SHORT REPORT

Late onset startle induced tics

M A J Tijssen, P Brown, H R Morris, A Lees

Abstract
Three cases of late onset Gilles de la Tourette’s syndrome are presented. The motor tics were mainly induced by an unexpected startling stimulus, but the startle reflex was not exaggerated. The tics developed after physical trauma or a period of undue emotional stress. Reflex tics may occur in Gilles de la Tourette’s syndrome, but have not been described in late onset Tourette’s syndrome. Such tics must be distinguished from psychogenic myoclonus and the culture bound startle syndromes.

(J Neurol Neurosurg Psychiatry 1999;67:782–784)

Keywords: tics; startle reflex; post-traumatic stress

The normal startle response consists of a brief flexion response, most marked in the upper half of the body, elicited by an unexpected auditory, and sometimes somaesthetic, visual, or vestibular stimulus.1 An exaggerated motor startle reflex is one of the main features of hereditary hyperekplexia,2 3 but it has also been described secondary to other neurological disorders, such as cerebral palsy,4 postanoxic encephalopathy,5 and brainstem abnormalities.6 7 Compared with the normal startle response these startle reflexes are greatly exaggerated in amplitude and more extensive in distribution. It has been suggested that the startle reflex may be exaggerated in Gilles de la Tourette’s syndrome,8 although this has recently been contested.9 The issue is compounded by reflex tics, which may particularly occur in response to a startling stimulus.10 11 Reflex tics may occur in the setting of idiopathic Gilles de la Tourette’s syndrome, but have not, to our knowledge, been described in the late onset disease. Here we present three cases of late onset Tourette’s syndrome, where startle induced tics dominated. The tics developed after physical trauma or a period of undue emotional stress. Such tics must be distinguished from psychogenic myoclonus and the culture bound startle syndromes.

Case reports

PATIENT 1
This African woman had a road traffic accident in 1988 at the age of 33. She was not rendered unconscious by the impact but noted pain in the neck and right sided weakness the next day. Over the next few days she developed sudden jerks affecting the head, neck, and left arm, with involuntary vocalisations (screams, yelps, and grunts). These were subsequently noted to be startle sensitive as well as spontaneous. They could be triggered by unexpected bright lights or taps. The involuntary movements were more likely to occur when she was angry or stressed. In 1991 coprolalia and kissing tics started. Typically these would come in flurries lasting several minutes and consisted of coprolalia with high pitched yelping noises, facial tics including grimacing and pouting, and jerking movements of the left shoulder and left arm. No obvious urge or build up of tension preceded the spontaneous movements. The suppressability of the jerks remained unclear. There was no family history of tics or obsessive-compulsive behaviour. Tetrabenazine, but not sulpiride, led to considerable suppression of the jerks remained unclear. There was no family history of tics or obsessive-compulsive behaviour. Tetrabenazine, but not sulpiride, led to considerable suppression.
when distracted. As a child he had a minor and suppressible repetitive involuntary movement of one leg and an involuntary dancing movement of the fingers when under stress in middle age. Family history was negative for tics or obsessive-compulsive behavior.

On examination, a tap to the jaw, biceps, or quadriceps tendon would set off a flurry of jerks lasting up to 2 minutes. These jerks involved various parts of the body including the face, hands, feet and abdomen and did not follow a stereotyped pattern. The duration of the EMG activity during the jerks varied between 75 ms and 1 s. The earliest jerk was recorded 120–160 ms after a tap to the patella or biceps tendon. Variable jerks would also occur spontaneously when completely relaxed. These included eye blinks, brief flexion movements of the trunk, and hand and feet movements. Suppression of the jerks was followed by an even more marked flurry of jerks. The EEG activity preceding the spontaneous truncal flexion jerks was back averaged. A premovement potential was absent before these jerks, but was present when the patient voluntarily mimicked the same movement (figure).

PATIENT 3

This 32 year old African woman was knocked down by a car. She was unconscious for 3 days. Thereafter she had anterograde amnesia for seconds and post-traumatic amnesia for several months. She had anxiety, panic attacks, and forgetfulness, and complained of right sided weakness and sensory disturbance. A year after the head injury she developed high pitched inspiratory screams associated with facial grimacing and jerky movements of the arms. The screams and movements would occur spontaneously or follow an unexpected and
startling stimulus, such as the slamming of a door. Vocalisations could be temporarily suppressed. There was no definite urge or build up of tension preceding spontaneous jerks and vocalisations.

On examination she had a slightly slurred speech and mild right sided weakness and sensory loss. Tone and tendon reflexes were normal and plantar responses flexor. She had spontaneous vocalisations with inspiratory wheezing sounds associated with facial grimacing and eye closure. Similar vocalisations could be precipitated by an unexpected stimulus such as a tap to the face or loud noise. These had a latency of about 500 ms and were repeated every few seconds. The spontaneous vocalisations were often accompanied by variable head movements or raising of the left arm and shoulder. She also had spontaneous upwards deviation of the eyes. Clonazepam was ineffective. Brain MRI showed bilateral frontal high signal change consistent with her previous head injury. There was no premovement potential before spontaneous vocalisations.

Discussion

We present three cases of late onset Tourette’s syndrome, in whom startle induced tics dominated. The tics developed after physical trauma in two patients and a period of undue emotional stress in the third. In patient 2 a pre-existing Tourette’s syndrome was possibly unmasked by stress as he had a motor tic and obsessive traits in childhood. This supports the idea of a genetic basis or predisposition to obsessive traits in childhood. This supports the unmasked by stress as he had a motor tic and existing Tourette’s syndrome was possibly in two patients and a period of undue emotionality in the third. In patient 2 a pre-existing Tourette’s syndrome was possibly unmasked by stress as he had a motor tic and obsessive traits in childhood. This supports the idea of a genetic basis or predisposition to obsessive traits in childhood. This supports the unmasked by stress as he had a motor tic and existing Tourette’s syndrome was possibly in two patients and a period of undue emotionality in the third. In patient 2 a pre-existing Tourette’s syndrome was possibly unmasked by stress as he had a motor tic and obsessive traits in childhood. This supports the idea of a genetic basis or predisposition to obsessive traits in childhood.

In summary, reflex tics may develop de novo in middle age, in the setting of physical or emotional trauma. It is important to distinguish them from psychogenic reflex jerks, which they may mimic.

This project has been supported by the foundation “Drie Lichten” in The Netherlands. We thank Dr P Thompson for performing the electrophysiological tests in patient 1.

Late onset startle induced tics

M A J Tijssen, P Brown, H R Morris and A Lees

J Neurol Neurosurg Psychiatry 1999 67: 782-784
doi: 10.1136/jnnp.67.6.782

Updated information and services can be found at:
http://jnnp.bmj.com/content/67/6/782

These include:

References
This article cites 20 articles, 9 of which you can access for free at:
http://jnnp.bmj.com/content/67/6/782#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Child and adolescent psychiatry (251)
- Movement disorders (other than Parkinsons) (766)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/