg/Lahn, Germany
Correspondence to: Dr Wolfram Schreiber, Department of Psychiatry and Psychotherapy, Philipps-University, Rudolf-Bultmann-Straße 8, D-35033 Marburg/Lahn, Germany. Telephone: 0049 6421 285239; fax 0049 6421 285229; email schreiber@mail.uni-marburg.de

Spinal sulcal artery syndrome due to spontaneous bilateral vertebral artery dissection

In young adults vertebral artery dissection (VAD) is an important cause of brain infarction. A known mechanism is microtrauma due to abrupt head movements for example, chiropractic manoeuvres. In addition a pathogenetic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated. In VAD initial neck pain is often reported, which may be slight. Lesions caused by VAD are cerebellar or brainstem infarcts, unilateral or bilateral thalamic infarcts (top of the basilar syndrome), or infarctions in the posterior cerebral artery territory due to intra-arterial embolism or haemodynamic decompensation when collaterals are insufficient. Lesions of the cervical spinal cord are rare because of its good collateral supply. We report on a patient with a syndrome of the spinal sulcal artery (incomplete Brown-Séquard syndrome) caused by spontaneous bilateral VAD. A 43 year old man with a history of arterial hypertension presented with left sided numbness sparing the face, which had evolved suddenly while he was walking. In addition, he reported on dull right sided neck pain irradiating into the occiput, which had been initiated by a head rotation while he was working at a computer 2 weeks before. The neck pain had spontaneously ceased 6 days later. Neurological examination disclosed dissociated sensation defect on the left with an indistinct level around C4 to C6. Below this level on the left he had a marked hypalgesia and nearly a loss of temperature sense. The right limbs were warmer than the left ones. In addition, we found mild right sided motor system deficits. Cranial nerve function was intact, despite a right sided Horner’s syndrome. According to chest radiography phrenic nerve function was preserved. Routine laboratory findings including CSF analysis were normal. The hemiparesis and the different temperature sensation in the limbs resolved completely within 3 weeks. A known mechanism is microtrauma due to abrupt head movements for example, chiropractic manoeuvres. In addition a pathogenetic role of connective tissue diseases, cystic media necrosis, fibromuscular dysplasia, migraine, and inflammatory diseases has been postulated. Among these may be changing in type III collagen, migraine, fibromuscular dysplasia, infections in the near past, and inflammatory vasculopathy. Magnetic resonance imaging with typical semilunar mural haematoma and in addition magnetic resonance angiography (MRA) with complementary documentation of an irreversible or temporarily occluding occlusion have a high sensitivity and specificity in cases of internal carotid artery dissection. By contrast, mural haematomas of the VA especially in the V1 and the V3 segments are often not detectable by MRI. In cases of unclear non-invasive findings, DSA is still the method of choice. In addition to consecutive brain infarctions, cervical spinal cord infarctions and nerve root compression syndromes may occur in cases of unilateral or bilateral VAD. Probably as a result of the pial collateral network and the dual posterior spinal artery, spi-
Cerebral cavernous malformations are vascular malformations mostly located in the CNS. Their frequency is estimated close to 0.5% in the general population. Cerebral cavernous malformations occur as a sporadic or hereditary condition. From the Hispanic-American population, familial forms were reported with a high frequency. CCM1, a hitherto unidentified gene mapping on chromosome 7 was shown to be involved in all families with cerebral cavernous malformations of Hispanic-American descent with a strong founder effect. Around 50% of non-Hispanic-American families showed linkage to CCM1 but no common haplotype was found. A recent study showed linkage of cerebral cavernous malformations to two additional loci. No Spanish family with cerebral cavernous malformations has been analysed so far.

We report herein a genetic linkage analysis conducted on nine Spanish families with cerebral cavernous malformations. All procedures were approved by an ethics committee. The families were unrelated and originated from different regions of Spain (south west (CVE2, 3, 4, 10, 17, 25), central (CVE24), south east (CVE28), and north east (CVE29)). Seventy seven subjects including 55 potentially informative meioses and 12 spouses gave their informed consent. They were examined by a board certified neurologist, underwent cerebral MRI, and blood samples were taken. Magnetic resonance imaging was used to establish status for linkage analysis. Thirty four patients had MRI diagnosis of cavernomas and were considered as affected. Among them, 14 experienced neurological symptoms (cerebral haemorrhage n=6, seizures n=8). Nine teeen members with normal cerebral MRI were considered as healthy. Twelve members without MRI investigation had an unknown status. Analysis of pedigrees was consistent with an

(A) Pedigrees of the nine families with cerebral cavernous malformations. Black symbols= symptomatic patients with cavernous angiomas on MRI; half filled symbols= asymptomatic members with cavernous angiomas on MRI; empty symbols= asymptomatic members with normal MRI; question mark= members with unknown status. (B) Comparison of the Hispanic-American CCM1 haplotype and the haplotypes segregating with the disease phenotype within Spanish families. Polymorphic markers are shown on the left. Numbers indicate the sizes in base pairs. Primers used to amplify D7S2409 were different from those in the Hispanic-American families resulting in a different size of the amplified fragment. M65B was not studied in the Hispanic-American families. Family CVE24 was not informative for D7S646. For families CVE17 and CVE29, the two haplotypes of the affected siblings are indicated. ND= not determined.
for all markers. In this family, two a
markers within family CVE4, lod scores did
(CVE3, 4, and 28) for at least one marker.
than 1 were obtained for three families
(eight), CVE4 (16), CVE10 (seven), CVE25
itially informative meioses—that is, CVE3
cient number of poten-
sequences are available through the Genome
Data Bank (John Hopkins University, Balti-
more). Genotyping and linkage analysis
(LINKAGE package version 5.1) were per-
formed as previously described. 5
 Lod scores were calculated in the five families having a sufficient number of poten-
tial informative meioses—that is, CVE1 (eight), CVE4 (16), CVE10 (seven), CVE25 (five), and CVE28 (seven). Lod scores higher than 1 were obtained for three families (CVE3, 4, and 28) for at least one marker. Data were incomplete for the families with three markers within family CVE4, lod scores did not reach the level of 3. In family CVE10, lod scores were close to 1 for four markers (D7S2410, D7S1789, D7S858, D7S689). For the five Mediterranean families with one asymptomatic sibling with normal
autosome, the dominant pattern of inheritance (figure A).
Eight polymorphic microsatellite markers spanning the CCM1 interval were selected for linkage analysis. Four were chosen from the Genethon linkage map (D7S2410, D7S2409, D7S1813, and D7S1789), and three from the Cooperative Human Linkage Center (D7S1813, D7S1789, D7S558). The last one (M65B) was identified by SL based on sequencing data of a bacterial artificial chro-
mosome (Genbank: HSA000065; BAC RG085C05). The length of the genetic inter-
val flanked by markers D7S2410 and D7S689 is 4 centimorgans (cM). Marker dis-
tances between D7S2410/D7S2409, D7S1813/D7S1789, D7S558, and D7S689 have been estimated to be 2.2 cM, and 1.8 cM, respectively. 6 Oligonucleotide
HJ is supported by the Schweizerische Stiftung für medizinisch-biologische Stipendien (Switzerland), SL, by the Fonds de Recherche en Santé (Canada), PL, by the Consejo de Enseñanza y ZENECA pharmaceutical group. The work was founded by INSERM, Ministère de l’Enseignement Supérieur et de la Recherche, CSIC, and the Fondo de Investigacion de la Seguridad Social (Fiss: 900407).

Letters, Correspondence, Book reviews, Correction

H JUNG
P LABAUGE
S LABERGE
E MARECHAL
E TOURNIER-LASSERVE
INSERM U25, Faculté de Médecine Necker, Paris, France

M LUCAS
Laboratorio de Molécula Molecular
J M GARCIA-MORENO
M A GABERO
G IZQUIERDO
Servicio de Neurología, Hospital Universitario Virgen Macarena, Avenida Dr Fedriani, 41071 Sevilla, Spain

E TOURNIER-LASSERVE
Hôpital Lariboisière, Paris, France

Correspondence to: E Tournier-Lasserve, INSERM U25, Faculté de Médecine Necker, 156 Rue de Vaugirard, 75015 Paris, France
Telephone 0033 1 45 67 29 59; fax 0033 1 40 56 01 07; email: tournier@necker.fr

1 Otten P, Pizzalotto GP, Rüliet B, et al. A propos de 131 cas d’angioèmes caverneux (cavern-
omenes) du SNC, reçus par l’analyse retrospec-

2 Ginkel M, Awdad IA, Finberg K, et al. A founder mutation as a cause of cerebral cavernous mal-

3 Johnson EW, Lyer LM, Rich SS, et al. Refined localization of the cerebral cavernous malfor-
mation gene (CCM1) to a 4-cM interval of chromosome 7q contained in a well-defined

4 Labauge P, Laberge S, Brunereau L, et al. Hereditary cerebral cavernous angiomas: clini-

5 Craig HD, Ginkel M, Cepeda O, et al. Multilo-
cus linkage identifies chromosome 7q loci for the

Hydrocephalus caused by metastatic brain lesions: treatment by third
ventriculostomy

Metastasis to the brain occurs in 20%–40% of cancer patients. 1 About 20% of these metastases are located in the posterior fossa, cerebellum, and brainstem. Metastatic dis-
 ease to periventricular brain tissue can obstruct the cerebrospinal fluid (CSF) produced in the ventricles to the subarach-
noid space where it is normally absorbed by arachnoid granulations. This typically causes an obstructive or non-communication hydro-
cephalus. A tiny incision is customary placed to drain CSF from a lateral ventricle through a pressure regulating valve and into the atrium or peritoneal or pleural cavity. Even though this technique has been successful in relieving the hydrocephalus, it has about a 50% chance of infection or failure from blockage. 2

Another option for the treatment of obstructive hydrocephalus is third ventricu-
lossomy, a minimal invasive endoscopic neu-
rosurgical procedure. In performing third ventriculostomy, a hole is created in the floor of the third ventricle, allowing CSF inside the ventricle to drain out to the CSF space surrounding the brain. Although third ventriculostomy has a low operative morbidity and a high probability of success, to date, hydrocephalus, it is only commonly used on patients with aqueductal stenosis and the pediatric population. To avoid placing shunts in patients with inoperable metastatic brain tumors, who typically have only a few months to live, we have offered the patients third ventriculostomy as a palliative proce-
dure.

We performed third ventriculostomy on seven patients with hydrocephalus due to metastatic tumours of the posterior fossa or thalamus. They typically presented with symptoms of acute hydrocephalus in addition to any local mass effect of the tumour. Postoperatively, five patients were relieved of hydrocephalic symptoms and follow up brain imaging studies disclosed decreased ventricu-
lar size. These five patients had a median hospital time of 6.5 days and median survival of 5 months after the operation. The sixth patient’s hospital stay was prolonged due to care of their primary disease. However, most of our patients who underwent this operation for hydrocephalus caused by other diseases were discharged from the hospital 1 day after the operation and hospital stay was prolonged by 48 hours from the procedure. There were no operative complications. All five patients had no evidence of redevelopment of hydrocepha-
lus up to the last clinic visit.

Tumours who typically have only a few months to live may benefit from third ventriculostomy because of the ease of the procedure and the low complication rate. However, since this report is retrospective, it may be difficult to draw conclusions about the efficacy of this procedure. In conclusion, third ventriculostomy is a safe and effective procedure for the relief of symptoms of acute hydrocephalus. It should be used in patients with metastatic disease to the brain, particularly in patients who have a short survival time. However, further studies are needed to evaluate the long-term outcomes of this procedure.
Neuronal activity alters local blood flow in brain tumour adjacent to the activating cortex

Characteristics of blood flow in brain tumours have been studied extensively; these studies are important for diagnosis of malignancy and therapy monitoring. Our study is the first to consider how activity dependent changes of regional cerebral blood flow (rCBF) alter tumour blood flow in the brain tumour adjacent to the activating cortex.

As such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours.

Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxygenated-Hb) (%)

Such an interaction between cortical blood flow and tumour blood flow may be of value for evaluating mechanisms of neurological symptoms associated with brain tumours.

Neuronal activation causes an increase of regional cerebral blood flow (rCBF) in the activating cortical area. Near infrared spectroscopy (NIRS) demonstrates the increase in rCBF during neuronal activity as increases in oxygenated haemoglobin (oxy-Hb) and total haemoglobin (total-Hb) with a decrease in deoxyhaemoglobin (deoxygenated-Hb) (%)

Letters, Correspondence, Book reviews, Correction

Table 1 Clinical characteristics of patients who underwent third ventriculostomy for obstructive hydrocephalus

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (y), Sex</th>
<th>Diagnosis</th>
<th>Result*</th>
<th>Postoperative stay in hospital (days)</th>
<th>Survival time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70, M</td>
<td>Lung mixed adenocarcinoma and squamous cancer metastasis to thalamus</td>
<td>Improved</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>46, F</td>
<td>Ovarian adenocarcinoma metastases to cerebrum and medulla</td>
<td>Improved</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>38, F</td>
<td>Breast ductal carcinoma metastases to brainstem and cerebellum</td>
<td>Improved</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75, M</td>
<td>Rectal adenocarcinoma metastasis to cerebellum</td>
<td>Failed</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>39, F</td>
<td>Breast adenocarcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>60, M</td>
<td>Lung adenocarcinoma metastasis to thalamus</td>
<td>Failed</td>
<td>6</td>
<td>6†</td>
</tr>
<tr>
<td>7</td>
<td>64, M</td>
<td>Oesophageal carcinoma metastasis to cerebellum</td>
<td>Improved</td>
<td>7+</td>
<td>1+†</td>
</tr>
</tbody>
</table>

*Results are considered improved if the patient had resolution of symptoms and follow up imaging showed hydrocephalus improved or resolved.

†Patient is currently alive.

as 50%, with the highest failure rate in the first few months after shunt placement.1 The complication rates for both procedures are low. Third ventriculostomy and shunting can potentially cause a stroke, bleeding, ventriculitis, meningitis, a subdural haematoma, CSF leak, diabetes insipidus, and SIADH. However, shunting has additional risks of mechanical malfunction, complications associated with implanting a foreign body, and overdrainage syndrome.

Because third ventriculostomy restores near normal CSF dynamics,1 overdrainage is prevented. The procedure is also minimally invasive and safe. The procedure’s low morbidity, high efficacy, and potentially short hospital stay are well suited as a palliative treatment of hydrocephalus for patients with an expected shortened life span. We propose that third ventriculostomy should be offered as a first treatment to patients suffering from obstructive hydrocephalus from unresectable tumours.

TIENT NGUYEN
MARK V SMITH
GERARD S RODZIEWICZ
Department of Neurosurgery
SHEILA M LEMKE
Department of Medicine, Division of Oncology, SUNY Health Science Center, University Hospital, Syracuse, New York, USA

Correspondence to: Dr G S Rodziewicz, Department of Neurosurgery, 750 East Adam Street, Syracuse, NY 13210, USA, Telephone 001 315 464 4470, fax 001 315 464 5520, email rodziewz@neur.axc.syr.edu

tasks. We monitored concentration changes of oxy-Hb, deoxy-Hb, and total-Hb, using an NIRO-500 instrument (Hamamatsu Photonics KK, Japan). The optodes were placed at an interoptode distance of 3.5 cm on the left forehead so that the centre of the two optodes was placed on the centre of the tumour. With an interoptode distance of 4 cm, correlations of oxy-Hb and total-Hb measured by NIRS and rCBF measured by PET suggested that the reliable penetration depth of near infrared light of brain tissue is about 1.3 cm, thus the present NIRS measurement area was restricted in the tumour. The patient was seated and had his eyes open during the NIRS measurement. Infused consent was obtained from the patient.

To activate the left frontal lobe, we used the following four tasks: (1) semantic verbal fluency, which entails naming as many items in a semantic category (for example, animals) as possible; (2) confrontation naming, which involves naming ordinary items presented by the tester; (3) backward digit span, a working memory task which involves reporting of digits (2 to 8) in the reverse order, a task which entails reading a short descriptive passage aloud. The speech responses of the patient to the tasks were normal.

Figure B shows an example of changes in NIRS during the naming task. After the beginning of the task, oxy-Hb and total-Hb decreased to negative values during the task, and deoxy-Hb also decreased. These changes returned to the control level gradually after the end of the task. The other tasks also caused similar changes of oxy-Hb, total-Hb, and deoxy-Hb.

The rCBF in the left frontal lobe is generally increased by all the tasks used in the present study. In our NIRS activation study using the cognitive tasks showed increases in oxy-Hb and total-Hb in the left frontal lobe in most normal adults—for example, increases in oxy-Hb and total-Hb—were found in 92.3% of young adult subjects (mean (SD) 28.8 (4.4) years) during the word fluency task (unpublished data). Therefore, although we could not measure the changes in rCBF in the left frontal lobe of the patient, the difference from our previous studies strongly suggests that the tasks caused an increase in rCBF in the left frontal lobe of the patient.

A decrease in oxy-Hb and total-Hb recorded from the brain tumour indicates a decrease of local blood flow in the tumour because the NIRS measurement area was restricted to the brain tumour. The decreases in oxy-Hb and total-Hb were found only during the tasks; consequently, these changes were probably not due to changes in systemic blood pressure, which can alter tumour blood flow. Based on these assumptions, we suggest that the increase of rCBF in the left frontal lobe induced by the tasks stole the local blood flow of the brain tumour through the cortical branches, leading to the decrease of local blood flow in the tumour.

Some authors have reported that activity-dependent increase in rCBF can steal blood flow from the adjacent tissues including non-activating cortex. Recent NIRS activation studies have shown that cognitive tasks cause decreases in oxy-Hb and total-Hb in the left frontal lobe in some normal subjects; these decreases indicate a decrease in rCBF. Although the physiological mechanisms of the decrease in rCBF during neuronal activity have not yet been elucidated, we hypothesise that a stealing of blood flow is one of the mechanisms. The present report supports this hypothesis.

Migraine aura masquerading as Balint’s syndrome

Migraine is a common neurological disorder with a prevalence of 0.5% to 2% in the general population. In one fourth of total migraineurs, headache is preceded by an aura. We describe a patient with recurrent aura results in a disconnection syndrome by

Letters, Correspondence, Book reviews, Correction

lasted for about 10–25 minutes and were followed by a hemichromic, throbbing headache which was often associated with nausea, photophobia, and occasionally vomiting. Headache used to last for about 4 to 18 hours and would respond to either ergot drugs or sumatriptan, especially if taken during the beginning of the episode. Occasionally these visual symptoms were not followed by headache. The patient would not lose contact with the environment during or after the visual symptoms. Her mother and two younger sisters were also having paroxysmal episodes of common migraine.

Her general physical and neurological examination in between the episodes was unremarkable. Neurological examination during the aura symptoms disclosed that she was unable to see simultaneously all the objects in the visual field (simultagnosia). She did omit several words while reading a paragraph. However, she could comprehend and read each and every word individually. On being shown a complex picture comprising multiple subunits she was not able to comprehend and perceive the entire picture but was able to perceive each subunit of the picture individually (seeing in piecemeal). These aforementioned features were consistent with simultagnosia. Besides simultagnosia, she had optic ataxia as evidenced by her inability to coordinate hand-eye movements. Optic ataxia was tested as follows: each eye was tested separately and the hand ipsilateral to the eye being tested was used. The target stimulus was a 5 mm long pin with a wide base placed at a preselected location. The patient was asked to touch this pin with her index finger without shifting her gaze from the fixation point. The patient had difficulty in performing this test but had no problem in reaching out to her own body parts or an auditory stimulus with her eyes closed. These features were consistent with optic ataxia. Moreover, gaze apraxia was evident by her inability to look at an object on command. However, she could do it spontaneously. In addition, she had impaired smooth pursuit and voluntary saccades in all directions. Reflex eye movements were normal. Visual acuity during the episode was 6/6 bilaterally. Visual fields were normal during the episode as demonstrated by the confrontation method. Ophthalmological examination, including perimetry performed during a symptom free period was normal. There was no clinical evidence of Gerstmann syndrome, prosopagnosia, object agnosia, or colour agnosia. Her cranial CT and magnetic resonance angiography were unremarkable.
invoking visual association areas and their association pathways. optic ataxia, gaze apraxia, and simultagnosia seem to represent a dissociation of visual information from the frontal eye field and dorsal parietal regions.

PARVAIZ A SHAH A NAPEE
Division of Neurology, Department of Medicine,
Government Medical College and Associated SMHS
Hospital, Srinagar, Kashmir, J and K 190001, India

Correspondence to: Dr Parvaiz A Shah, Firdousa-
6.01p, 0.064 Tesla) showed areas of high signal
icercosis were negative, as was a CSF gram
lymphocyte/ml in the CSF. Screens for malaria
was raised (78 mg/dl), and there was one
were all normal. The CSF: blood glucose ratio
routine biochemistry and chest radiography
spastic weakness of his left face, left arm, and
eases in southern Vietnam. On admission, he
was still able to work. After the third dose, he
sure vaccination (SMBV). After the second
men of suckling mouse brain postrabies expo-
Vietnam and started on an alternate day regi-
the patient was seen at a provincial hospital in
forest and was not seen again. Three days later
ankle by his own apparently normal dog. After
postrabies vaccination encephalitis
"Can’t you use another vaccine”?
postrabies vaccination encephalitis

A healthy 39 year old man was bitten on the
ankle by his own apparently normal dog. After
the incident the dog disappeared into
the forest and was not seen again. Three days later
the patient was seen at a provincial hospital in
Vietnam and started on an alternate day regi-
men of suckling mouse brain postrabies ex-
posure vaccination (SMBV). After the second
dose, he felt unusually lethargic although he
was still able to work. After the third dose, he
became unrousable, and was transferred to the
Centre for Tropical Diseases, Ho Chi Minh
City, the referral hospital for infectious dis-
eases in southern Vietnam. On admission, he
was afebrile, confused, had slurred speech, and
his Glasgow comas score was 13. He had mild
spastic weakness of his left face, left arm, and
both legs. Full blood count and results from
routine biochemistry and chest radiography
were all normal. The CSF: blood glucose ratio
was 0.47 (63/140 mg%), the protein content was raised (78 mg/dl), and there was one
lymphocyte/ml in the CSF. Screens for malaria
toxoplasmosis, cryptococcus, and neurocyst-
icercosis were negative, as was a CSF gram
stain. The CSF was sterile after 2 weeks of
culture. Brain MRI (Access Toshiba LPT
6.01p, 0.064 Tesla) showed areas of high signal
throughout the white matter, and cystic-like
change in the basal ganglion and right cerebel-
lar hemisphere (figure A). These variably sized
lesions were bilateral, widely distributed,
asymmetric, and showed no evidence of
haemorrhage or mass effect.

As paralytic rabies could not be excluded
he was managed conservatively and the
SMBV course was continued. On the 4th day
after admission he deteriorated with a
Glasgow coma score of 10, and was inconti-
ent of urine and faeces with generalised
spastic paraparesis. Methylprednisolone (300
mg/ day) was given for 5 days followed by a
reducing course of prednisone for a presump-
tive diagnosis of postvaccination encephalitis.
The SMBV was stopped. Within 72 hours of
starting steroids there was a dramatic im-
provement in his neurological state. An MRI
examination performed 4 weeks later showed
a marked decrease in both size and number of
brain lesions and no new lesions (figure B).

After 6 weeks he was discharged walking, eat-
ing, walking, and continent but with some
persistent emotional liability and mild
memory impairment. A follow up MRI
examination 5 weeks after discharge showed
further improvement, apart from minor
abnormalities in the basal ganglion, and
generalised increase in ventricular size, con-
sistent with residual cerebral atrophy.

Rabies is caused by an RNA virus, a mem-
ber of the Rhadoviridae family, it infects
mammals and can be transmitted to humans
by contact, generally from an animal excret-
ing the virus in the saliva. Rabies manifests as
an acute encephalomyelitis, the development
of which is almost invariably fatal. The
 distinction between rabies and postvaccina-
tion encephalitis is difficult and may be helped by
antigen detection via a skin biopsy; however,
this technique is not available in Vietnam.1

Paralytic rabies could not be excluded in this
patient and hence steroids were not used ini-
tially. Steroids have been reported to increase
mortality in experimental animals with ra-
bies, and it has been suggested that they may
abrogate the immune response to the postex-
posure vaccine, thus precipitating uncon-
trolled rabies.3

There are three types of postexposure vac-
icination in use worldwide. The Semple type
(STV) is obtained from inactivated virus pre-
cine in use world wide. The Semple type
(STV) is obtained from inactivated virus pre-
cine in use world wide. The Semple type
There are three types of postexposure vac-
icination in use worldwide. The Semple type
(STV) is obtained from inactivated virus pre-
cine in use worldwide. The Semple type
vaccine in Vietnam. Rare neurological reac-
tions do occur with SMBV, Complications of
the CNS have been reported to occur after
vaccination with an incidence of 1:27000
treated people, with a 22% mortality.4 The
mortality was particularly high (98%) if the
vaccination was extensive CNS involvement. The
third type of vaccine available is the human
diploid cell tissue culture vaccine (HDCV), which
is both safe and efficacious. However, the recom-

This is the first report to show the demyeli-
nating CNS lesions on MRI, and their
resolution after steroid therapy. It is relatively
rare for patients to survive if they develop
severe CNS effects after postexposure Rabies
vaccination. Although the incidence of reac-
tions to SMBV is very much lower than STV,
this report confirms that it does still occur.
Both SMBV and STV are widely used
throughout the developing world, and would
be the vaccine administered to travellers
exposed to animal bites in such countries.
This case stresses the need for high dose ster-
oids in postexposure vaccine encephalitis and
the urgent need for the development and
deployment of a safe, and critically, a
ordable.

The economic low dose multisite intradermal
regimen using the HDCV provides an exam-
ple of how this goal may be achieved although
it is not yet widely accepted. Such a vaccine
regimen is not affordable in most
developing countries.

When we approached the Rabies Labora-
tory, Ministry of Agriculture and Fisheries,
United Kingdom for advice in this case they
were of the view that “why do you use the SMBV,
can’t you use another vaccine”. Worldwide
about 10 million people each year receive rabies
vaccine after exposure; at the Centre for
Tropical Diseases we treat 3000 people
with dog bites annually. The cost of an
HDCV in Vietnam, administered in its
present regimen (1ml given for 5 days on days
0, 3, 7, 14, and 28 with an optional booster on
day 90) is US$ 125, making the use of this
vaccine unaffordable.

This is the first report to show the demyeli-
nating CNS lesions on MRI, and their
resolution after steroid therapy. It is relatively
rare for patients to survive if they develop
severe CNS effects after postexposure Rabies
vaccination. Although the incidence of reac-
tions to SMBV is very much lower than STV,
this report confirms that it does still occur.
Both SMBV and STV are widely used
throughout the developing world, and would
be the vaccine administered to travellers
exposed to animal bites in such countries.
This case stresses the need for high dose ster-
oids in postexposure vaccine encephalitis and
the urgent need for the development and
deployment of a safe, and critically, a
ordable.

The economic low dose multisite intradermal
regimen using the HDCV provides an exam-
ple of how this goal may be achieved although
it is not yet widely accepted. Such a vaccine
regimen (0.1 ml HDCV given at multisite
injections on days 0, 7, 28, and 90) could be
made affordable, and offers excellent protec-
tion without the risks of postexposure im-
une mediated encephalitis.3

Brain MRI in May 1997. (A) T2 weighted
image showing multiple areas of high signal in
the cerebral white matter. Bilateral subcortical
and periventricular lesions are seen. (B) Brain
MRI in July 1997. T2 weighted image shows
resolution of the white matter lesions.
Leukoencephalopathy associated with khat misuse

The leaves of the tree *Catha edulis*, or khat (also qat and kat) are chewed by a large proportion of the adult population of the Yemen, and throughout Saharan and sub-Saharan Africa. The leaves are also chewed by members of the Yemeni and Somali communities in the United Kingdom. The psychoactive constituents of khat are cathin (d-norcathinone), cathine, and cathinone (an alkaloid that structure resembles ephedrine and amphetamine) and users report a mild euphoria similar to that of amphetamine. Khat is acknowledged as a precipitant of psychosis and has also been reported to cause cognitive impairment. We report a case in which khat chewing has been associated with a severe and disabling neurological illness.

A 56-year-old Somali living in the United Kingdom for the past 18 years was admitted to a psychiatric hospital with a 5 week history of progressive confusion and agitation. His family reported that he had been chewing khat, in their opinion to excess, every day during that time but had stopped 2 days before admission. There was one previous admission to hospital 9 months previously with khat induced psychosis. Cranial MRI, although contaminated by movement artefact, showed diffuse abnormality in the deep cerebral white matter of both cerebral hemispheres. Fourteen days after admission he was witnessed to have a single brief adrenergic seizure with eye and head deviation to the right.

The patient was admitted to a rehabilitation unit. His mini mental state examination score and Barthel scores were zero. Feeding by percutaneous gastrostomy was started. A trial of intravenous methylprednisolone (1 g on 3 consecutive days) gave no benefit. Repeated EEGs (on four occasions) showed diffuse slow waves only. A second MRI (figure) 3 months after onset of symptom showed the presence of a continuing diffuse extensive abnormality in the deep white matter of both cerebral hemispheres with marked cortical atrophy. Brain biopsy (via right frontal craniotomy) was performed 3 months after the onset of his illness. There was no evidence of acute inflammation, vasculitis, or infection.

While undergoing rehabilitation there has been slow improvement in his cognitive and locomotor function. After 1 year he is able to open and close his eyes, occasionally verbalise, localise pain, and obey simple commands. His plantars are flexor but he has persistent grasp and palmonmental reflexes. His nutrition is maintained by gastrostomy and he has an indwelling catheter.

The clinical presentation, EEG, and MRI findings suggest a rapidly progressive leukoencephalopathy. There are no previous reports of leukoencephalopathy in association with khat or amphetamine misuse; it has, however, been reported in association with other recreational drugs taken by mouth or inhalation. An alternative for this man's presentation is a necrotising vasculitis, a well described complication of oral amphetamine misuse. The clinical features, brain biopsy, absence of haemorrhage, and lack of response to steroids make this unlikely.

The likely precipitant of this man's illness seems to be the use of khat. A drug screen on admission was negative, and his family denied misuse of other drugs. It remains possible that the sample of khat chewed by this man had been contaminated. We are unaware of any previous reports of khat misuse with severe neurological deterioration; previous cases may not have been investigated or reported. In reporting this case our intention is to alert others to a possible complication of the misuse of this drug. Evidence of other cases would provide a powerful argument for the restriction of import and sale of khat.
M-protein, direct and indirect Coombs tests, cryoglobulin, antibodies to mycoplasma, myelin associated glycoprotein, gangliosides (GM1, GD1b, asialo-GM1, GT1b, GQ1b, Gal-C), P-ANCA, and C-ANCA. The CSF was normal. Titre of cold agglutinins was detectable at 1:128 at 4°C (normal: <1:256). The patient's serum agglutinated adult group O red blood cells, but not O-red blood cells or human cord red blood cells, signifying cold agglutinins with 1 specificity. Immunelectrophoresis of the eluate confirmed IgM composition.

The initial nerve conduction study showed severe diminution or absence of compound muscle action potentials (CMAPs) with mildly diminished conduction velocities. W wave latencies were mildly prolonged. There were no evoked sensory nerve action potentials (SNAPs) in median, ulnar, and sural nerves bilaterally. Electrophysiological studies of the affected muscles showed moderate neurogenic changes, but there were no fibrillation potentials except in the left anterior tibialis muscle. Sural nerve biopsy was performed. Epineurial vessels were surrounded by mononuclear cell infiltrates (figure A). Some vessels had focal necrosis of the myelinated fibres were undergoing axonal degeneration. Teased fibre analysis showed that 90% of the myelinated fibres were markedly decreased (50 mg/day with tapering of steroid. He was discharged on prednisolone (20 mg/day). In the subsequent 4 years, he has had mild exacerbation of the disease that responded to intermittent steroid therapy.

Characteristics features of the present case as follows: (1) subacute onset of mononeuropathy multiplex; (2) necrotising vasculitis with marked loss of myelinated fibres; (3) probable conduction block in the median nerve; (4) increased concentrations of serum titres of cold agglutinin; and (5) marked response to plasmapheresis. Extensive investigation for other causes of neuropathy was negative except for an increased serum concentration of cold agglutinins, which strongly suggests that cold agglutinins may play an important part in the induction of neuropathy in this case. Six patients with neuropathy associated with cold agglutinins have been reported including our patient. Cold agglutinins are cold reactive autoantibodies that react with the antigenic determinant termed Pr present on glycoproteins and glycolipids in erythrocyte membranes. Arai et al. reported a case of polyneuropathy and IgM M proteinemia with anti-Pr2 CA activity. IgM M protein cross reacted with sialosyl paragloboside, GT1b, GD1a, GD1b, GM3, and GD3 present in gangliosides and in endothelial cells of the periphery. The hypotheses may play an important part in the induction of neuropathy associated with cold agglutinins. We recommend plasmapheresis as first choice treatment for neuropathy associated with cold agglutinins.

We thank Dr Gerard Salazar for critical reading of the manuscript, Ms M Teshima and N Hayata for their technical assistance, Dr S Kusunoki (Department of Neurology, Institute for Brain research, University of Tokyo) for analyses of antibodies to gangliosides, and Mr H Marug (Division of Blood Transfusion Medicine, University of Kagoshima) for characterization of cold agglutinin.

(A) Sural nerve (toluidine blue staining) showing epineural vessel surrounded by mononuclear cell infiltrates. Note fibrin deposition (arrows) and necrosis in media. (bar=20 µm). (B) Most of myelinated fibres are undergoing axonal degeneration. Many macrophages containing myelin debris infiltrate the endoneurium. (bar=50 µm).
CORRESPONDENCE

The cholinergic hypothesis of Alzheimer’s disease: a review of progress

I read with interest the review of Francis et al regarding the progress of the cholinergic hypothesis of Alzheimer’s disease. They mentioned that donepezil produced improvement or no deterioration in more than 80% of patients, and that such responses should be viewed positively considering the progressive, degenerative nature of the disease. Various donepezil manufacturer’s medical representatives presenting data from a clinical study also commonly use this statement. However, this only partially reveals the truth. In fact, the same study produced improvement or no deterioration in 59% patients on placebo. I think that the beneficial effect of donepezil in particular clinical trials should always be critically reviewed in comparison with placebo. In addition, as both 24 week placebo controlled donepezil trials performed so far excluded patients with behavioural disturbances, my impression is that the positive effect of donepezil on the symptoms of behavioural disturbances still remains controversial. In fact there are reports that donepezil might induce behavioural disturbances in patients with Alzheimer’s disease.

Therefore, I would be extremely cautious about prescribing donepezil to patients with Alzheimer’s disease accompanied by behavioural disturbances.

Finally, donepezil was never investigated in a 26-week randomised double blind study as was mentioned in the review. The authors are probably referring to the randomised 24 week double blind placebo controlled trial with an additional 6 week single blinded placebo phase.

T BABIC
Department of Neurology, Medical School University of Zagreb, Kiscigaeva 12, 10000 Zagreb, Croatia.
Telephone 00385 1 217280, fax 00385 1 217280, email tomatomas.babic@ugz.hr

The authors reply: We thank Professor Babic for the letter, which raises several interesting points. We agree that it may be more helpful to put the results attributed to treatment with donepezil in the context of the placebo response. In general, looking at this as a class effect in relation to several compounds, the picture emerging is that about twice as many people obtain a response to active treatment as to that with placebo. The high placebo response is a common factor in most studies in this field and is worthy of some explanation in its own right. Although it seems that these studies compare drug treatment with that of a placebo (one treatment against no treatment), the reality is that it is a comparison of patients receiving two treatments against other patients who are receiving one form of treatment. The additional treatment regime is, of course, the care and attention that they receive by being part of the clinical study, which often seems to have an impact, not just on the patient but also on their main carer or carers.

As far as behavioural disturbances are concerned, however, our review was making the point that evidence from clinical trials to suggest that cholinomimetics as a whole may have a beneficial effect on some non-cognitive behavioural symptoms. This has now been reported for at least two cholinesterase inhibitors, and two muscarinic agonists. In particular, a clear link is emerging between psychotic symptoms and cholinergic dysfunction. Thus, Bodick et al have shown that the M/M, agonist xanomeline causes a dose-dependent reduction in hallucinations, agitation, and delusions in a 6 month randomised double blind placebo controlled, parallel group trial. In addition, Cummings and Kaufer have shown that the cholinesterase inhibitor, donepezil is effective in reducing psychotic features than cognitive disturbances; tacrine also reduces or abolishes hallucinations in Parkinson’s disease. Another cholinesterase inhibitor, metrifонate, was also shown to reduce the number of hallucinations in a 26 week randomised, double blind, placebo controlled safety and efficacy study in patients with Alzheimer’s disease. Further support for a link between cholinergic and psychosis derives from postmortem data showing that the activity of choline acetyltransferase in the temporal cortex of patients with Lewy body dementia was lower in those patients with hallucinations than in patients without this feature. Finally, in animals the partial M/M, agonist (5R,6R)-6-(3-propyliyo-1,2,5-thiadiazol-4-yl)-1-sazabicyclo[3.2.1]octane produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) produced a preclinical profile suggestive of antipsychotic efficacy and that the psychomimetic NMDA receptor antagonist ketamine (when administered at subanaesthetic doses) reduced brain concentrations of acetylcholine. Thus, on the basis of both clinical and preclinical data, a clear rationale is emerging for prescribing cholinomimetic agents for treating the non-cognitive behavioural symptoms associated with dementia, particularly psychosis.

Professor Babic is also correct in identifying two of the studies referred to as the 30 week randomised multicentre placebo controlled parallel group studies, which included a 24 week double blind treatment phase.

We are grateful to your correspondent for providing us with the opportunity to clarify these points.

PAUL T FRANCIS
Neuroscience Research Centre, GKT School of Biomedical Science, King’s College London, London SE1 9RT, UK
ALAN M PALMER
MICHAEL SNAPE
Cerebrus Pharmaceuticals Ltd, Women's Wharf, Whitehall, RG41 5UA, UK
GORDON K WILCOCK
Department of Care of the Elderly, Friethbury Hospital, Bracknell, RG14 2EW, UK

BOOK REVIEWS

The neuropathies of diabetes are common (as the chapters in this book repeatedly remind us) and can be very disagreeable. Symptomless neuropathy underlies foot ulceration and sepsis as the commonest clinical consequence of diabetic neuropathy but more severe problems resulting from autonomic failure. This book comprehensively covers every aspect of the subject, systematically (and at times exhaustively) from its epidemiology and pathogenesis (exhaustingly) to structural, functional, and clinical problems and their treatment. Most of the authors are well known in the field and their accounts are up to date and authoritative.

Unfortunately, struggle as they might, all authorities have difficulty in defining what they mean by diabetic neuropathy, in large part, in regard, understanding of this complication both in clinical and pathological terms, as well as with regard to treatment, lags far behind that of the other classic diabetic complications. nephropathy and retinopathy. Even its classification presents problems and attempts to do so are found in four different chapters, describing four classifications. Repetition is an unfortunate feature of this book and—quite apart from the confusion over classification—aspects of pathogenesis, structural changes, epidemiology, diagrams, and some reference to treatment (for example, that of pain) appear repeatedly in different chapters in greater or lesser detail.
This is certainly a book for the specialist and not at all (as the preface suggests) for the family practitioner. There are good reviews of nerve structure, causation, and treatment of painful neuropathies and focal neuropathies. The comprehensive survey of the Diabetes Control and Complications Trial (DCCT) shows in detail the only treatment which is truly effective (diabetic control); and the lengthy description of aldose reductase inhibitor trials establishes that, even after more than two decades of investigation, further trials are still needed.

Clinical evaluation of somatic and autonomic neuropathies are useful and also, to some extent, comprehensive but lack specificity—that is, normal values for simple tests are difficult to find. The huge subject of the diabetic foot is covered in these chapters and "the impact of micro and macrovascular disease" is compressed into the last nine pages of the book.

The bibliography is important and often very up to date with references ranging from 33 to 283 per chapter. If this book is at times confusing, this reflects the confusion regarding the nature and treatment of the diabetic neuropathies as much as the overlap and repetition found in its different chapters. It is a book of reference for the specialist who will be well served by the comprehensiveness of some of its reviews and their assembly of the appropriate literature.

PETER WATKINS

The quest for a means of accurate localisation of structures during neurosurgery has taxed the minds of clinicians from early in the history of the specialty, starting with Zernov's encephalometer more than a century ago. Just as the solution to the mariners' problem of determining longitude from which it partly takes its name, neuronavigation ("the surgeon's sextant") has relied on the advent of new technologies to provide solutions to an age old puzzle.

*Advances In Neuronavigation begins by trac*ing the history of stereotaxis from a Cartesian coordinate system devised by Clarke and Horsley at the beginning of this century, through ventriculography, stereotactic brain atlases, and CT/MR frame based stereotaxis. The final part of the first section discusses the roots of image guided frameless stereotaxis through the integration of high speed graphics computers, informatics, biotechnology, and robotics.

The remainder of the text is divided into four sections. The first concerns the creation of maps from CT, MRI, MRA, PET, and various types of functional imaging. The following section discusses clinical applications of stereotaxis, beginning with different authors' experiences of their own favoured frames, the biopsy of difficult lesions such as those in the brainstem or posterior fossa, and finally experience with different image guidance systems and their integration with the operating microscope and endoscope. There then follows a series of chapters devoted to radiosurgery, and to image guidance in epilepsy and functional surgery. The final section is entitled *Frontiers In Neurosurgical Navigation* and considers, among other topics, intraoperative MRI, telepresence in neurosurgery, and robots.

The incorporation of new technology is likely to alter surgical practice radically over the coming decade and equipment that seemed at the cutting edge of technology only a few years ago, such as the mechanical arm, has already passed into near obsolescence at a bewildering rate. This volume provides an excellent account of the developments which have occurred in neuronavigation, and a thought provoking insight into the wider applications of equipment of which many of us use only a fraction of the potential capability. The title of the book should perhaps have included the word cranial, as there is almost no discussion of the impact that this technology has had in surgery of the spine. This aside it is an excellent book although, like the technology it chronicles, one which is likely to date quite rapidly.

ROBERT MACFARLANE

The title and back cover of the latest addition to *Neurology Lite* texts contains the usual proclamations. "Concise, key topics, revision aid, essential, review..." the well trailed soundbites demanded by the consumer in the increasingly competitive market of "read less - learn more" books. This book, however, is unusual and distinct. Unlike many rivals it is not an A5 facsimile of a superior parent A3 reference tome. Brevity, so essential to the success of an overview work, has sacrificed neither clarity nor clinical relevance. The strength of *Key Topics in Neurology* owes much to the author's ability to negotiate skilfully the compromises necessary for a successful distillation of a large and complex field. He has not shied from wholesale culling of neurological ballast. The allied ability to distinguish and highlight the salient and relevant from the obscure and historical allows this book to be surprisingly thorough in its coverage and topicality. There is sufficient up to date information on most areas of neurology such that this book would be useful for specialist registrars albeit without the detail or embellishment they seek. In terms of the aims of this book such observations must be regarded as complimentary.

My limited criticisms relate to details of layout and presentation. I found the exclusive alphabetical arrangement of chapters mildly disorientating in that, for example, *History taking in Neurology* is to be found at p 131. Similarly, the absence of diagrams and tables is an unexpected omission as I would imagine that this would have complemented the overall style of the book. These are minor gripes of what in print largely matches the sleeve promise. The price tag of just £27-50 the book will be welcomed by undergraduates through to specialist registrars.

SIDDHARTHAN CHANDRAN

Readers may be interested in:

CORRECTION

K Sudo, N Fujiki, S Tsuji, M Aijki, T Higashi, M Niiino, S Kikuchi, F Moriwaka, K Tashiro.

Focal (segmental) dyshidrosis in syringomyelia. *J Neurol Neurosurg Psychiatry* 1999;67:106-8. During the editorial process the footnote to table 1(p 107) was wrongly transcribed. The last line—¶p value for each pair of items: hyperhydrosis v normohydrosis 0.0007; hypohydrosis v normohydrosis 0.7282; normohydrosis v hypohydrosis 0.0012 should read—¶p value for each pair of items: hyperhydrosis v hyperhydrosis 0.0007; hypohydrosis v hypohydrosis 0.7282; normohydrosis v hypohydrosis 0.0012.
The cholinergic hypothesis of Alzheimer's disease: a review of progress

T BABIC

J Neurol Neurosurg Psychiatry 1999 67: 558
doi: 10.1136/jnnp.67.4.558

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/4/558.1

These include:

References
This article cites 11 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/67/4/558.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/