LETTERS TO
THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self-limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglion. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor. HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Intercital surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure, he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hypoperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was...
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and area of hypoperfusion were identified. Quantitative data at region of interests (ROIs) were measured on coronal and axial slides containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as (ROI focus−ROI contralateral)/ROI focus×100. We set an arbitrary change of ASI >100% to be significant. As there were only two patients, statistical testing was not performed.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared with their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (-6.6476 to -1.65289); over the right LT was +116.7% (1.07927 to 12.55764); and over the left BG was +206.8% (2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was -3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4906 to 18.70077); and over left BG was +159.5% (-5.85556 to 3.27522).

Postictal psychosis is a distinct clinical entity associated with temporal lobe epilepsy. The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a cluster of complex partial seizures. Partial seizures were unprovoked by abrupt withdrawal of anti-epileptic drugs. The cluster occurs in patients with poor drug compliance or during video EEG telemetry studies when antiepileptic drugs are withdrawn purposefully. The clinical course of postictal psychosis is usually benign and unpredictable. In our patients, the duration of psychotic disturbances lasted from a few days to 10 weeks, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed. The underlying mechanism of postictal psychosis is unknown. Postictal cerebral hyperfusion has been postulated as an analogue to Todd’s paralysis after seizure. However, the presence of increased rCBF during postictal psychosis, may suggest an alternative explanation as ictal SPECT has been shown to be highly sensitive and specific in demonstrating seizure foc.

To conclude, our results are contradictory to the hypofunction theory of Todd’s paralytic psychosis. Despite the widespread distribution of total FN, type III repeat B FN isoform were absent, respectively, from operations for ruptured aneurysms of the anterior communicating artery or for Arnold Chiari malformation.

Immunohistochemical evaluations were performed on 5 µm thick cryostat sections using a protocol reported previously. Owing to the limited amount of available material, only in a few cases was some fresh tissue retained to allow western blots. Distribution of FN and TN isoforms was investigated using three monoclonal antibodies (mAbs) or two Ab fragments, obtained by phage display technology, respectively. These Abs, prepared in our laboratory, were found to work on fresh frozen material. According to the previous characterisaions the BC-1 mAb and the TN-11 Ab fragments are specific for isoforms occurring almost exclusively in fetal tissues and in tumours, with the recognised TN isoform being typically associated with anaplastic gliomas (table).

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are not due to decreased blood flow or due to the growth of surrounding normal brain tissue but are due to growth of AVM walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and gliosis. However, recent findings are consistent with the hypothesis of ongoing angiogenesis. Previous research from our laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in fetal and neoplastic tissues. These isoforms are a blend of structurally different glycoproteins that result from alternative splicing of the primary transcript and are mainly expressed in the extracellular matrix. Their expression is undetectable in normal adult tissues, with the exception of the vessels in the regenerating endometrium. To gain further insight into the pathobiology of the AVMs the present report sought to ascertain whether these lesions also express oncofetal FN and TN isoforms.

Tissue samples were obtained after neurosurgical excisions of ruptured AVMs. All 10 patients had experienced an intracerebral haemorrhage as the first clinical manifestation of their disease. There was no drug history before bleeding. Control specimens from two right gyrir recti and one cerebellar tonsil were obtained, respectively, from operations for ruptured aneurysms of the anterior communicating artery or for Arnold Chiari malformation.

Characterisation of the employed Abs and distribution of the recognized isoforms.

<table>
<thead>
<tr>
<th>Anti-FN mAb + 1</th>
<th>Anti-TN Ab fragments + 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>IST-4</td>
<td>IST-9</td>
</tr>
<tr>
<td>Recognised isoforms</td>
<td>Total FN</td>
</tr>
<tr>
<td>Distribution of the isoform (n)</td>
<td>Widespread</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous findings showed that ED-B+FN presents with conformational modifications in its central part and results from deregulation of FN pre-mRNA.\(^1\) The distribution of this isoform was found to be highly restricted in normal adult tissues. By contrast, ED-B+FN exhibited widespread distribution in the vasculature of fetal tissues, including brain, and of several types of malignancies. It was therefore regarded as a marker of angiogenesis.\(^1\)

Similarly, the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and some malignancies, but was present in large amounts in fetal tissues, including brain, and in glioblastomas.\(^1\)

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrosine kinase, an endothelial cell specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain.\(^1\) The pattern of distribution of structural proteins was consistent with the hypothesis of diffuse activation of angiogenesis, without specific relation to individual vessel types.\(^1\)

Furthermore, use of the cell proliferation marker MB-1 showed endothelial proliferation in arterioles, venules, and capillaries of the cerebral tissue neighbouring AVMs.\(^1\)

The present findings indicate that a specific receptor upregulated in glioblastomas, a TN isoform containing the ED-B on-fibronectin molecule generates conformational modifications that unmask a cryptic sequence.\(^1\)

Immunostaining with the TN-11 Ab fragment or the BC-1 mAb shows the presence of the type III repeat C TN-(A) and ED-B+FN-(D) isoforms in anastomosing vessels. These isoforms are also present in the wall of vessels of the cerebral tissue adjacent to the anastomosing nidus (TN: C; FN: D).\(^1\) Bar=10 µm.

Hashimoto’s encephalopathy presenting as “myxoedematous madness”\(^2\)

The neuropsychiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as “myxoedematous madness”.\(^3\) The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine.\(^4\) More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion defects in the presence of normal structural neuroimaging.\(^5\) In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.\(^6\)

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949\(^7\) lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. The suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides.\(^2\) As autoimmune thyroiditis is the commonest cause of thyroid failure in this country,\(^2\) these lesions have been present in at least some of Asher’s original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the difficulty of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity.

A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by the police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and habitual uncharacteristic behaviour. He had reported a vision of the crucifixion, and hearing the voice of his dead mother. He claimed that his house was occupied by the devil, drove around aimlessly in his car, and appeared constantly fearful and withdrawn. On the day of admission he had made a bonfire in the garden and burned his wife’s clothes, family photographs, furniture, and business papers. When his wife and son tried to intervene he
became aggressive and threatened them with a saw. The general practitioner was called and surmised that a new psychosis and a severe depressive illness. Police assistance was requested because of the patient’s continuing violent behaviour.

On admission he was unkempt but cooperative and appeared amenable. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychotic phenomena. He was agitated towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial performance on the Rey figure, which was 10/30 (36%).

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormal mental state. The psychiatric component of his illness responded fully, and the antithyroid microsomal antibody titre fell dramatically in the aetiology of Hashimoto’s encephalitis. The psychiatric disturbance, on the background of chronic thyroiditis and compensated hypothyroidism in a patient with subacute encephalopathy and vasculitic component to the illness is, therefore, unconvincing.

At 6 month follow up the patient had become aggressive and threatened them with a saw. He reported feeling “back to normal”, had bought a new psychiatrist, and wasschedule to return. Behavioural assessment showed an irregularity of his behaviour. No psychotic depression, but displayed no insight into the aetiology of Hashimoto’s encephalitis. The psychiatric disturbance, on the background of chronic thyroiditis and compensated hypothyroidism in a patient with subacute encephalopathy and vasculitic component to the illness is, therefore, unconvincing.

Alien hand sign in Creutzfeldt-Jakob disease

The clinical picture of Creutzfeldt-Jakob disease (CJD) includes various movement disorders such as myoclonus, parkinsonism, hemiballism, and dystonia. We report on a patient with CJD who manifested the alien hand sign. We suggest that CJD should be included in the differential diagnosis of diseases which present with an alien hand.

Creutzfeldt-Jakob disease, one of the human prion diseases, is characterised by rapidly progressive mental and motor deterioration. Involuntary movements occur in above 90% of the patients in the course of the disease, the most common being myoclonus. Other movement disorders range from tremor to frank tetanus, hemiballism, and dystonia. We report on a patient with CJD who presented with an alien hand.

Alien hand is a rare and striking phenomenon defined as “a patient’s failure to recognise the action of one of his hands as his own”. One of the patient’s hands acts as a stranger to the body and is uncooperative. Thus, there is a loss of feeling of ownership but not loss of sensation in the affected hand. Originally described in callosal tumours, the aetiology of alien hand also includes surgical callosotomy, infarction of the medial frontal cortex, ocipitotemporal lobe, and thalamic infection, and corticobasal degeneration. A 70 year old, right handed Jewish man born in Argentina, living in Israel for the past 20 years, was admitted to the Neurology Department. Until a month before his admission, he was apparently healthy and helped in the accounting office of the village where he lived. His neurological illness had presented insidiously during the past month with unsteadiness of gait and frequent falls. He also manifested behavioural changes, became aggressive, and had visual hallucinations, perceiving insects and mice moving through his visual field. Often, he expressed his fear from seeing that the “ceiling was
falling over him". His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease.

On admission, he was awake, bradyphrenic, and partially collaborative. His convulsions, haematochezia, were not associated with involuntary movements. The effect was sad and he had partial insight for his mental dysfunction. He was disoriented for time, place, and situation. He could understand speech and was able to follow simple instructions involving two consecutive components. Naming was preserved. Prominent dysgraphia and dyscalculia were noticed. Immediate recall and short term memory were severely disturbed, whereas long term memory, especially for personal life events, was relatively spared. Abstract thinking was severely affected. Bimanual movements, such as clapping, were extremely difficult.

The cranial nerves were normal as were ocular fundi. The motor examination showed normal force. Deep reflexes were symmetric and plantar responses were flexor. The right arm had a dystonic posture. His gait was ataxic on a wide base.

At times, the left arm would spontaneously rise in front of the patient during speaking or while using his right hand. He was unaware of these movements until they were brought to his attention. When questioned about their purpose, the patient denied that they were voluntary. No grasping of either hand or foot was found. The patient had no corticospinal sensory loss.

The laboratory data including blood chemistry, haematology, and sedimentation rate were normal, as were folic acid, vitamin B12 concentrations, and thyroid function. Ventricular fluid analysis revealed no focal signs of inflammation. The cerebrospinal fluid had normal content. Brain CT showed mild cerebral atrophy. An EEG showed severe diffuse slowing at admission. Within a week, repeated EEGs showed triphasic waves with a periodic pattern of 1-1.5 Hz.

During the next 2 weeks, the patient developed more frequent myoclonic jerks. Severe dysphasia and cognitive decline were accompanied by confusion and aggression. He became grossly ataxic, and unable to walk and perform any of his daily activities even with help. Transferred to a chronic care hospital, he died few weeks later. Postmortem examination was not allowed.

This short fatal neurological disease manifested by fulminant dementia, myoclonic jerks, and extrapyramidal and cerebellar dysfunctions was strongly suggestive of CJD. The periodic EEG pattern reinforced this diagnosis. Our patient’s alien hand was part of the otherwise characteristic clinical picture of CJD, but appeared early in the disease course when no myoclonic jerks were present. We are aware of only one report of alien hand in CJD. MacGowan et al described two patients with CJD and a myoclonic alien hand syndrome. In one patient the left arm “was noted to have spontaneous movements which appeared purposeful—wanndered out of her view”. In the second, the alien limb performed complex actions such as unbuttoning her blouse and removing a hair pin. Although our patient had no myoclonus or pyramidal signs when the alien hand appeared, in their patients it was associated with spontaneous or stimulus sensitive myoclonus, spastic hemiparesis, and cortical sensory loss.

The literature seems to describe distinct forms of alien hand. All share the occurrence of involuntary movements contrary to the patient’s stated intent, but the types of movement differ. In the callosal form, there are purposeful movements of the non-dominant hand. In the hemi-palmar form, there is grasping and utilisation behaviour of the dominant hand. In the corticobasal degeneration, there are aimless movements of either hand. When a consequence of humorous or vascular pathology, alien hands can perform complex acts such as trying to tear clothes or undoing buttons. The description by MacGowan et al has characteristics of the callosal form (especially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al in corticobasal degeneration. These authors described the alien limb as “involuntarily rising and touching the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to stop responded that “she didn’t”. Another patient’s left arm was at times “elecivated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10).

Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements.

One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand. In CJD, bilateral cortical damage to motor areas might be the origin of their subsequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zardeli, Department of Physiology, University of California, Los Angeles, USA.

Correspondence to: Dr Dr R Inzelberg, Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

Recurrent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive. We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet.

This patient was born uneventfully to healthy non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastroenterology and Nutrition Criteria. Since then she has been on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes erroneously thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next 2 days, confining her to bed.

At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs; the knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decreased in pin prick and temperature with sparing of proprioception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum urea and creatinine, electrolytes, creatinine, glucose, transaminase, bilirubin, immunoglobulins (Igs), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B₁₂, B₆, and E. Antibodies to Campylobacter jejuni and human T lymphocytic and viral antigens, antinuclear antibodies, and myelin basic protein were negative. Anti-gliadin antibodies (AGAs), IgA antiendomesium antibodies (AGAs), IgM and IgA anticytotoxic antibodies (ARA), assayed by enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were also negative. Lumbar puncture was not performed. Anti-bodies against gangliosides GM₁, GM₂ and GD₁β, myelin associated glycoprotein and myelin
Electrophysiological study suggestive in both episodes of an acute demyelinating peripheral neuropathy confined to the lower limbs. Values were within normal limits as the upper limbs.

<table>
<thead>
<tr>
<th>Episode</th>
<th>Peroneal</th>
<th>Tibial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>MCV (ms)</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>DL (ms)</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>F wave latency (ms)</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>CMAP (µV)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sural (µV)</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>AMP (µV)</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td></td>
</tr>
</tbody>
</table>

In the paediatric age group, basic protein were not tested. Nerve conductions studies were consistent with a predominately motor demyelinating peripheral neuropathy (table). Her symptoms improved spontaneously and she was discharged home after 2 weeks. For 2 years she was asymptomatic on a gluten free diet. At the age of 12 she presented acutely with severe abdominal pain 8 days after a weekly intake of bread meant to be gluten free. Two weeks later, due to persisting gastrointestinal symptoms, her parents excluded the bread from her diet. After 2 further weeks, while the abdominal pain was gradually improving, she had a new episode of acute weakness in the lower limbs and sensory abnormalities including burning paraesthesiae. On neurological examination the legs showed marked diminution in muscle power; absent deep tendon reflexes, and a reduction in pain and temperature; light touch, perception of position, and vibration were preserved. Walking was impaired and the patient was bedridden. Otherwise the examination was normal. A haemogram showed white cell counts of 9700/mm³. Laboratory investigations were within normal values as in the past. IgA and IgM AGA, IgA EMA, and IgA ARA as assayed by ELISA and IF were again negative. Nerve conduction studies confirmed the presence of a predominantly motor demyelinating neuropathy (table). The parents refused consent for a lumbar puncture or nerve biopsy.

Over the next 2 weeks her neurological disabilities spontaneously improved until full recovery was complete. After 4 weeks, AGA, EMA, and ARA were still negative.

On her most recent admission, 1 year after the onset of her first neurological symptoms, she is still on a strict gluten free diet and has no residual symptoms or signs.

The natural history of celiac disease is well known and the typical celiac enteropathy is often associated with several other disorders. However, as celiac disease is a relatively common and lifelong condition, it is likely that some of these associations may occur by chance.

This patient, who was diagnosed as having frank celiac disease at the age of 6 months, experienced two episodes of acute peripheral neuropathy, at the age of 10 and 12 years, respectively. Two major pieces of evidence strongly support the assumption of a gluten derived disease: (1) the episodes occurred on both occasions when gluten was accidentally reintroduced in the diet; and (2) the response to a gluten free diet was reasonably rapid, occurring within weeks.

The present case, however, differs clinically from those with neurological involvement previously reported. In the paediatric age group, in fact, neurological complications of celiac disease are rarely encountered and are mostly confined to the CNS: to the best of our knowledge, there are only two previously reported cases of PNS involvement in children with celiac disease. In both cases, however, these were chronic axonal polyneuropathies presenting during a gluten free diet.1

In both episodes in the present case neurophysiology was strongly supportive of a demyelinating peripheral neuropathy, which is most commonly attributed to a direct immune mediated attack to the myelin. By contrast, wallerian and axonal degeneration may be caused by vasculitis, and nutritional, metabolic, and toxic factors.

An autoimmune pathogenesis in association with strong evidence of a genetic susceptibility has been proposed for celiac disease. Although it is well established that AGA, EMA, and ARA are reliable indicators of sensitisation to gluten at least at the time of diagnosis, in the clinical practice at follow up, during a gluten challenge, pathological values of these antibodies may not be detected.3 In the present case the time course of the disease might be suggestive of an antibody mediated response. However, we could not detect pathological concentrations of AGA, EMA, or ARA antibodies either during the course of the disease or at follow up.

It is known that in celiac disease many immunological perturbations can occur outside the gastrointestinal tract. Crossing of the antigens through a damaged small intestinal mucosa, deposition of immune complexes in target organs, a reduction in immune surveillance, mechanism of molecular mimicry, and activated T cell response may contribute to the pathogenesis of the diseases associated with celiac disease. Direct toxic effects of gluten and vitamin deficiency are other possible pathogenic mechanisms of damage to the nervous system. Although we ruled out a vitamin deficiency it is still questionable whether a toxic neuropathy can be the case.

In conclusion, this case shows two major issues: an acute polynuropathy can be a complication of celiac disease in childhood and its benign course could help in the understanding of the underlying pathogenic mechanisms.

We are grateful to Professor Angela Vincent (Oxford) for her helpful suggestions in reviewing the manuscript.

AGATA POLIZZI
MARIA FINOCCHIARO
ENZO PARANO
PIERO PAVONE
Division of Paediatric Neurology, Department of Paediatrics, University of Catania, Catania, Italy

Correspondence to: Dr Agata Polizzi, Division of Paediatric Neurology, Department of Paediatrics, University of Catania, Viale A Doria 6, 95125 Catania, Italy. e-mail: agatapolizzi@tiscali.it

Frontal release signs in older people with peripheral vascular disease

A growing body of research examining neurological aspects of clinically “silent” cerebrovascular disease suggests that neurological signs indicative of generalised organic brain damage may occur in the absence of completed stroke.1 These soft signs include primitive reflexes (frontal release signs), representing an anatomical and functional deatferentation of cortical from subcortical structures. Primitive reflexes are known to occur in a wide variety of dementias, including Alzheimer’s disease2 and vascular dementia.3 It is likely that the presence of undetected cerebrovascular disease accompanying peripheral vascular disease is underestimated, as peripheral vascular disease is known to be a risk factor for transient ischaemic attacks. A study assessing 373 older patients with peripheral vascular disease found that 72 of the 144 patients who had not experienced a transient ischaemic attack, or stroke signs, were found to have a degree of carotid stenosis of between 60% and 99%.4

In the present study, the prevalence of primitive reflexes was examined in a group of 125 community residents from the same geographic area. All were interviewed and examined outside hospital by myself. Interviewees were community residents from the catchment area of an inner city London teaching hospital.

Twenty five consecutive non-amputees on the waiting list for femoropopliteal bypass operation were compared with 25 postoperative patients who had undergone elective hip or knee replacement and a period of inpatient rehabilitation. All participants were aged 65 or over at the time of interview. Patients with peripheral vascular disease all had clinical and Doppler proved evidence of peripheral ischaemia. Controls were interviewed between 6 months and 1 year after their operation. Both groups had no history of stroke or transient ischaemic attack.

A more detailed description of instruments is provided elsewhere.5 All subjects were...
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semiquantitative scale. The nine reflexes were paratonia and palpmomentary, hand grasp, foot grasp, glabellar, rooting, snout, and visual/tactile sucking reflexes. Neuropsychological measures included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression scale, and diagnostic criteria for DSM IV major depressive disorder. Family history of depression, wish to die, and suicideidal intention within the past year were also recorded, as were blood pressure and a checklist for chronic physical illness.

Table 1 Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th>Reflex</th>
<th>U</th>
<th>pValue</th>
<th>0.15</th>
<th>1.0</th>
<th>0.00*</th>
<th>0.15</th>
<th>0.29</th>
<th>0.01*</th>
<th>0.44</th>
<th>0.08</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>274.0</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
<td>287.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Higher mean score in people with peripheral vascular disease.

Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that a prominent disruption of frontal/subcortical brain function may not present with hard neurological signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

I thank Dr Robert Howard for supervision of this study and Professor Mr Paul Baskerville for allowing me to interview patients under their care. The study was carried out as part of a University of London MD thesis.

RAHUL RAO
Department of Old Age Psychiatry, Maudsley Hospital and Institute of Psychiatry, London

Correspondence to: Dr Rahul Rao, Department of Old Age Psychiatry, Guy’s, King’s, and St Thomas Medical School, Job Ward, Thomas Guy House, Guy’s Hospital, St Thomas Street, London SE1 8RT; UK email: raor@globalnet.co.uk

Facilitious clock drawing and constructional apraxia

A 45 year old man presented with a 1 day history of headache, possible seizures, and left sided weakness. On the day of presentation the patient’s wife had twice found him, inconspicuously, on the floor. After the second such episode she brought him to hospital for evaluation. Examination disclosed a complete left hemiplegia and hemianesthesia, although muscle tone was documented to be normal and the plantar responses downgoing bilaterally. Brain CT was normal and routine blood examination was unremarkable. There were no further seizure-like episodes and the patient was transferred to this hospital 10 days later, hemiplegia unchanged, for possible angiography and further investigations.

He was an exsmoker with hypercholesterolaemia and peripheral vascular disease which had been treated by a left femoral angioplasty 5 years earlier. The angioplasty was complicated by the occurrence of a pseudoaneurysm thought to be related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up outpatient brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, orientated, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini mental state examination, with absent three word recall, impaired registration, and poor copying of a two-dimensional line. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o’clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B). What he tended to a left hemineglect. There was also a patient did so only minimally to the right of the midpoint (58% of the distance from the left side).

Cranial nerve examination suggested an incongruent and inconsistent left hemiopia sia to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork’s vibration on the left side of the forehead, with a distinct demarcation in the midline. The rest of the physical examination was unremarkable.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haematological and metabolic analyses plus erythrocyte sedimentation rate, serum lactate, prothrombin time, partial thromboplastin time, peripheral vascular disease, controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients.
density lipoprotein (3.92 mmol/l) and triglycerides (4.30 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 µmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentrically constricted field of mild degree in the right eye and tunnel vision in the left eye.

The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculation and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “anxiety”, “executive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not specifically addressed—that is, tests designed to detect malingering during neuropsychological testing were not administered by the examiner, who had not been informed at the time of consultation of the presumptive neurological diagnosis of malingering or factitious disorder.

No further investigations were performed and the patient was transferred via the original hospital to a rehabilitation facility and subsequently discharged to home. Confronted with the findings of the video monitoring the patient appeared sanguine and accepting of the evidence that he should be able to move his left side. Six months later he was ambulatory but otherwise not significantly improved. He had been assessed by a psychiatrist but had refused psychiatric follow-up, electing instead to be followed up by a psychologist. He understood his diagnosis to be “conversion disorder” and reported that he was actively collecting information on the subject via the internet.

Outpatient brain SPECT and visual and somatosensory evoked potentials performed 1 year after discharge demonstrated no hemispheric abnormalities. The patient remained off work and was receiving disability funding. He walked with a limp favouring his left side and complained of persistent decreased sensation on the left side. Forced choice sensory testing of finger and arm movement on the left demonstrated performance to be worse than chance (68% wrong choices). Motor bulk, tone, and reflexes were symmetric and plantar responses downgoing. He drew a clock normally at the 1 year follow up.

The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neurologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemispatial neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent three word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the cube, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stresses, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his symptomatic just as he was scheduled for return to work after his first non-organic hemiplegic episode, and the intentional requirement to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering.

Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

R WENNERG

Department of Medicine, Division of Neurology, The Toronto Hospital, University of Toronto, Toronto, ON, Canada

Correspondence to: Dr R Wennberg, EC8–022, The Toronto Hospital, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8. Telephone 001 416 603 5402; fax 001 416 603 5768.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness.

On admission he was described as “belligerent,” “agitated,” and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a large, left, retrochiasmatic thalamic bleed with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions...
appropriately. Neurological examination showed contralateral gaze preference, supra-nuclear vertical gaze palsy, difficulty converging, left sided faciobrachial paresis, and dense, left sided hemianesthesia. Deep tendon reflexes were absent on the left and Babinski's reflex was present on the left. In addition, visual extinction and neglect were present.

At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being examined, the patient acknowl-
edged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was moved to a room nearer to the nurses’ station for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse that, “It was a good day, it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him and that it had been incorrectly recalled being otherwise. By this time he had a moderate hemiplegia and recognised “a little weak-
ness,” but continued to insist that he was well and able to return to work. By the 6th week after stroke the patient more consistently acknowledged that he was weak on the left side of his body. A request for disabled housed-
ing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his impaired ability to return to work. By the 9th week after stroke he was on the verge of being moved to a room nearer to the nurses’ station. His girlfriend was surprised when he kissed her in front of the sta-

His awareness of his hemiplegia fluctuated before. He re-

In summary, we present a case of mania accompanying anosognosia (a form of anosognosia known as right thalamic haemorrhage), which is different from the corresponding DSM-III syndromes: mania, acta.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 001 617 636 1633; email eliebson@open.nh.edu

1 Bech P, Kastrup M, Rafaelsson OJ. Mini-

2 Belliveau J. Functional cerebral imaging by sus-

3 Babinski J. Contribution a l’étude des troubles mena

5 Weinsten EA, Kahn RL. The syndrome of ano-

6 Cutting J. Study of anosognosia. J Neurol Mu-

7 Starkstein SE, Pedoferr JP, Price TR, et al. Ano-

Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous EEG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of electrical seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pace-

maker he has had no further episodes. In cases of epileptic cardiac dysrhythmia, iso-

lated EEG or ECG recordings may prove insufficient and prolonged simultaneous EEG/ECG monitoring may be required.

Cardiac arrhythmias subsequent to epilept-

ic seizures have been recognised for more than 90 years. They provoke diagnostic confusion and may be a mechanism of sudden unexplained death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was...
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, without forewarning, suddenly collapse to the ground where he would remain unresponsive, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. Resolution of the episode his heart would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be hypotensive in origin and therefore before he was started on phenytoin, with no benefit. Carbamazepine was added, with again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre Of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Interictally rare spikes were seen over the right hemisphere at about 07:06. The event EEG was performed immediately after an episode had been captured during monitoring. Recording of the right posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more regional voltage attenuation to cause bradycardia. Additional prolonged stimulation resulted in ventricular ectopics, heart block, QT prolongation, and death. In a previous temporal lobeectomy patients stimulation of the left insular cortex (particulatly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It was suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias.

Recurrent episodes of loss of consciousness are a common clinical problem. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during monitoring. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.

FERGUS J RUGG-GUNN
JOHN S DUNCAN
SHELLIE J M SMITH
Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK email j.duncan@ion.ucl.ac.uk

Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 Mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene. HNPP typically presents recurrent pressure palsies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with HNPP whose respiratory failure and proximal muscle weakness were prominent features.

The patient started to dyspnoea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life. At the age of 60, he was admitted to the Shotton Red Cross Hospital as an emergency patient with a coma due to CO2 narcosis (PCO2 117.6, PO2 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary and other medical problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that his in his teens he had experienced some episodes of right peroneal and right axillary nerve palsies which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy and scoliosis was noticed. The muscular atrophy was more likely than age and sex matched healthy controls. The muscular atrophy and scoliosis was noticed. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hyperactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs. His position sense was normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal (99%) and the chest roentgenogram showed moderate lung fibrosis. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hyperactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs. His position sense was normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal (99%) and the chest roentgenogram showed moderate lung fibrosis. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hyperactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs. His position sense was normal.
of myelinated fibres was reduced (5726/mm² normally thin axonal myelin sheaths. The density of the myelin sheath and some abnormalities in the myelin sheath were rare. A left sural nerve biopsy showed scattered tomacula, thickening of the myelin sheath and some abnor-malities including thin Axonal Myelin Sheaths. The density of myelinated fibres was reduced (5726/mm²).

A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient's dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness.1 Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.1

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al.2 reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.

Spinal accessory neuropathy and internal jugular thrombosis after carotid endarterectomy

Spinal accessory neuropathy is a rare complication of carotid endarterectomy (CEA). Involvement of cranial nerves, especially the accessory nerve, is well known.3 However, there has been no reports of internal jugular thrombosis after CEA.4 Our patient developed respiratory insufficiency concomitant with a cervical transverse myelopathy presenting with progressive weakness of the neck flexors, especially in the left hemi-neck. In this case, the internal jugular veins were occluded with thrombosis.

Our patient had no symptoms of venous pressure elevation, although respiratory insufficiency occurred after CEA. Therefore, we postulate that the internal jugular thrombosis caused a spinal accessory neuropathy, resulting in respiratory insufficiency. Long-term follow-up is necessary to clarify the relationship between these complications.

venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognised in many cases.1 Concordant ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular venous thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later. The symptoms persisted and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable cord within the right supraclavicular fossa. There was moderate atrophy of the right sternocleidomastoid and trapezius, with right shoulder drooping and minor right scapular winging. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodagnostic studies were consistent with partial right accessory neurapraxis with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodagnostic studies were consistent with chronic right spinal accessory neurapraxis, and repeat ultrasonography showed persistent right internal jugular venous thrombosis. Spinal accessory neurapraxis was first reported as a complication of CEA in 1982.1

Since then, there have been several case reports and small series.1 A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neurapraxy in over 3000 cases.1 Although the authors did not include several other reports2–4 which, taken together, may seem to suggest a somewhat higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEAs that have been done worldwide suggests that clinically significant spinal accessory neurapraxies is a rare complication. Most reports of spinal accessory neurapraxis after CEA may be more frequent. The cause of spinal accessory neurapraxy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked.5 Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or ischemia/infarction (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neurapraxies.1,4

The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. Internal jugular venous thrombosis may be followed by a high incidence and retraction resulting from a high carotid bifurcation would place the nerve at risk. Whether this realisation may lead to any technical modification to decrease the risk of spinal accessory neurapraxy in those with a high bifurcation remains to be seen.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case.1 As Southcott et al noted, retraction of the internal jugular during CEA may cause trauma to the nerve, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Intraoperative venography had shown 90% stenosis of the right internal jugular vein thrombosis may include intravenous injection, fever and leukocytosis may occur.1 Common pathogenetic mechanisms for spinal accessory neurapraxy and internal jugular venous thrombosis may include intraoperative trauma, haematoma, and postoperative inflammation and scarring. Although the onset of either spinal accessory neurapraxy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of spinal accessory neurapraxies in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, as in some other cases of spinal accessory neurapraxy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.

GEORGE WOODWARD
RAM VENKATESH
Department of Neurology, University of Kansas, and Neurology Section, VA Eastern Kansas Health Care System, VA, USA

Correspondence to: Dr George Woodward, Neurology Section (111), VA Medical Centre, Leavenworth, Kansas 66048, USA. Telephone 001 913 168 2000 extension 2441; E-mail 001 913 758 4225.

Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate. This should serve as a wake-up call to the community to possible serious adverse effects of energy supplements.

A 33 year old man had a severe aphasia on awakening in the morning of 23 January 1999. He did not complain of any other symptoms. He was referred to our department on 26 January 1999. He had a Wernicke aphasia with a slight right sided face and arm weakness and a right Babinski sign. His blood pressure was 140/60 and his pulse 54 per minute. Brain CT showed signs of extensive left middle cerebral artery infarct. Cervical ultrasound duplex scanning and cerebral angiography were normal. Cerebral CSF examination and EEG were also normal except for a patent foramen ovale.

The patient had no vascular risk factors, in particular no tobacco use, and he was perfectly fit until his stroke. He was a sportsman with 2 hours daily intensive training for body building. He was working as a baggage handler in an international airline company. During a recent journey to Miami, Florida, he bought tablets of “energy pills” in a shopping mall to enhance his physical performances. The first drug contained MaHuang extract (corresponding to 20 mg ephedra alkaloids), 200 mg caffeine, 100 mg L-carnitine, and 200 µg chromium per two capsules. The second drug contained 6000 mg creatine monohydrate, 1000 mg taurine, 100 mg inosine, and 5 mg coenzyme Q10 per scoop. He consumed 40–60 mg ephedra alkaloids, 400–600 mg L-carnitine, and 600 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be excluded as he recently returned from a transatlantic air flight, there was no deep venous thrombosis and D-dimers were normal. However, ephedrine has an indirect sympathomimetic action and is responsible for arteriolar vasoconstriction in addition to other catecholaminergic effects. Both ischaemic and haemorrhagic stroke associated with ephedrine use have been reported.1 Acute myocardial infarction and acute psychosis have also been reported after taking ephedrine and other sympathomimetic drugs.2 Ephedrine and its metabolites are natural products that are used in non-prescription energy enhancing products that are used in non-prescription weight loss products. Ephedrine is a sympathomimetic that is available in combination with sympathomimetic drugs. It is also available in combination with sympathomimetic drugs.
it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.1

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effects of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
e-mail vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysaesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningioma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysarthrochokinesis.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbiculari oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebellomedullary cistern. The tumour was totally removed with marked displacement of the brainstem to the contralateral side. Postoperative angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transpetrosal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypoaesthesia. Audiometry remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brainstem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relation is supported also by the absence of a family history of movement disorders and the absence of previous exposure to neurolipotropic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst. Hemifacial spasm was seen in patients with dystonic neuroinmunomas, meningiomas, and epidermoid tumours of the cerebellopontine angle. Acoustic neurinomas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spastic parietal facial contractures. Cerebral dystonia due to tumours of the cerebellopontine angle have been reported recently.

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously. Alternatively, enhanced excitability of brainstem interneurons has been suggested. This pathophysiological mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodic dysphonia, and cervical dystonia. Tolosa et al found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects. Our case provides further evidence that functional impairment by compression and distortion of the brain stem may cause hyperkinetic cerebellomedullary movement disorders. It is supported also by the knowledge that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MR imaging to rule out a surgically treatable cause.

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
email joachim.krauss@nch.mahl.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown structure present in dialysable leukocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion. The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leukocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leukocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections; therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as in some refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis. Administration of dialysable leukocyte extract has been claimed to be free of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia.

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leukocyte extract orally for uveitis. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with relapse in the left right eye. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leukocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (8.4 g/l, normal 6.0–8.0 g/l), although the serum protein fraction was normal, antistreptolysin tities (355 UI/ml, normal <200 UI/ml), and anticardiolipin IgG (30 UI/ml, normal <12 UI/ml). Two MR scans at 1 and 4 months after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin tities (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of the extension of cerebral white matter lesions, which did not show contrast enhancement. A final MR scan 20 months after onset showed further regression of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be causal. Despite the absence of biopsy, we reasonably excluded muscle, and antineutrophil cytoplasmic antibody, lupus anticoagulants, cryoglobulins, immune complexes, complement fractions, and neoplastic markers.

Serological investigations showed IgG but not IgM against cytomegalovirus (CMV), Herpes simplex, Varicella zoster, Epstein-Barr virus, and JC virus in the CSF was negative.

Cell, protein, and glucose concentrations in CSF were normal. No oligoclonal bands or antibody against CMV, Herpes simplex, Varicella zoster, Epstein-Barr virus, Cossachic, Adenovirus, Enterovirus or Borrelia burgdorferi were present. Polymerase chain reaction search for Herpes simplex 1 and 2, Varicella zoster, CMV, Epstein- Barr virus, and JC virus in the CSF was negative.

Brain MRI showed several extensive asymmetrical lesions in the subcortical and periventricular cerebral white matter, some of which exerted a mass effect on the nearby CSF spaces. All lesions exhibited thick ring-like enhancement after intravenous contrast administration (figure). The brain stem, cerebellum, and cervical spinal cord were spared. The patient had a progressive spontaneous remission of symptoms and signs. The neurological examination 20 days after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin tities (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of the extension of cerebral white matter lesions, which did not show contrast enhancement. A final MR scan 20 months after onset showed further regression of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be causal. Despite the absence of biopsy, we reasonably excluded...
the diagnosis of vasculitis or neuro-Bechet’s disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticitrullinated antibodies is found in 2% of healthy subjects.

The occurrence at different times of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the patient are not typical for this condition. Mental confusion is not common at the onset clinical and laboratory findings in the diagnosis of multiple sclerosis, but some cerebral white matter lesions highly supports the diagnosis of multiple sclerosis whereas it is often found in acute disseminated encephalitis. In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis. On the other hand the possibility that acute disseminated encephalitis may recur has been accepted and on the basis of the patient’s clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autoantigen reactivity is only temporary and direct against a single antigen in acute disseminated encephalitis and multiple antigens in multiple sclerosis.

Although the hypothesis that dialysable leucocyte extract had triggered an autoimmune disorder in our patient cannot be proved, our finding is in line with the report of multiple cerebral lesions after therapy with IL-2 in patients with malignancies or HIV infections.

On the other hand, the fact that acute disseminated encephalitis is often correlated with the administration of foreign proteins, such as during vaccinations or viral infections led us to postulate in this patient a cell mediated immunological mechanism. Therefore, an immunological cross reaction between viral antigens (or other foreign material contained in vaccines) and various parts of the nervous system resulting in acute disseminated encephalitis might have occurred. As already noted, dialysable leucocyte extract contains a multitude of immunostimulating or potentially activating substances so it is impossible to pinpoint which one could have been responsible for the demyelinating effect seen in our patient. This notwithstanding, our finding indicates that neurological surveillance is worthy in patients assuming dialysable leucocyte extract therapy.

FRANCESCO G FOSCHI
LORENZO MARSIGLI
MAURO BERNARDI
Seminaria Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiologia, Università degli Studi di Bologna, Policlinico Sant’Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it

Fahr’s disease and Asperger’s syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger’s syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr’s disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger’s syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient’s mother had received weekly injections of Depoprovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged behind grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesthesia on sensory testing, and a manieristic gripping handshake. There were no extrapyramidal

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr’s disease.
symptoms. His IQ score was in the low range (WISC-C=85 at the age of 13; Barbear- Pinard=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of others’ intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of Toronto test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fahr’s disease (figure). SPECT showed increased activity in basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 0.70–1.50 mM), ionised calcium was 0.80 mM at pH 7.4 (normal 1.10–1.34 mM); urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 μM), and a nuclear scan of the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved markedly. Asperger’s syndrome is a subtype of pervasive development disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorder are scarce and inconclusive.1 Although the tempo-orbital region is the most often involved in pervasive developmental disorders2 abnormal functioning of the frontal basal ganglia is suspected from replicated findings of executive function deficits and from occasional findings of fronto-hypometabolism or abnormal macroscopic brain morphology.3 Abnormal cell counts and morphology in the cerebellar hemispheres have also been reported, but the relation of these findings to autism is controversial.4 Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetiologies. Cognitive and behavioural abnormalities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorder and hypocalcemia, given the paucity of published cases, is plausible in the presented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause specific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuits may contribute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medical conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism are often considered meaningless.5 By contrast, this case, similarly to some others6 suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnormalities curiously indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with identifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevelopmental model of autism?

Hypertrophic atlantoaxial ligaments: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be affected by several pseudotumourous masses extradurally located, such as rheumatoid panus, hypertrophic non-union of odontoid fracture, post-traumatic cicatrix, syringobulbia, tumorous calcium pyrophosphate dihydrate crystal deposition, taphaceous gout, calcification of the posterior longitudinal ligament, synovial disease-like pigmented villonodular synovitis, and synovial chondromatosis.7 8 Hypertrophy of the atlantoaxial ligaments as a consequence of degenerative disease was recently recognised as an individual entity. Only five previous cases have been published.9 We add another case to the short series available in the literature, emphasising that as the cause of the spinal cord compression is amenable to surgical removal, symptomatic patients should be diagnosed and treated without delay. A 66 year old woman presented with a rapid development of progressive spastic tetraparesis and an unremarkable medical history. There was no osteosclerosis or instability on plain cervical radiography and C.T. A bone scan with 99mTc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demarcated no enhancement after intravenous gadolinium contrast, and was compressing the upper cervical spinal cord (figure). The laboratory tests were normal, confirming the absence of rheumatoid arthritis, metabolic disease, or gout. Surgical removal via a transoral approach with a minimal bony resection was direct and provided sufficient space to obtain spinal cord decompression. It was followed by a posterior C1–C2 fusion. Macroscopically, the lesion had no capsule and resembled a hypertrophic ligamentum flavum. Microscopically, it was non-inflammatory, hypocellular, and ligamentous pieces found within the mass appeared fibrous and almost disintegrated. The patient regained normal neurological function. Over a 3 year follow up period there was no recurrence.

We focus attention on hypertrophic atlantoaxial ligamentary disease as a degenerative disease that must be considered within the possible causes of high spinal cord compression.

ALEJANDRA TEREZA RABADAN
Department of Neurosurgery, Instituto de Investigaciones Medicas "Alfredo Larrison", Facultad de Medicina, Universidad de Buenos Aires, and Equipo de Neurocirugia de Buenos Aires, Argentina

GUSTAVO SEVELIER
Department of Pathology, Clínica Baxterica, Buenos Aires, and Equipo de Neurocirugia de Buenos Aires, Argentina

Correspondence to: Dr Emmanuel Stip, Centre de Recherche Fernand Séguin, Hospital LH Lafontaine, Département de Psychiatrie, Université de Montréal, 7331, rue Hochelaga, Montréal (Québec) H1N 3V2, Canada. email stipe@umontreal.ca

Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63-year-old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoriation of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient's only complaints were left temporal headache and right hemihypaesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern. On the next day CT showed an obscure low density lesion at the dorsolateral midbrain in addition to the previous lesion (figure). Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain high intensity on a T2-weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The loss of pain and temperature sensation improved gradually and the patient was discharged 2 weeks later. T2 weighted images 1 month later showed a more localized lesion in the same area. The coronal slices showed a high intensity lesion at the level of lower midbrain coinciding with the tentorium level, disclosed as a low line between the occipital lobe and the cerebellar hemisphere (figure). The neurological deficits almost disappeared 6 months later.

Somatosensory impairment including pain is one of the most common complaints among patients with cranioencephalic injury. Responsible lesions for sensory impairment, detectable by neuroimaging studies, almost always accompany associated neurological deficits. To our knowledge, a selective injury at the spinothalamic or trigeminothalamic tracts due to tentorial coup injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients pre-conditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of a tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions. The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

© 2017. Published by Elsevier Ltd. All rights reserved.

Correspondence to: Dr. Naokatsu Saeki, Department of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan

KAKUNOSU SAEKI, YOHSHINORI HIGUCHI, KENRO SUNAMI, AKIRA YAMAURO

Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan

CORRESPONDENCE

Toluene induced postural tremor

We read with interest the article by Miyagi et al and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular \(\gamma \)-aminobutyric acid (GABA) concentrations within the cerebellar cortex which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons. Degeneration of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation. Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recent described case, which showed remarkable clinical and iconographic similarities with that described by Miyagi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigra on T2 weighted MRI. As experiments also showed a 50% reduction in loss of dorsolateral striatal dopamine innervation.

Nabbout et al have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that should make the physician cautious about applying the factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening tool in a general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper. The second is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monroe. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. The study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monroe”. Including all patients is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these patients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the consequence of introducing from these 36 non-selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which enhanced with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact test) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us what subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al suggests some new hypotheses between some others. However, the definitive answer will not be provided by studies of selected samples but by follow up of a population based sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

FINBAR J O’CALLAGHAN ANDREW LUX
Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom
Correspondence to: Dr Finbar J O’Callaghan, Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

We read with interest the article by Sasaki et al concerning the atypical form of amyotrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease’s course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles and upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al coined the term familial amyotrophic lateral sclerosis to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al described a series of patients affected by ALS that predominantly showed signs of lower motor neuron disease restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amyotrophic brachial diplegia syndrome. Other terms used in the past to refer to this form of ALS have been dangling arm syndrome, suspended form, orangutan sign, dead arm sign, bibrachial palsy, rizomelic amyatrophy, and the idea of naming it a distinctive phenotype of a neurogenic
“man-in-the-barrel” syndrome has even been suggested. Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpian in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS. At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course. 4

Be that as it may, the truth is that this atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries.

1. The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p = 0.05). 2. The age of onset of this form was similar to the rest of ALS. 3. There was a clear predominance among men (the male/female ratio was 9:1 in this form, compared with 1.5:1 in the total ALS group). 4. There was a longer median survival (a median survival of 57 months compared with 39 months in the ALS group). Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for more than 5 years after the onset of symptoms.

On a personal level, we also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow-up of the results obtained in the respiratory function tests (FVC, FImax, and PEmax).

We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoidus (upper part of the deltoidus), the subscapularis and the teres minor. As a consequence, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation.

The atrophy and weakness of the infraspinatus and the supraspinatus, that act as an active ligament in scapulohumeral articulation, would explain the presence of subluxation of the shoulder joints in these patients.

Finally, we are in complete agreement that the term “man-in-the-barrel” syndrome and ALS can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 55. The faster progressive deterioration of the symptoms, the appearance of bulbar signs, and the absence of sensory symptoms and signs would favour the diagnosis of ALS.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODDINA
Servicio de Neurología, Hospital General, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain.

Correspondence to: Correspondence to: Dr Josep Gamez, Servicio de Neurología, Hospital General, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain. email: 12784jg@cc.emb.es

Sasaki replies:
We thank Gamez et al for their interest in our article concerning the atypical form of amyotrophic lateral sclerosis (ALS).

Over many years, several researchers have recognised this peculiar distribution of muscle atrophy in clinical practice. The clinical manifestations consist of the muscular atrophy confined to the upper arms (proximally dominant), absence of deep tendon reflex in the arms, almost normal deep tendon reflex in the legs, and subluxation of the shoulder joints. Some patients progress to bulbar involvement, and many terms have been coined to describe this peculiar pattern of the muscular atrophy such as dangling arm, orang utan sign, dead arm syndrome, amyotrophic bulbar diplegia syndrome, brainchal palsy and man-in-the-barrel syndrome. Some researchers classified into a category of motor neuron disease (ALS or spinal progressive muscular atrophy). However, others could not exclude the possible cause of cervical diseases such as dissociated motor loss in the upper extremity. In fact, these patients had cervical abnormalities such as cervical spondylosis and subluxation of the cervical spine. Cervical myelography showed that the subluxation of the cervical spine is not always clinical evidence for a central monoparesis of the cervical cord (supraspinal projection). The authors ascribed isolated dystarhythmia to the interruption of the corticothalamic pathway by extracapsular and transcortical pathway fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending projections.

We postulated that isolated dystarhythmia results from interruption of corticospinal networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending projections.

To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dystarhythmia using HMPAO-SPECT. This study included that the corticopontocerebellar tract is preserved in isolated dystarhythmia because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dystarhythmia. Lingual palatal dysfunction was evident in three of seven patients reported by Urban et al and in two of 12 by us. This indicates that isolated dystarhythmia originates in incoordination of multiple organs necessary for speech articulation as well as a cortical motor dysfunction. Although interruption of the corticollinal pathways is a likely cause of isolated dystarhythmia, it should be borne in mind that damage to other descending and ascending projections may contribute to isolated dystarhythmia.

BUNGO OKUDA
HISAO TACHIBANA
Department of Neurology, Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan

Isolated dystarhythmia

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monoparesis of the tongue in patients with isolated dystarhythmia from stroke. As in their patients transcranial magnetic stimulation induced absent or delayed corticofugal responses at the tongue, the authors ascribed isolated dystarhythmia to interruption of the corticothalamic pathway. On the whole, their findings are plausible, but we would like to comment on the underlying mechanism of isolated dystarhythmia.

As in the case of isolated dystarhythmia reported by Urban et al, all of our patients with isolated dystarhythmia had lacunar infarctions involving the internal capsule and corona radiata. Measurement of cerebral blood flow with IMP-SPECT in these patients disclosed frontal cortical hypoperfusion, particularly in the anterior opercular and medial frontal regions. Anterior opercular lesions produce facio-pharyngeal-glossomotorarynesia (anterior opercular syndrome), and damage to the medial frontal regions, including the supplementary motor area, causes speech expression disorders. White matter lesions can disrupt afferent and efferent fibre connections in motor and language areas, resulting in dysfunction of these cortices. Therefore, we postulated that isolated dystarhythmia results from interruption of corticospinal networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending projections.

We also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow-up of the results obtained in the respiratory function tests (FVC, FImax, and PEmax).

We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoideus (upper part of the deltoideus), the subscapularis and the teres minor. As a consequence, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation.

The atrophy and weakness of the infraspinatus and the supraspinatus, that act as an active ligament in scapulohumeral articulation, would explain the presence of subluxation of the shoulder joints in these patients.

Finally, we are in complete agreement that the term “man-in-the-barrel” syndrome and ALS can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 55. The faster progressive deterioration of the symptoms, the appearance of bulbar signs, and the absence of sensory symptoms and signs would favour the diagnosis of ALS.
Motor cortical excitability in Huntington's disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with the results we previously found: a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington's disease. Hanajima et al suggest that the discrepancies between the two studies may be due to the late stage of the disease, with a higher number of patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette's disorder), but also in different diseases such as amyotrophic lateral sclerosis. We think, however, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

The authors reply:
We were very grateful for the response of Abbuzzese et al to our paper. We completely agree with their opinions. The discrepancy between the two studies may not be mainly due to the different stage of the disease between the two groups of patients. Although the duration of the disease is one factor to judge the disease stage, the severity of the disease (stage of the disease) is also positively correlated with CAG repeat number. We may have to take CAG repeat number into consideration in comparisons. Unfortunately, however, we have no way to do such comparisons between these two studies. We could say, at least, that the intracortical inhibition was normal even at the same stage of the disease as that of the patients of Abbuzzese et al., if studied with our method. We also consider that methodological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus is critical. If using a suprathreshold (active threshold) conditioning stimulus, a facilitatory effect must often superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold below the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the results of paired magnetic stimulation.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington's disease. Abbuzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with which the degree of the
intracortical inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracortical inhibition is disturbed in Huntington’s disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whatever is true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

R HANAJIMA
Y UGAWA
Department of Neurology, Division of Neuroscience,
Chukyo University, 3-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

3 Hanajima R, UGAWA Y, Terao Y, et al. Ipsilateral cortico-cortical inhibition of the motor cortex is disturbed in Huntington’s disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whatever is true, the intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

Critical closing pressure: a valid concept?

Czosnyka et al recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. I see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FV(t)) at a given moment t is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR):

\[FV(t) = \frac{ABP(t) - CCP}{CVR} \]

(1)

At the time of systolic and diastolic pressure values (ABPs, ABPs), respectively, it follows that systolic and diastolic blood pressures (FVs, FVs) should be equal to (ABPs–CCP)/CVR and (ABPs–CCP)/CVR, respectively. However, it is clear that the vascular resistance valid for the static pressure/flow connection (CVR0, concerning mean pressures and flows) is different from and in general much higher than resistances determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile pressure. Therefore, equation 1 cannot be applied to describe dynamic flow. This can best be illustrated using the frequency domain approach (ABP=mean pressure; FV=mean flow velocity; A1=amplitude of the pulsatile pressure wave; F1=amplitude of the pulsatile flow wave):

\[FV(t) = \frac{ABP(t) - CCP}{CVR0} \]

(2)

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors:

\[CCP2=\frac{ABP-A1/F1}{FV} \]

(4)

leads to

\[CCP2=\frac{ABP-CVR1}{CVR0} \]

(5)

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.

ROLF R DIEHL
Department of Neurology, Krupp Hospital, Alfred-Krupp-Straße, 45117 Essen, Germany

Correspondence to: Dr Marek Czosnyka

Levodopa induced dyskinesias are currently associated with chorea-ballism in monkeys. Reduction in the neuronal activity of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson's disease is higher than in intact animals. A recent anatomical study described by Figueiras-Mendez et al. identifies the globus pallidum as a good indicator of a very positive response to levodopa. In our case, Figueiras-Mendez et al. would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the post-surgery MRI with measurements at the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to recognise a large amplitude potential. The recordings shown in the article have amplitudes less than 0.3 mV and could not be identified in patients with the EMG and the accelerometer recorded simultaneously. Artificial manual stoppage by one experimenter (confirmed by visual inspection, silence in the EMG, and stoppage in the oscillating accelerometer) and/or spontaneous arrest in the tremor modified the firing frequency and discharge pattern or rhythmic cells corroborating the tremor nature of the cells, the activity of the thalamus and zona incerta with proper characteristics; (f) a change in the background basal noise when entering the subthalamic nucleus. A higher activity is observed; (g) dual activity is observed when entering the nucleus. A lower background noise level; (h) the activity of substantia nigra pars reticulata cells when further lowering the microelectrode. These cells discharge at high frequency at regular intervals as identified in patients' and primates. All these points were fulfilled by the patient reported.

Considering the questions in the letter by Obeso et al., we make the following comments: (a) Action potentials of large amplitudes are easily recognised from the rest of the recording cells, and are not very common. The recordings shown in the article have amplitudes less than 0.3 mV and could not be considered large amplitude potentials. We start to record activity from 3 mm before entering the subthalamic nucleus, traverse the length of the subthalamic nucleus, and go further down several mm to encounter substantia nigra pars reticulata cells. Changes in the background activity are clearly recognised and are higher when entering the subthalamic nucleus. Enough cells are recorded along the tracks experimented as to recognise a large amplitude potential. The
low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impedance, manufacture, etc. The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al.1,2

(5) In our report, cells discharged tonically, but cells fixed phasically were well differentiated by a profuse burst activity and identified by statistical means (autocorrelation and interval histograms).

(6) Motor responses and tremorgenic cells in line with the above mentioned criteria were found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.3

In the fourioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to passive and/or voluntary movements of the subthalamic nucleus in the right hemisphere, two tracks were performed. One was considered tremorgenic. The stimulating electrode was placed in laterality 12. The stimulating electrode was placed in laterality 11.

(2) The stimulating electrode was placed in laterality 12. The stimulating electrode was placed in laterality 11.

(3) Motor responses and tremorgenic cells in line with the above mentioned criteria were found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.3

In the fourioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to passive and/or voluntary movements of the subthalamic nucleus in the right hemisphere, two tracks were performed. One was considered tremorgenic. The stimulating electrode was placed in laterality 12. The stimulating electrode was placed in laterality 11.

(4) Motor responses and tremorgenic cells in line with the above mentioned criteria were found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.3

In the fourioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to passive and/or voluntary movements of the subthalamic nucleus in the right hemisphere, two tracks were performed. One was considered tremorgenic. The stimulating electrode was placed in laterality 12. The stimulating electrode was placed in laterality 11.

(5) In our report, cells discharged tonically, but cells fixed phasically were well differentiated by a profuse burst activity and identified by statistical means (autocorrelation and interval histograms).

(6) Motor responses and tremorgenic cells in line with the above mentioned criteria were found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al.3

In the fourioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to passive and/or voluntary movements of the subthalamic nucleus in the right hemisphere, two tracks were performed. One was considered tremorgenic. The stimulating electrode was placed in laterality 12. The stimulating electrode was placed in laterality 11.
connective tissue disorders, organ specific autoimmunity, sarcoidosis, and cerebral vasculitis. Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recom
visible for such a compact book (315 pages), and although the editors succeed in collecting an 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung). The 1 year survival of grafts has improved from the last 10 years in the United Kingdom, the 1 year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplantation patients have a significant neurological complication. The list of common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject, and forms part of the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

CLARE GALTON

ALASDAR COLES

Organ transplantation, once medical exotica, is now almost routine in the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lung (UK Transplant Support Service). In the early days basic surgical techniques were established at the beginning of the century in canine models. Translating these experiments to humans awaited safe and effective immunosuppression. Understanding the myocardial forms of immunosupression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and toluene).

Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1963 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world's imagination with the first heart transplant. His technique has been modified slightly since, but the increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokine generation (cyclosporin A, tacrolimus), signal transduction (sirolimus, everolimus), or differentiation (15-deoxyspergualin) pathways. As a result, over the past 20 years the survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplantation patients have a significant neurological complication. The list of common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject, and forms part of the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

CLARE GALTON

ALASDAR COLES

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer's disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. Fortunately the introduction to each chapter has a certain sense of deja vu, although on the positive side each contribution is extremely well referenced.

The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementia, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the contrast of white matter changes on neuroimaging to dementia, and finally a short section examining practical questions such as the management of stroke in patients with dementia.

Although common conditions in their own right, stroke and Alzheimer's disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unlinked angiopathy and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the ApoE alleles are discussed. The comprehensive section on deep white matter lesions seems to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CADASIL, cerebral lupus, and the primary antiphospholipid syndrome.

Some typographical errors and mistranslations detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementia.

PIER MARTIN

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning and provide interesting observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both...
deliver effective care as well as act as a conceptual bridge between the different disciplines. One of the great pleasures of being a doctor has always been listening to patient's stories, but the editors of this book fear that this essential art can be overtaken by dull scientific pragmatism. Rarer, in the most outstanding chapter, writes a lucid and well reasoned account of the need to search for and maintain narrative meaning in treating psychosis. This avoids the debilitating effect to both patients and professionals of identifying individuals by their illness as in schizophrenia. Every psychiatric library should buy this book for this paper alone, which should be required reading for all psychiatric training.

The rest of this book is of variable quality. There is a rather prosaic essay on gender issues, and there is repetition in various chapters concerning attachment theory, a useful but over worked paradigm. However, there are two very fine accounts of narrative in psychotherapy by James Phillips and Jeremy Holmes.

DUNCAN MCLEAN

In a small accessible and easily digestible volume, the authors address a clinically important field. Faced with slim evidence on which to base clinical recommendations, they acknowledge that their very useful management advice “has often had to be based on practical clinical experience rather than the results of clinical trials or formal research . . .”. The disclaimer seems to have allowed them to mix evidence and opinion, limit references, and confuse the reader regarding the level of evidence. A pity, as the authors, with special expertise in this important area, have made a good start in putting together different aspects of the care of the woman with epilepsy in a practical book that is of direct interest and relevance to neurologists, obstetricians, general practitioners, gynaecologists, midwives, and trainees.

Moving on from the general to the particular, the text, although expansive in parts, glosses over some important points. Examples include (a) which oral vitamin K preparations are considered safe in pregnancy (phyllo-nadione), (b) differential efficacy of various antiepileptic drugs in different syndromes versus side effect and teratogenicity profile, (c) more information on the utilization of available evidence to support the statement “no monotherapy human abnor- mality reported” with certain new antiepileptic drugs in pregnancy, (d) the need to consider pregnancy prevention well before the menopause (and not only with enzyme inducing drugs such as valproate has also been implicated), (e) discussion of differences (and available formulations) between synthetic and natural progesterone, and (f) stage of pregnancy when various malformations are detectable on scanning, and (g) time to closure of the neural tube (different from the 21-56 days they quote as in the “most sensitive time of the fetus to the induction of malformations by exogenous agents.”). Despite these comments (made with an eye on the next edition) I would recommend this book to all those involved in the care of women with epilepsy.

LINA NASHEF

Childhood Epilepsies and Brain Development is the fruit of a symposium held in 1997 to try and bridge the chasm between those working in the clinic or at the bedside and those in the laboratory. Both groups must collaborate and communicate to improve the management of children (and other patients) with epilepsy.

The book is essentially a collection of monographs of heterogeneous content and style and the result, perhaps not surprisingly, is that some of the component parts are better than the whole (the chapters) are better than the whole (the book). The lack of an index is a strange omission for a book of this size.

Moving on from the general to the particular, there are chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are followed by a thorough revision of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community.

This last chapter will be of particular interest to community psychiatrists who will be interested to know that I would recommend because some aspects of the practical management of violence are missing—for example, a documented risk-benefit analysis, good failsafe communication, or deciding when to desist. At least one chapter is a very good account of the management of hyperactivity in childhood, with good practical advice on the use of methylphenidate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate interest to neurologists. However general psychiatrists wishing to improve their prescribing skills will find this book useful.

SIMON FLEMINGER

The Maudsley prescribing guidelines are produced each year for a local readership, but this, the fifth edition, is the first to go public. The authors and principal contributors, a mixture of pharmacists and psychiatrists with an interest and background in clinical psychopharmacology, are to be complimented on producing a guide of manageable size and ready accessibility.

The book is divided into sections dealing with the treatment of broad groups of clinical disorders—for example, psychosis—special patient populations—for example, elderly people, with further sections on the management of emergencies and the adverse effects of psychotropic drugs. Much of the information is laid out in tabular form. It could become an indispensable resource for a busy on call psychiatrist or house officer (the dimensions would fit comfortably into the pocket of a clinical white coat, were they still to be worn) but more senior clinicians will find plenty of use for it in the clinic. It does not aim at great breadth, but provides a useful list of references.

There are a few cavils. The section on treatment of anxiety is skimpy (one and a half pages) compared with say the treatment of affective illness (22 pages) or psychosis (19 pages). The brevity is only partly explained by the undeveloped state of that particular area of psychopharmacology. Sections on new and modifications to non-bar and indications for lumbar puncture and indications for EEG seem to have been displaced from some other primer for busy junior doctors. There is no index.

These quibbles apart, prescribing guidelines can be wholeheartedly recommended.

BRIAN TOONE
Alien hand sign in Creutzfeldt-Jakob disease

R INZELBERG, P NISIPEANU, S C BLUMEN and R L CARASSO

J Neurol Neurosurg Psychiatry 2000 68: 103-104
doi: 10.1136/jnnp.68.1.103

Updated information and services can be found at:
http://jnnp.bmj.com/content/68/1/103

These include:

References
This article cites 8 articles, 5 of which you can access for free at:
http://jnnp.bmj.com/content/68/1/103#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/