LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd's palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglion. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor. HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure, he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hyperperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was...
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hypoperfusion were identified. Quantitative data at regions of interest (ROIs) were measured on coronal and axial slides containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as ((ROI focus−ROI contralateral)/ROI focus+ROI contralateral)×100%. We set an arbitrary change of ASI >100% to be significant.

Both patients showed postictal psychosis and had a regional increase in rCBF over the right temporal neocortex and the left basal ganglia compared to their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (–6.46476 to –1.65289); over the right LT was +116.78% (1.07972 to 12.55764); and over the left BG was +206.8% (–2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was –3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.60606 to 18.70575); and over left BG was +155.9% (–5.85556 to 3.27522).

Postictal psychosis is a distinct clinical entity associated with temporal lobe epilepsy. The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a cluster of seizures. The cluster lasts for several days, which is in keeping with the good prognosis. Antipsychotic drugs, such as haloperidol and fluphenazine are usually prescribed. The underlying mechanism of postictal psychosis is unknown. Postictal cerebral hypofunction has been postulated as an analogue to Todd’s paralysis after seizure. However, the presence of increased rCBF during postictal psychosis, may suggest an alternative explanation as ictal SPECT has been shown to be highly sensitive and specific in demonstrating seizure foci.

To conclude, our results are contradictory to the hypothesis of a functional deficit of Todd’s paralysis in postictal psychosis. We think that these hyperperfusion areas are responsible for the postictal psychosis. Further serial studies with cerebral SPECT or PET may enhance our understanding on the mechanism of postictal psychosis.

The cluster occurs in patients with temporal lobe epilepsy. Sixty-three patients had experienced an intracerebral hemorrhage despite the widespread distribution of total FN and TN in the vascular walls.

**Characterisation of the employed Abs and distribution of the recognized isofoms.**

<table>
<thead>
<tr>
<th></th>
<th>Anti-FN mAbs</th>
<th>Anti-TN Ab fragments</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recongised isofoms</strong></td>
<td><strong>Total FN</strong></td>
<td><strong>Total TN</strong></td>
</tr>
<tr>
<td>IST-4</td>
<td>Widespread</td>
<td>Widespread</td>
</tr>
<tr>
<td>IST-9</td>
<td>Widespread</td>
<td>Widespread</td>
</tr>
<tr>
<td><strong>Distribution of the isoform (n)</strong></td>
<td><strong>Isomers containing the ED-A sequence</strong></td>
<td><strong>Isomers containing the ED-B sequence</strong></td>
</tr>
<tr>
<td></td>
<td>Total FN</td>
<td>Abnorm in adult tissues (with the exception of the regenerating endometrium)</td>
</tr>
<tr>
<td></td>
<td>Widespread</td>
<td>Present in fetal tissues</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Absent in several types of malignancies</td>
</tr>
<tr>
<td><strong>Total TN</strong></td>
<td>Widespread</td>
<td>Absent in adult tissues</td>
</tr>
<tr>
<td><strong>Type III repeat C Isoform</strong></td>
<td>Widespread</td>
<td>Present in fetal tissues</td>
</tr>
</tbody>
</table>

Hashimoto’s encephalopathy presenting as “myxoedematous madness”

The neuropsychiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as “myxoedematous madness”. The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuroimaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949, lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As autoimmune thyroiditis is the commonest cause of thyroid failure in this country, this likelihood have been present in at least some of Asher’s original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the diagnosis of subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity.

A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by the police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and had exhibited uncharacteristic behaviour. He had reported a vision of the crucifixion, and hearing the voice of his dead mother. He claimed that his house was occupied by the devil, drove around aimlessly in his car, and appeared constantly fearful and withdrawn. On the day of admission he had made a bonfire in the garden and burned his wife’s clothes, family photographs, furniture, and business papers. When his wife and son tried to intervene he...
became aggressive and threatened them with a saw. The general practitioner was called and surmised that the patient had a new psychosis, and a severe depressive illness. Police assistance was requested because of the patient's continuing violent behaviour.

On admission he was unkempt but cooperative and apparently euthymic. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychotic phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild neuropsychological deficits, and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to his mild neuropsychological deficits, and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Treatment included a new psychotic episode, and evidence of thyroid failure other than the abnormal mental state. The psychiatric component of his illness remained unaltered, and the antithyroid microsomal antibody titre fell rapidly after thyroid replacement. The evidence for a significant vasculitis component to the illness is, therefore, unconvincing. One of the patient's hands acts as a stranger to the body and is uncooperative. Thus, there is a loss of ownership but not loss of sensation in the affected hand. Originally described in callosal tumours, the aetiology of human prion diseases, is characterised by rapidly progressive motor and sensory deterioration. Involuntary movements occur in about 90% of the patients in the course of the disease, the most common being myoclonus. Other movement disorders range from tremor to the Rey-Osterreith complex figure (copy) (3%).

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune thyroiditis, but there was no clinical evidence of thyroid failure other than the abnormal mental state. The psychiatric component of his illness remained unaltered, and the antithyroid microsomal antibody titre fell markedly after thyroid replacement, although his mild neuropsychological deficits remained unchanged. Corticosteroids were not used at any stage.

The response to thyroxine does not, in itself, imply that the cerebral illness had an endocrine origin; a recent report described a patient with a subacute encephalopathic illness and compensated hypothyroidism in the presence of increased antimicrosomal antibodies, all of which responded to thyroxine treatment. The evidence for a significant vasculitis component to the illness is, therefore, unconvincing. One of the patient's hands acts as a stranger to the body and is uncooperative. Thus, there is a loss of ownership but not loss of sensation in the affected hand. Originally described in callosal tumours, the aetiology of human prion diseases, is characterised by rapidly progressive motor and sensory deterioration. Involuntary movements occur in about 90% of the patients in the course of the disease, the most common being myoclonus. Other movement disorders range from tremor to the Rey-Osterreith complex figure (copy) (3%).
falling over him”. His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease.

On admission, he was awake, bradyphrenic, and partially collaborative. His con- ventional hemianopia, disturbed by phos- phenes. The affect was sad and he had partial insight for his mental dysfunction. He was disoriented for time, place, and situation. He could understand speech and was able to fol- low simple instructions involving two consecu- tive components. Naming was preserved. Prominent dysgraphia and dyscalculia were noticed. Immediate recall and short term memory were severely disturbed, whereas long term memory, especially for personal life events, was relatively spared. Abstract think- ing was severely affected. Bimanual move- ments, such as clapping, were extremely diffi- cult.

The cranial nerves were normal as were ocular fundi. The motor examination showed normal force. Deep reflexes were symmetric and plantar responses were flexor. The right arm had a dystonic posture. His gait was ataxic on a wide base.

At times, the left arm would spontaneously rise in front of the patient during speaking or while using his right hand. He was unaware of these movements until they were brought to his attention. When questioned about their purpose, the patient denied that they were voluntary. No grasping of either hand or foot was found. The patient had no cortical sensory loss.

The laboratory data including blood chem- istry, hematological, and sedimentation rate were normal, as were folate acid, vitamin B12 concentrations, and thyroid function. Vene- real disease research laboratory and HIV tests were negative. The cerebrospinal fluid had normal content. Brain CT showed mild cerebral atrophy. An EEG showed severe dif- fuse slowing at admission. Within a week, repeated EEGs showed triphasic waves with a periodic pattern of 1-1.5 Hz.

During the next 2 weeks, the patient devel- oped multifocal jerks. Severe dysphasia and cognitive decline were accompanied by con- fusion and aggression. He became grossly ataxic, and unable to walk and perform any of his daily activities even with help. Transferred to a chronic care hospital, he died few weeks later. Postmortem examination was not al- lowed.

This short fatal neurological disease mani- fested by fulminant dementia, myoclonic jerks, and extrapyramidal and cerebellar dys- function was strongly suggestive of CJD. The periodic EEG pattern reinforced this diag- nosis. Our patient’s alien hand was part of the otherwise characteristic clinical picture of CJD, but appeared early in the disease course when no myoclonic jerks were present. We are aware of only one report of alien hand in CJD. MacGowan et al described two patients with CJD and a myoclonic alien hand syndrome. In one patient the left arm “was noted to have spontaneous movements which appeared purposeful...wandered out of her view” 1.

In the second, the alien limb performed com- plex actions such as unbuckling her blouse and removing a hair pin. Although our patient had no myoclonus or pyramidal signs when the alien hand appeared, in their patients it was associated with spontaneous purposeful movements, sensory myoclonus, spastic hemiparesis, and cortical sensory loss. The literature seems to describe distinct forms of alien hand. All share the occurrence of involuntary movements contrary to the patient’s stated intent, but the types of move- ment differ. In the callosal form, there are purposeful movements of the non-dominant hand. In the hemispheric form, there is grasping and utilisation behaviour of the dominant hand. 1 In the corticobasal degeneration, there are aimless movements of either hand. 1, 7

When a consequence of sporadic or vascular pathology, alien hands can perform complex acts such as trying to tear clothes or undoing buttons. The description by MacGowan et al has characteristics of the callosal form (es- pecially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al in corticobasal degeneration. 4 These authors described the alien limb as “involuntary rising and touch- ing the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to stop responded with the “else”. Another patient’s left arm was at times “elevated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10).

Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements. 5 One common denominator between CJD, corticobasal degeneration, and progressive multifocal leuкоencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetioly of alien hand. 6 In CJD, bilateral cortical damage to motor areas might be the origin of their sub- sequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases present- ing with an alien hand with or without myo- clonus. We are indebted to Professor Eran Zardel, Depart- ment of Physiology, University of California, Los Angeles, USA.

R INZELBERG  
N PISIPEANU  
C BLUMEN  
L R CARASIO  
Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

Correspondence to: Dr Dr R Inzelberg, Depart- ment of Neurology, Hillel Yaffe Medical Center, Hadera, Israel  
email neurology@hillel-yaffa.health.gov.il


basic protein were not tested. Nerve conduc-
tion studies were consistent with a predomi-
nately motor demyelinating peripheral neu-
ropathy (table). Her symptoms improved
spontaneously and she was discharged home
after 2 weeks. For 2 years she was asympto-
matic on a gluten free diet.
At the age of 12 she presented acutely with
severe abdominal pain 8 days after a weekly
intake of bread meant to be gluten free. Two
weeks later, due to persisting gastrointestinal
symptoms, her parents excluded the bread
from her diet. After 2 further weeks, while the
abdominal pain was gradually improving, she
had a new episode of acute weakness in the
lower limbs and sensory abnormalities in-
cluding burning paraesthesiae. On neurologi-
cal examination the legs showed marked
dimination in muscle power; absent deep
tendon reflexes, and a reduction in pain and
temperature; light touch, perception of posi-
tion, and vibration were preserved. Walking
was impaired and the patient was bedridden.
Otherwise the examination was normal.
A haemogram showed white cell counts of
9700/mm³. Laboratory investigations were
within normal values as in the past. IgA and
IgG against gluten, AGA, IgA EMA, and IgA ARA
assayed by ELISA and IF were again negative.
Nerve conduction studies confirmed the presence
of a predominantly motor demyelinating neu-
ropathy (table). The parents refused consent
for a lumbar puncture or nerve biopsy.
Over the next 2 weeks her neurological dis-
abilities spontaneously improved until full
recovery was complete. After 4 weeks, AGA,
EMA, and ARA were still negative.
On her most recent admission, 1 year after
the onset of her first neurological symptoms,
she was still on a strict gluten free diet and has
no residual symptoms or signs.

The natural history of celiac disease is well
known and the typical celiac enteropathy is
often associated with several other disorders.
However, as celiac disease is a relatively
common and lifelong condition, it is likely that
some of these associations may occur by
chance.

This patient, who was diagnosed as having
frank celiac disease at the age of 6 months,
experienced two episodes of acute peripheral
neuropathy, at the age of 10 and 12 years,
respectively. Two major pieces of evidence
strongly support the assumption of a gluten
derived disease: (1) the episodes occurred on
both occasions when gluten was accidentally
reintroduced in the diet; and (2) the response
to a gluten free diet was reasonably rapid,
occurring within weeks.

The present case, however, differs clinically
from those with neurological involvement pre-
viously reported. In the paediatric age group,

<table>
<thead>
<tr>
<th>1st Episode</th>
<th>2nd Episode</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Period</strong>&lt;sub&gt;1&lt;/sub&gt;</td>
<td><strong>Period</strong>&lt;sub&gt;2&lt;/sub&gt;</td>
</tr>
<tr>
<td>MCV (ms)</td>
<td>26</td>
</tr>
<tr>
<td>DL (ms)</td>
<td>7.3</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>70</td>
</tr>
<tr>
<td>CMAP (µV)</td>
<td>3</td>
</tr>
<tr>
<td>SCV (ms)</td>
<td>42</td>
</tr>
<tr>
<td>AMP (µV)</td>
<td>16.2</td>
</tr>
</tbody>
</table>

In fact, neurological complications of celiac
disease are rarely encountered and are mostly
collected to the CNS\(^1\); to the best of our
knowledge, there are only two previously
reported cases of PNS involvement in children
with celiac disease. In both cases, however,
there were chronic axonal polyneuropathies
presenting during a gluten free diet.\(^7\)

In both episodes in the present case neuro-
physiology was strongly supportive of a
demyelinating peripheral neuropathy, which
is most commonly attributed to a direct
immune mediated attack to the myelin. By
contrast, wallerian and axonal degeneration
may be caused by vasculitis, and nutritional,
metabolic, and toxic factors.

An autoimmune pathogenesis in associ-
ation with strong evidence of a genetic
susceptibility has been proposed for celiac
disease. Although it is well established that
AGA, EMA, and ARA are reliable indicators
of sensitisation to gluten at least at the time of
diagnosis, in the clinical practice at follow up,
during a gluten challenge, pathological values
of these antibodies may not be detected.\(^9\)
In the present case the course of the disease
might be suggestive of an antibody mediated
response. However, we could not detect
pathological concentrations of AGA, EMA,
or ARA antibodies either during the course of
the disease or at follow up.

It is known that in celiac disease many
immunological perturbations can occur out-
side the gastrointestinal tract. Crossing of
the antigens through a damaged small intestinal
mucosa, deposition of immune complexes in
target organs, a reduction in immune surveil-
ance, mechanism of molecular mimicry, and
activated T cell response may contribute to
the pathogenesis of the diseases associated
with celiac disease. Direct toxic effects of
gluten and vitamin deficiency are other pos-
sible pathogenic mechanisms of damage to
the nervous system. Although we ruled out a
vitamin deficiency it is still questionable
whether a toxic neuropathy can be the case.

In conclusion two major issues: an acute
polyneuropathy can be a complication of
celiac disease in childhood and its benign
course could help in the understanding of
the underlying pathogenic mechanisms.

We are grateful to Professor Angela Vincent
(Oxford) for her helpful suggestions in reviewing
the manuscript.

*References*

lial patients. *In: Meanr ML, Mulder CJF, eds. Coeliac disease. Dordrecht: Kluwer Academic,
4. Simonati A, Battielli PA, Guarino G, et al. Coeliac disease associated with peripheral neu-

**Frontal release signs in older people with peripheral vascular disease**

A growing body of research examining neurological aspects of clinically “silent” cerebrovascular disease suggests that neurological signs indicative of generalised organic brain damage may occur in the absence of completed stroke.\(^1\) These soft signs include primitive reflexes (frontal release signs), representing an anatomical and functional deafferentation of cortical from subcortical structures. Primitive reflexes are known to occur in a wide variety of conditions, including Alzheimer’s disease\(^2\) and vascular dementia.\(^3\)

It is likely that the presence of undetected cerebrovascular disease accompanying pe-
ripheral vascular disease is underestimated,
as peripheral vascular disease is known to be a
risk factor for transient ischaemic attacks. A
study assessing 373 older patients with
peripheral vascular disease found that 72 of
the 144 patients who had not experienced a
stroke or transient ischaemic attack.\(^4\)

Over at the time of interview. Patients
with peripheral vascular disease had all clinical
and Doppler proved evidence of peripheral
ischaemia. Controls were interviewed
between 6 months and 1 year after their
operation. Both groups had no history of
stroke or transient ischaemic attack.

A more detailed description of instruments
is provided elsewhere.\(^5\) All subjects were

---

**Authors**

**AGATA POLIZZI**

**MARIA FINOCCHIARO**

**ENZO PARANO**

**PIERO PAVONE**

*Division of Paediatric Neurology, Department of Paediatrics, University of Catania*

**SALVATORE MUSUMECI**

*Department of Paediatrics, University of Sassari, Sassari, Italy*

**Correspondence to:** Dr Agata Polizzi, Division of Paediatric Neurology, Department of Paediatrics, University of Catania, Viale A Doria 6, 95125 Catania, Italy email: rupo@ctonline.it

---

**Supporting Information**


---

**Tables**

<table>
<thead>
<tr>
<th>Period</th>
<th>Period</th>
<th>Period</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCV (ms)</td>
<td>26</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>DL (ms)</td>
<td>7.3</td>
<td>8.0</td>
<td>7.2</td>
</tr>
<tr>
<td>F wave latency (ms)</td>
<td>70</td>
<td>72</td>
<td>70</td>
</tr>
<tr>
<td>CMAP (µV)</td>
<td>3</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>SCV (ms)</td>
<td>42</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>AMP (µV)</td>
<td>16.2</td>
<td>17.4</td>
<td></td>
</tr>
</tbody>
</table>

---

**Figure**

Electrophysiological study suggestive in both episodes of an acute demyelinating peripheral neuropathy confined to the lower limbs. Values were within normal limits as the upper limits of normality were: MCV<sub>1</sub> 26 ms; DL<sub>1</sub> 7.3 ms; F wave latency<sub>1</sub> 70 ms; CMAP<sub>1</sub> 3 µV. In the second episode, MCV<sub>2</sub> increased to 72 ms; DL<sub>2</sub> increased to 8.8 ms; F wave latency increased to 90 ms; CMAP increased to 18 µV.
Table 1  Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th></th>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palomental</th>
<th>Pharynx</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>274.0</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
<td>287.5</td>
</tr>
<tr>
<td>pValue</td>
<td>0.15</td>
<td>1.0</td>
<td>0.001*</td>
<td>0.15</td>
<td>0.29</td>
<td>0.01*</td>
<td>0.44</td>
<td>0.08</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Higher mean score in people with peripheral vascular disease.

examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semiquantitative scale. The nine reflexes were paratonia and palomental, hand grasp, foot grasp, glabellar, rooting, snout, and visual/tactile sucking reflexes. Neuropsychological measures included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression scale, and diagnostic criteria for DSM IV major depressive disorder. Family history of depression, wish to die, and suicidal ideation within the past year were also recorded, as were blood pressure and a checklist for chronic physical illness.

Total FRSS scores and scores on FRSS subscales were compared between groups using the Mann-Whitney U test for independent samples. In the peripheral vascular disease group, a correlation matrix for total FRSS score against DSMIV depression, CAMCOG score, behavioural dyscontrol scale score, verbal fluency score (total number of words beginning with F, A, and S) and trailmaking test times was examined using the Spearman correlation coefficient, correcting for age, sex, blood pressure, and chronic physical illness. Behavioural dyscontrol scale scores, trailmaking A/B test times, and verbal fluency scores were first converted into binary variables according to whether they were at/above or below the median value for the group. CAMCOCG score was divided into subjects scoring 69 or above or less than 69. Those associations with a two tailed significance of 0.1 or less were then entered into a linear regression equation using the stepwise method.

Patients with peripheral vascular disease had a higher mean score on the frontal release signs scale than controls (3.5 (SD 4.6) vs 1.7 (SD 1.0); Mann-Whitney U = 1400, Z = −3.33, two tailed p = 0.001), as well as on glabellar and rooting reflexes (table). Only one variable (trailmaking B test time) was entered into the equation; this accounted for 23% of the variance in FRSS score (B = 4.6, 95% confidence interval (95% CI) (1.3–8.0, p = 0.01).

In peripheral vascular disease, there is limited information available concerning the interrelated and neurological sequelae of coexisting cerebrovascular disease. Phillips et al found greater impairment in psychomotor speed and abstract reasoning in patients with peripheral vascular disease than age/sex matched controls, with less significant differences between the groups in verbal fluency, concentration, abstract thought, perception, and constructional skills. Another study by the same group found poorer performance in patients with peripheral vascular disease than controls on visual memory, trailmaking B test, and visuospatial skills. Patients with peripheral vascular disease were also equally impaired in these areas compared with a matched group of stroke patients.

Small numbers of patients, which may also have obscured other significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

I thank Dr Robert Howard for supervision of this study and Professor Stephen Jackson and Mr Paul Baskerville for allowing me to interview patients under their care. The study was carried out as part of a University of London MD thesis.

RAHUL RAO
Department of Old Age Psychiatry, Maudsley Hospital, Institute of Psychiatry, London

Correspondence to: Dr Rahul Rao, Department of Old Age Psychiatry, Guy’s, King’s, and St Thomas Medical School, Job Ward, Thomas Guy House, Guy’s Hospital, St Thomas Street, London SE1 9RT, UK email rrar@globalnet.co.uk


Factitious clock drawing and constructional apraxia

A 45 year old man presented with a 1 day history of headache, possible seizures, and left sided weakness. On the day of presenta-

tion the patient’s wife had twice found him, inexpressibly, on the floor. After the second such episode she brought him to hospital for evaluation. Examination disclosed a complete left hemiplegia and hemianesthesia, although muscle tone was documented to be normal and the plantar responses were downgoing bilaterally. Brain CT was normal and routine blood examination was unremarkable. There were no further seizure-like episodes and the patient was transferred to this hospital 10 days later, hemiplegia unchanged, for possible angiography and further investigations.

He was an exsmoker with hypercholesterolaemia and peripheral vascular disease which had been treated by a left femoral angioplasty 5 years earlier. The angioplasty was complicated by the occurrence of arterial bleeding which was thought to be related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up outpatient brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, oriented, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini mental state examination, with absent three word recall, impaired registration, and poor copying of a two dimensional line drawing. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o’clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B). When asked to bisect a line, the patient did so only minimally to the right of the midpoint (58% of the distance from the left side).

Cranial nerve examination suggested an incongruent and inconsistent left hemiparesis evident to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork’s vibration on the left side of the forehead, with a distinct demarcation in the midline. The rest of the physical examination was unremarkable.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haematological and metabolic analyses plus erythrocyte sedimentation rate, serum lactate, prothrombin time, partial thromboplastin time, serum creatinine, fasting serum glucose, HbA1c, serum Ig levels, and thyroid stimulating hormone were all within normal limits. A hypercoagulability profile was negative. A lipid profile showed mild hyperlipidaemia with increased low

Published by group.bmj.com on June 22, 2017 - Published by

get more information on this topic, please visit our website at...

Downloaded from http://jnnp.bmj.com/ on June 22, 2017 - Published by group.bmj.com
density lipoprotein (3.92 mmol/l) and triglycerides (4.30 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 μmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentric constricted field of mild degree in the right eye and tunnel vision in the left eye. The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculation and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “anixety”, “excecut”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not excluded, and the patient’s willingness to undergo mental status testing also demonstrated the patient’s awareness of the significance of his left-sided numbness and weakness. The findings were interpreted as inconsistent with a malingering diagnosis.

No further investigations were performed and the patient was transferred via the original mode of transportation to the rehabilitation facility and subsequently discharged to home. Complained of persistent decreased sensation on the left side. Forced choice sensory testing of finger and arm movement on the left demonstrated performance to be worse than chance (68% wrong choices). Motor bulk, tone, and reflexes were symmetric and plantar responses down-going. He drew a clock normally at the 1 year follow up. The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianaesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neurologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemispatial neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent three word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the cube, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stress, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his symptoms just as he was scheduled for return to work after his first non-organic hemiplegic episode, and the intentionality required to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering. Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he was now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.

Anosognosia and mania associated with right thalamic haemorrhage

Both anosognosia and secondary mania are associated with right hemispheric lesions. These two non-dominant syndromes, however, are rarely described as occurring together. We present a patient with a right thalamic haemorrhage giving rise to profound denial of hemiplegia and elated mood. This case suggests mechanisms for the common production of mania and anosognosia.

A 53 year old, right handed, black man, with a history of alcohol misuse and dependence and untreated hypertension, was brought to the emergency room a few hours after developing an intense headache and left sided numbness and weakness. On admission he was described as “belligerent,” “agitated,” and “confused.” Blood pressure was 240/160. Neurological examination disclosed left lower facial droop, decreased left corneal and gag reflexes, and left hemiparesis with dense sensory deficits. With increasing obtundation, the patient was transferred to the intensive care unit and intubated. Brain MRI showed a large, left, lateral sided, hyperacute thalamic bleed with mass effect and oedema. The patient was extubated 2 days later and 4 days after the stroke he was described as being drowsy and inattentive, but was able to answer questions...
appropriately. Neurological examination showed contralateral gaze preference, supra-nuclear vertical gaze palsy, difficulty converging, left sided florid hemiparesis, and dense, left sided hemianesthesia. Deep tendon reflexes were absent on the left and Babinski's reflex was positive on the left. In addition, visual extinction and neglect were present. At the time of onset of right sided weakness the patient insisted that he was "fine," and an ambulance was called over his objections. After being examined, the patient acknowledged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was more readily believed by the nurses' union for closer observation. He told the nurses that someone else's arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse to, "take it away; it keeps scratching me." That the left arm "smelled funny" was another reason he wanted the nurses to take it away. Four weeks after the stroke he first acknowledged that his left arm belonged to him and that it had "come back." He spontaneously recalled to the nurses' union for examination before. He re- ported excellent energy and expansively expressed his appreciation for the medical care he received. Neurological examination before the stroke he was flirtatious with female staff, but that his mood more usually associated with anosognosia, 10% of his patients with anosognosia were described as having "euphoric mood." Right sided thalamic lesions are known to produce both anosognosia and mania, but the relation of each to the pathology is unclear. Only some of the patients with right hemispheric lesions are manic or agnostic. These two syndromes may be related to dysfunction of different neural networks and only occur together when a disease process affects both networks. Another possibility is that these syndromes are aetiologically related. Could anosognosia be a manifestation of mania? Although it is easy to conceive how elevated mood might accompany more than 90% of epileptic seizures, isolated bradycardia was seen much earlier in the presence of denial of ownership and hallucinations. Moreover, Starkstein et al., finding that similar frequencies and severities of major and minor depression were present in patients with and without anosognosia, suggest that a particular mood state may not necessarily influence anosognosia. Several explanations have been proposed to explain the phenomenon of anosognosia. All the models invoke dysfunction of the cerebral cortex, especially the parietal cortex, and are interesting in that this case, functional MRI failed to demonstrate decreased CBV in the parietal lobe. In summary, we present a case of anosognosia with right thalamic haemorrhage. The coexistence of mania and anosognosia may be more common than previously appreciated. The association with anosognosia implies that the mechanisms implicated in the pathogenesis of secondary mania may be similar to those of anosognosia. The absence of evidence of abnormal parietal, temporal, or frontal lobe function by functional MRI in this case is intriguing.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 001 617 636 6133; email eliebson@opal.tufts.edu


Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous ECG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of electrical seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pace maker he has had no further episodes. In cases of epileptic cardiac dysthythmia, isolated EEG or ECG recording may prove insufficient and prolonged simultaneous EEG/ECG monitoring may be required.

Cardiac arrhythmias subsequent to epileptic seizures have been recognised for more than 90 years. They provoke diagnostic confusion and may be a mechanism of sudden unexpected death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much more rarely.
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was lost. EEG monitoring demonstrated paroxysmal ictal bradycardia and asystole.
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, while walking, suddenly collapse to the ground where he would remain unrousable, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. Towards the end of the episode his four fingers would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be rhythmic in arrhythmia because he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination were normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Intracarotid barbiturate was seen over the right frontotemporal region during sleep. The onset of the episode was not witnessed and the patient was found lying on the floor, regaining consciousness at about 07:06. The event EEG showed a short run of bilateral semirhythmic 2–3 Hz activity at 07:04:34 (figure A), persisting for 8 seconds before being obscured by muscle and movement artefact. Twenty four seconds after EEG change, at 07:04:58, the ECG changed from sinus rhythm at 90 bpm to a brief period of sinus Bradycardia, followed by a period of asystole with only very occasional ventricular complexes lasting 10 seconds (figure B). After a few seconds of bradycardia then tachycardia, sinus rhythm was restored. Throughout the episode the QT interval on the ECG remained within normal limits. The EEG became visible again 16 seconds into the asystolic period, at which time it was dominated by diffuse low amplitude slow activity at <1–2 Hz which persisted for 10 seconds (figure C). This was followed by marked attenuation of the EEG activity over the next 10 seconds before the large amplitude generalised rhythmic <1 Hz activity became apparent. Diffuse theta activity was seen for a further 15 seconds before the EEG returned to its resting state.

A VVI permanent pacemaker was implanted. The phenytoin was withdrawn and replaced by lamotrigine. Carbamazepine was left unchanged. The patient was discharged, his medication left unaltered, and at follow up 9 months later reported no further episodes.

Cardiac dysrhythmias are an uncommon but serious consequence of partial seizures. Our case is unusual because of the duration of unconsciousness of a series of 26 patients with 74 temporal lobe seizures in which simultaneous EEG and ECG recordings were acquired, ictal arrhythmias occurred in 52% of seizures, the commonest being irregular abrupt changes in heart rate, (both acceleration and deceleration) occurring towards the end of the period of EEG abnormality. Interictally, patients with epilepsy seem no more likely than age and sex matched healthy subjects to experience arrhythmias although in one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects.1

It has been hypothesised that there is lateralisation with respect to central autonomic cardiac control with an increase in heart rate seen after an increase in amplitude of amobarbital and inactivation of the left hemisphere and a decrease in heart rate on right hemispheric inactivation. Experimental stimulation of the rostral posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia.2 Additionally, prolonged stimulation resulted in ventricular ectopies, heart block, QT prolongation, and death. In a presurgical temporal lobectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect.1 It is suggested that an epileptic discharge in the insular cortex may result in cardiac arrhythmias.

Recurrent episodes of loss of consciousness are a common clinical feature. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during a formal recording. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary cardiac arrhythmia is possible only with simultaneous EEG/ECG recordings.

FERGUS J RUGG-GUNN JOHN S DUNCAN SHELDON J SMITH
Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK email jduncan@ion.ucl.ac.uk


Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 Mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene.1 HNPP typically presents recurrent pressure palsies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with HNPP and respiratory failure and proximal muscle weakness who was able to walk and reached adulthood.

The patient started to have dyspnoea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life At the age of 60, he was admitted to the Nonita Red Cross Hospital, Narita, Japan on a coma due to CO, narcosis (PCO 117.6, PO 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary disease or other medical problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that in his teens he had experienced some episodes of right peroneal and right axillary nerve palsies which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy and lower limb weakness was found. The muscular atrophy was prominent in the shoulder girdle, intercostal muscles, paravertebral muscles, and pelvic girdle, and moderate atrophy was present in all four limbs (figure). There was moderate weakness of the shoulder and pelvic girdle and mild weakness of the distal limbs. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hypoactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs and abdominal muscles. His position sense was normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal (99%) and so was the lung volume. Routine haematological and serological studies gave normal results. No monoclonal or polyclonal antibodies to gangliosides GM1 and GD1b were detected. Analysis of CSF showed 1 lymphocyte/mm3 and 25 mg/dl protein. Motor nerve conduction studies showed prolonged distal latencies in the right median (8.8 ms (normal value in our laboratory >4.9)), ulnar (6.2 ms (normal>3.6)) and peroneal (29 ms (normal>41)) nerves, and moderate decreased conduction velocities in the right median (50 m/s (normal>50)), ulnar (45 m/s (normal>45)), tibial (35 m/s (normal>38)), and peroneal (29 m/s (normal>41)) nerves. There were moderate decreases in the amplitude of compound action potentials in all the nerves tested, and an amplitude reduction of 50% was detected across the cubital tunnel of the left median nerve. Hereditary neuropathy with liability to pressure palsy (HNPP) has been confirmed by genetic studies (figure). In one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects.2
General muscle atrophies, which are most prominent in the trunk are shown. A tracheotomy was performed for nocturnal hypoventilation because the patient required mechanical respiratory support during the night.

delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the supraspinatus, deltoid, biceps, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomaculous thickening of the myelin sheath and some abnormally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²). A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI. Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy.

Our patient recalled experiencing recurrent episodes of transit entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypoventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness. Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al. reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

We thank Dr T Yamamoto from the University of Occupational and Environmental Health for the gene analysis and Mr T Nagase from Chiba University for his technical help with the sural nerve biopsy.

Spinal accessory neuropathy and internal jugular thrombosis after carotid endarterectomy

Spinal accessory neuropathy is a rare complication of carotid endarterectomy (CEA). Internal jugular venous thrombosis after CEA has also been reported rarely, but is likely more common; as internal jugular
venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognised in many cases. Concurrent ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular venous thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. The carotid bifurcation was unusually distal, necessitating a long dissection and high retraction. No immediate postoperative complications were evident. The next day, the patient complained of mild pain at the operative site, but did not notice any weakness. The pain spread into his right shoulder within several days; at that time, he also noted difficulty raising his right arm. His symptoms worsened further a few weeks later, and he was admitted to the hospital. The symptoms persisted, and he presented for neurological evaluation 4 months after CEA. At that time, he had some induration along the incision site and a palpable cord within the right subclavicular fossa. There was moderate atrophy of the right sternocleidomastoid and trapezius, with right shoulder drooping and minor right scapular winging. Right arm abduction produced more prominent scapular winging and was limited to 90 degrees due to pain and weakness. Electrodiagnostic studies were consistent with partial right accessory nerve neuropathy with minor denervation of the right trapezius. Cervical ultrasonography and MRI demonstrated right internal jugular venous thrombosis. The patient was treated with a shoulder support, analgesics, and low dose aspirin. There was no significant clinical change 1 year after CEA. Repeat electrodiagnostic and ultrasonographic studies were consistent with chronic right spinal accessory neuropathy, and repeat ultrasonography showed persistent right internal jugular venous thrombosis. Spinal accessory neuropathy was first reported as a complication of CEA in 1982. Since then, there have been several case reports and small series. A 1996 review of reports of cranial neuropathy after CEA disclosed only one patient with spinal accessory neuropathy in over 3000 cases. Although the authors did not include several other reports which, taken together, may seem to suggest a somewhat higher incidence, the overall small number of reported cases in proportion to the hundreds of thousands of CEAs that have been done worldwide suggests that clinically significant spinal accessory neuropathy is a rare complication. Moreover, spinal accessory neuropathy after CEA may be more frequent. The cause of spinal accessory neuropathy after CEA is usually not well established, but intraoperative nerve stretching or compression from retraction is most often invoked. Delayed onset (after 3 weeks) has been noted in some; for these patients, postoperative inflammation and scarring seem more likely causes. Spinal accessory nerve transection or ischemia/infarction (arterial or venous) are other possibilities. As in our patient, high carotid dissection and retraction have been reported to precede spinal accessory neuropathy. The spinal accessory nerve courses along the internal jugular vein and near the internal carotid artery, typically well above the carotid bifurcation. It is not unreasonable to reason that a high incision and retraction resulting from a high carotid bifurcation would place the nerve at risk. Whether this realisation may lead to any technical modification to decrease the risk of spinal accessory neuropathy in those with a high bifurcation is unknown.

From our search, internal jugular venous thrombosis after CEA has been reported in only one case. As Southcott et al noted, retraction of the internal jugular during CEA may cause stagnation of blood, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may occur as early as a week after neck dissection, often with recanalisation after several months.

The presence of induration about the incision site and a palpable supraclavicular cord in our patient led us to suspect venous thrombosis. Intraoperative nerve stretching or compression, leading to thrombosis from venous stasis or endothelial injury. Other causes of internal jugular venous thrombosis include jugular cannulation, blunt cervical trauma, and a hypercoagulable state. Internal jugular venous thrombosis may include headache, dysphagia, and anterolateral neck pain, tenderness, and swelling. In addition to paresthesia, fever and leukocytosis may occur.

Common pathogenetic mechanisms for spinal accessory neuropathy and internal jugular venous thrombosis may include intraoperative traction, haematomata, and postoperative inflammation or scarring. Although the onset of either spinal accessory neuropathy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of spinal accessory neuropathy in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, as in some other cases of spinal accessory neuropathy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.

GEORGE WOODWARD
RAM VENKATESH
Department of Neurology, University of Kansas, and Neurology Section, VA Eastern Kansas Health Care System, VA, USA

Correspondence to: Dr George Woodward, Neurology Section (111), VA Medical Centre, Leavenworth, Kansas 66048, USA Telephone 001 913 682 2000 extension 2441; fax 001 913 758 4225.}

Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate. This should serve as a warning to the community to possible serious adverse effects of energy supplements. A 33 year old man had a severe aphasia on awakening in the morning of 23 January 1999. He did not complain of any other symptoms. He was referred to our department on 26 January 1999. He had a Wernicke aphasia with a slight right sided face and arm weakness and a right Babinski sign. His blood pressure was 140/60 and his pulse 54 per minute. Brain CT showed signs of extensive left middle cerebral artery infarct. Cervical ultrasound duplex scanning and cervical angiography were normal. Cerebral CSF examination and EEG were also normal except for a patent foramen ovale.

The patient had no vascular risk factors, in particular no tobacco use, and he was perfectly fit until his stroke. He was a sportsman, with 2 hours daily intensive training for body building. He was working as a baggage handler in an international airline company. During a recent journey to Miami, Florida, he bought tablets of "energy pills" in a shopping store to enhance his athletic performances. The first drug contained MaHuang extract (corresponding to 20 mg ephedra alkaloids), 200 mg caffeine, 100 mg L-carnitine, and 200 µg chromium per two capsules. The second drug contained 6000 mg creatine monohydrate, 1000 mg taurine, 100 mg inosine, and 5 mg coenzyme Q10 per scoop. He consumed 40–60 mg ephedra alkaloids, 400–600 mg caffeine, and 6000 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be ruled out as he recently returned from a transatlantic flight, there was no deep venous thrombosis and D-dimers were normal. However, ephedrine has an indirect sympathomimetic action and is used in many energy supplements that are used in non-prescription products to enhance athletic performances. The first drug contained ephedra, and 6000 mg creatine monohydrate is used as an energy supplement in non-prescription tablets in some countries. Acute myocardial infarction and acute psychosis have also been reported after taking ephedrine and other sympathomimetic drugs. Ephedrine and its metabolites are natural products that are used in non-prescription medications for multiple uses. Ephedra in combination with sympathomimetic drugs, which are used in non-prescription products, may lead to serious adverse effects of energy supplements. We have been trained to enhance our athletic performance.

it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effect of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
email vahedi@ccr.jussieu.fr


Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias showing a large left petroclival meningioma compressing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysarthrochokinesia.

Neurography of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbicularis oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebellopontine angle extending to the cavium Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Conventional angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transtemporal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypeaesthesia. Audiometry remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinnesia occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relation is supported also by the absence of a family history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst.7 Hemifacial spasm was seen in patients with parietal neoplasms, meningiomas, and epidermoid tumours of the cerebellopontine angle.6 Acoustic neuromas and anaplastic pontocerebellar glioma can be associated with facial myokymia and spastic parietal facial contraction.8 Also, cervical dystonia due to tumours of the cerebellopontine angle have been reported recently.1

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously.10 Asymmetric blepharospasm, hemifacial spasm, and spasmodic torticollis are a consequence of denervation supersensitivity of the brainstem to the contralateral side (figure A and B). This has been further supported by the findings of blink reflex studies in patients with blepharospasm, spasmodic torticollis, and spasmodic hemifacial spasm.11–13 The blink reflex is thought to be an index of the excitability of the trigeminal sensory-motor system.14–16 Ipsilateral suppression of the blink reflex can be associated with a denervation supersensitivity of the facial nerve to the contralateral side.17–19 This phenomenon is usually observed in patients with facial nerve palsy and in some patients with Bell’s palsy.20,21 Ipsilateral suppression of the blink reflex is also observed in patients with idiopathic facial spasm or hemifacial spasm.22–25 This is an indirect evidence for a possible denervation supersensitivity of the facial nerve on the side of the hemifacial spasm. However, the exact underlying mechanisms are still not fully understood. The blink reflex probably indicates a reorganization of the trigemino-facial system following a peripheral lesion.26–28 This mechanism is supported also by the presence of symptoms typical of trigeminal neuralgia.29,30

ACUTE MULTIFOCAL CEREBRAL WHITE MATTER LESIONS DURING TRANSFER FACTOR THERAPY

Transfer factor is an active substance of unknown structure present in dialysable leukocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion.1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leukocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leucocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections;16 therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis.10 Administration of dialysable leukocyte extract has been associated with cell mediated hypersensitivity reactions, local lasting side effects, or complications, except for transitory hyperpyrexia.7

We report on a patient in whom multiple cerebral white matter lesions developed after taking dialysable leucocyte extract orally for uveitis. A 28 year old man was admitted to the hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with relapse affecting the right eye. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leucocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (6.8 g/l, normal 6.0–8.0 g/l), although the serum protein fraction was normal, antistreptolysin titer (355 UI/ml, normal <200 UI/ml), and antacidilipin IgG (30 UI/ml, normal 14–20 UI/ml). Negative results were obtained for tests for hepatitis B and C infection were normal, and antistreptolysin, toxoplasmosis, and antinuclear antibodies were normal. Polymerase chain reaction search for herpes simplex 1 and 2, varicella zoster, CMV, Epstein-Barr virus, and JC virus in the CSF was negative. A biopsy of the skin revealed no signs of neoplasms or chronic infections. Moreover, it has been shown that the localisation of the lesions is mainly in the cerebral white matter, which is the basis for the hypothesis that the lesions are of ischaemic origin.

We think that dialysable leucocyte extract can cause a transient increase of local brain blood flow and oxygen consumption producing ischaemia in the white matter. The final result is a demyelination process. A similar process is known to occur in ischaemic stroke, but the transient character of the process is not clear. Moreover, we think that the localisation of the lesions is mainly in the cerebral white matter, which is the basis for the hypothesis that the lesions are of ischaemic origin.

We think that dialysable leucocyte extract can cause a transient increase of local brain blood flow and oxygen consumption producing ischaemia in the white matter. The final result is a demyelination process. A similar process is known to occur in ischaemic stroke, but the transient character of the process is not clear. Moreover, we think that the localisation of the lesions is mainly in the cerebral white matter, which is the basis for the hypothesis that the lesions are of ischaemic origin.

Received, 22 July 1995; in revised form, 6 September 1995; accepted 4 October 1995.

the diagnosis of vasculitis or neuro-Behçet’s disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticitrullinated antibodies is found in 2% of healthy subjects.1

The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the our patient are not typical for this condition. Mental confusion is not common at the onset clinical and laboratory findings in the our diagnosis of multiple sclerosis, but some cerebral white matter lesions highly supports the diagnosis of multiple sclerosis whereas it is often found in acute disseminated encephalitis.3 In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis.4 On the other hand the possibility that acute disseminated encephalitis may recur has been accepted5 and on the basis of the patient’s clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autoantigen reactivity is only temporary and direct against a single antigen in acute disseminated encephalitis and multiple antigens in multiple sclerosis.

Although the hypothesis that dialysable leucocyte extract had triggered an autoimmune disorder in our patient cannot be proved, our finding is in line with the report of multiple cerebral lesions after therapy with IL-2 in patients with malignancies or HIV infections.6

On the other hand, the fact that acute disseminated encephalitis is often correlated with the administration of foreign proteins, such as during vaccinations or viral infections7 led us to postulate in this patient a cell mediated immunological mechanism. Therefore, an immunological cross reaction between viral antigens (or other foreign material contained in vaccines) and various parts of the nervous system resulting in acute disseminated encephalitis might have occurred. As already noted, dialysable leucocyte extract contains a multitude of immunostimulating or potentially activating substances so it is impossible to pinpoint which one could have been responsible for the demyelinating effect seen in our patient. This notwithstanding, our finding indicates that neurological surveillance is worthy in patients assuming dialysable leucocyte extract therapy.

FRANCESCO G FOSCHI
LORENZO MARSIGLIO
MAURO BERNARDI
Seminoteria Medica, Dipartimento di Medicina Interna, Epatologia e Cardioangiologia, Università degli Studi di Bologna, Policlinico Sant'Orsola, via G Massarenti 9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfoschi@tin.it


Fahr’s disease and Asperger’s syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger’s syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr’s disease—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger’s syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient’s mother had received weekly injections of Depopovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild imprecision of fine finger movements, dysgraphaesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr’s disease.
symptoms. His IQ score was in the low range (WAIS-C=85 at the age of 13; Barbeau-Pinar=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of others’ intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of Toronto test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fahr’s disease (figure). SPECT showed increased activity in basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM), phosphate 1.69 mM (normal 0.70–1.50 mM), ionised calcium was 0.80 mM at pH 7.4 (normal 1.19–1.34 mM); urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 mUI), and a nuclear scan of the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved marginally.

Asperger’s syndrome is a subtype of pervasive developmental disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorders are scarce and inconclusive. Although the tempo-orbital region is the most often involved in pervasive developmental disorders abnormal functioning of the frontal lobes is suspected from replicated findings of executive function deficits and from occasional findings of frontal hypometabolism or abnormal macroscopic brain morphology. Abnormal cell counts and morphology in the cerebellar hemispheres have also been reported, but the relation of these findings to autism is controversial.

Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetiologies. Cognitive and behavioural abnormalities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorder and hypocalcemia, given the paucity of published cases, is plausible in the presented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause specific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuits may contribute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medical conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism are often considered meaningless. By contrast, this case, similarly to some others suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnormalities currently indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with identifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevelopmental model of autism?

Hypertrrophic atlantoaxial ligaments: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be affected by several pseudotumorous masses extradurally located, such as rheumatoid panus, hypertrophic non-union of odontoid fracture, post-traumatic cicatrix, synovial cysts, tumorous calcium pyrophosphate dihydrate crystal deposition, tophaceous gout, calcification of the posterior longitudinal ligament, synovial disease-like pigmented villonodular synovitis, and synovial chondromatosis. Hypertrophy of the atlantoaxial ligaments as a consequence of degenerative disease was recently recognised as an individual entity. Only five previous cases have been published. We add another case to the short series available in the literature, emphasising that the cause of the spinal cord compression is amenable to surgical removal, symptomatic patients should be diagnosed and treated without delay.

A 66 year old woman presented with a rapid development of progressive spastic tetraparesis and an unremarkable medical history. There was no osteolysis or instability on plain cervical radiography and C.T. A bone scan with "Tc was unremarkable. Magnetic resonance imaging showed a retro-odontoid extradural mass that was homogeneous and isointense on T1 weighted signal, demarcated no enhancement after intravenous gadolinium contrast, and was compressing the upper cervical spinal cord (figure). The laboratory tests were normal, confirming the absence of rheumatoid arthritis, metabolic disease, or gout. Surgical removal via a tranoral approach with a minimal bony resection was direct and provided sufficient space to obtain spinal cord decompression. It was followed by a posterior C1-C2 fusion. Macroscopically, the lesion had no capsule and resembled a hypertrophic ligamentum flavum. Microscopically, it was non-inflammatory, hypocellular, and ligamentous tissue found within the mass, presented fibrous and almost disintegrated. The patient regained normal neurological function. Over a 3 year follow up period there was no recurrence.

We focus attention on hypertrophic atlantoaxial ligamentary disease as a degenerative disease that must be considered within the possible causes of high spinal cord compression.
Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoriation of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing function, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient’s only complaints were left temporal headache and right hemihypaesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern without other intracranial lesions. On the next day CT showed an obscure low density lesion at the dorsolateral midbrain in addition to the previous lesion (figure). Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain in high intensity on a T2 weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The loss of pain and temperature sensation improved gradually and the patient was discharged 2 weeks later.

T2 weighted images 1 month later showed a more localised lesion in the same area. The coronal slices showed a high intensity lesion at the level of lower midbrain coinciding with the tentorium level, disclosed as a low line between the occipital lobe and the cerebellar hemisphere (figure).

The neurological deficits almost disappeared 6 months later.

Somatosensory impairment including pain is one of the most common complaints among patients with cranio cervical injury. Responsible lesions for sensory impairment, detectable by neuroimaging studies, almost always accompany associated neurological deficits. To our knowledge, a selective injury at the spinothalamic or trigeminothalamic tracts due to closed head injury has not been highlighted in the neurological literature.

The mechanism of midbrain injury in our patient was speculated to be due to tentorial coup injury based on MR images. The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contact to the midbrain supposedly occurred more readily. Brain MRI findings support the anatomical features of this tentorial coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions. The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentorial injury should be kept in mind even in minor head injury.

NAOKATSU SAEKI
YOSHINORI HIGUCHI
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan

KENRO SUNAMI
Kawatetsu Chiba Hospital, Japan

AKIRA YAMAURO
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan

Correspondence to: Dr Naokatsu Saeki, Department of Neurosurgical Surgery, Chiba University, School of Medicine, 1-8-1 Inohana, Chuo-ku Chiba-shi, Chiba Japan 260-8670
email saeki@med.m.chiba-u.ac.jp

Toluene induced postural tremor

We read with interest the article by Miyagi et al1 and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular γ-aminobutyric acid (GABA) concentrations within the cerebellar cortex which probably explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons.2 Degeneration of certain cerebellar pathways is probably responsible for the loss of this dopaminergic innervation.3 Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case,1 which showed remarkable clinical and iconographic similarities with that described by Miyagi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebral atrophy and marked low signal intensity in globus pallidi, thalami, red nuclei, and substantia nigra on T2 weighted MRI. As our patient's tremor was progressive, medical treatment with a dopamine agonist was considered. One particular agent (amantadine hydrochloride) caught our attention because it had been further selected by virtue of having given to their results. The data they present should make the physician cautious about implementing screening programmes based on what may be misleading criteria.

Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis

Nabbout et al3 have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of children with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that should make the physician cautious about using any factors identified by Nabbout et al4 as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening test in a general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper. The second is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monro. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. A recent study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monro”. Exclusion of these patients is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these patients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the consequence of introducing from these 36 non-selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which enhanced with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact test) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us whether subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al3 presents some new hypothesis but does not state others. However, the definitive answer will not be provided by studies of selected samples but by follow up of a population based sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

ATYPICAL FORM OF AMYOTROPHIC LATERAL SCLEROSIS: A NEW TERM TO DEFINE A PREVIOUSLY WELL KNOWN FORM OF ALS

We read with interest the article by Sasaki et al1 concerning the atypical form of amytrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease's course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles and upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al10 coined the term flail arm syndrome, to describe a subgroup of patients affected by ALS that predominantly showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al11 described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amytrophic brachial diplegia syndrome.

Other terms used in the past to refer to this form of ALS have been dangling arm syndrome, suspended form, orangutan sign, and waddling gait. The name of naming it a distinctive phenotype of a neurogenic
“man-in-the-barrel” syndrome has even been suggested.

Probably all these terms used to define this variation of ALS are synonyms for an older, well known condition, the scapulohumeral form, or the chronic anterior poliomyelitis reported by Vulpiani in 1886 and known in Franco-German literature as Vulpian-Bernhardt’s form of ALS.

At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course. 1

Be that as it may, the truth is that this atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries.

1. The prevalence of this form of ALS constituted 10% of the ALS group as a whole (p = 0.05). (2) The age of onset of this form was similar to the rest of ALS. (3) There was a clear predominance among men (the male/female ratio was 9:1 in this form, compared with 1.5:1 in the total ALS group). (4) There was a lower median survival (a median survival of 57 months compared with 39 months in the ALS group).

Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for more than 5 years after the onset of symptoms.

On a personal level, we also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow up of the results obtained in the respiratory function tests (FVC, PImax, and PEmax).

We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoideus (rhomboid major, minor, and spinatuse) and a loss of strength in the external rotation of the shoulder (infraespinatus, supraespinatus, and teres minor). As a consequence, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation.

The atrophy and weakness of the infraespinatus and the supraespinatus, that act as an active ligament in scapulohumeral articulation, would explain the presence of subluxation of the shoulder joints in these patients.

Finally, we are in complete agreement that the term “man-in-the-barrel” syndrome pertain to this form of ALS and can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 55. The faster progressive deterioration of the symptoms, the appearance of bulbar signs, and the absence of sensory symptoms and signs would favour the diagnosis of ALS.1


Sasaki replies:

We thank Gama et al for their interest in our article concerning the atypical form of amyotrophic lateral sclerosis (ALS).

Over many years, several researchers have recognised this peculiar distribution of muscle atrophy in clinical practice. The clinical manifestations consist of the muscular atrophy confined to the shoulder girdle and the arms (proximally dominant), absence of deep tendon reflex in the arms, almost normal deep tendon reflex in the legs, and subluxation of the shoulder joints. Some patients progress to bulbar involvement. As Gama et al cite, many terms have been coined to describe this peculiar pattern of the muscular atrophy such as “dangling arm sign,” “dead arm sign,” “suprascapular syndrome,” “amyotrophic brachial diplegia syndrome,” “bribachial palsy and man-in-the-barrel syndrome.” Some researchers considered it as a part of motor neuron disease (ALS) or spinal progressive muscular atrophy. However, others could not exclude the possible cause of cervical diseases such as dissociated motor loss in the upper extremity. In fact, these patients had cervical abnormalities such as cervical spondylosis. The realisation of posterior longitudinal ligament disclosed by cervical radiography, MRI, or myelography. By contrast with clinical awareness of this peculiar pattern of muscular atrophy, no pathological confirmation was made by us until we first reported necropsy cases in our articles.1 Now, these patients with their peculiar pattern of muscular atrophy are considered to be ALS or a subtype of ALS. In my private opinion, “dangling arm syndrome” or “dead arm sign” seems to be the most suitable term depicting this type of motor neuron disease.

As I agree with Hu et al reporting four important statistical discoveries in this form of ALS: the prevalence percentage of 10% of the whole ALS group, the similar age onset to the rest of ALS, a predominance among men (the male/female ratio was 3:1 in our study), and a longer median survival. It is clinically important to give wider publicity to the existence of this atypical form of ALS to avoid unnecessary surgical intervention for cervical abnormalities.1

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODINA
Servicio de Neurologia, Hospital de Graal, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain

Correspondence to: Correspondence to: Dr Josep Gmez, Servicio de Neurologia, Hospital de Graal, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain. email: 12784jgc@comb.es


Isolated dysarthria

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monoparesis of the tongue in patients with isolated dysarthria from stroke. As in their patients transcranial magnetic stimulation induced absent or delayed corticolingual responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticolingual path. On the whole, their results are plausible, but we would like to comment on the underlying mechanism of isolated dysarthria.

As in the case of isolated dysarthria reported by Urban et al, all of our patients with isolated dysarthria had lacunar infarctions involving the internal capsule and corona radiata.1 Measurement of cerebral blood flow with IMP-SPECT in these patients disclosed frontal cortical hypoperfusion at the cortex, particularly in the anterior opercular and medial frontal regions. Anterior opercular lesions produce facio-pharyngo-glossomotoric paresis (anterior opercular syndrome), and damage to the medial frontal regions, including the supplementary motor area, causes speech expression disorders. White matter lesions can disrupt afferent and efferent fibre connections in the primary and secondary motor cortex, resulting in dysfunction of these cortices.4 Therefore, we postulated that isolated dysarthria results from interruption of corticobulbar networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to undergo these ascending and descending projections.5

To test corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. The authors reported that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria.6 Lingual paresis was also evident in three of seven patients reported by Urban et al and in 12 of 2 by us. This indicates that isolated dysarthria originates in incoordination of multiple organs necessary for speech calculation as well as a primary motor deficit.7 Although interruption of the corticolingual pathways is a likely cause of isolated dysarthria, it should be borne in mind that damage to other descending and ascending projections may contribute to isolated dysarthria.

JOSEP GAMEZ
CARLOS CERVERA
AGUSTIN CODINA
Servicio de Neurologia, Hospital de Graal, Universitari Vall d’Hebron, Passeig Vall d’Hebron 119–135, 08035 Barcelona, Spain


BUNGO OKUDA
HISAO TACHIBANA
Department of Neurology, Fifth Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan

References


Motor cortical excitability in Huntington’s disease

We read with great interest the paper of Hanajima et al reporting that intracortical inhibition of the motor cortex is normal in patients with chorea of various origins. At variance with the results we previously found a reduced intracortical inhibition in a group of patients with genetically confirmed Huntington’s disease. Hanajima et al suggest that the discrepancies between the two studies might be due to differences in patient selection as they included patients with early stage Huntington’s disease to “study the pathophysiology of chorea unaffected by other disorders movement.” They postulated that our cases, because of the reported correlation with a dystonia rating scale, had a more advanced stage of disease possibly with coexisting dystonia or rigidity. These assertions deserve some comments.

The mean disease duration of our nine patients with Huntington’s disease was 6.2 (4.1) years which is actually shorter than the duration of the six patients reported by Hanajima et al (8.5 (5.9) years). Most of our patients could be considered in an early stage of the disease, the Unified Huntington’s disease rating scale, and none presented dystonia, rigidity, or any other additional movement disorder. In this regard, however, it should be pointed out that bradykinesia is often associated with chorea in patients with Huntington’s disease and may even precede the appearance of choric dyskinesia. Chorea itself is often reduced in the more advanced Huntington’s disease stages. It is unlikely, therefore, that any neurophysiological approach can test purely chorea even in the early Huntington’s disease stages. In addition, different mechanisms are involved in Huntington’s disease and other choreas as suggested by the lack of impairment of somatosensory evoked responses and long latency stretch reflexes in the second person.

We were not really surprised at the results of Hanajima et al as we do share their opinion that patients with Huntington’s disease may be characterised by large individual differences in the involvement of motor cortical areas. Actually, three patients in our study showed an amount of intracortical inhibition within the confidence limits of the control population. We also think that the impairment of intracortical inhibition is likely to develop during the same process as we did not find any change in four patients, two of them already reported, with positive DNA testing but completely asymptomatic. The discrepancies between the two studies are more likely to be explained, at least in part, by some methodological differences. For instance, the amplitude of the control response was larger in our set (approximately 1.0 mV compared with 0.3 mV in the study of Hanajima et al). This may induce a different sensitivity of the test, and the amount of intracortical inhibition in our normal controls is greater (see also) than in the study of Hanajima et al.

When interpreting the results of studies with paired transcranial magnetic stimulation pathophysiologically it should be kept in mind that similar changes of intracortical inhibition have been shown in patients with various movement disorders (focal dystonia, myoclonus, parkinsonism, restless legs syndrome, Tourette’s disorder), but also in different diseases such as amyotrophic lateral sclerosis. We think, therefore, that the impairment of intracortical inhibition cannot be regarded as the marker of a specific pathophysiological mechanism, but is likely to reflect a non-specific imbalance of inhibitory and facilitatory circuits within the motor cortex.

G ABBRUZZESE
R MARCHESI
C TROMPETTO
Department of Neurological Sciences and Vision, Movement Disorders Clinic, University of Genoa, Via De Toni 5, 16132 Genoa, Italy


The authors reply:
We are very grateful for the response of Abbruzzese et al to our paper. We completely agree with their opinions. The discrepancy between the two studies may not be mainly due to the different stage of the disease between the two groups of patients. Although the duration of the disease is one factor to judge the disease stage, the severity of the disease (stage of the disease) is also positively correlated with CAG repeat number. We may have to take CAG repeat number into consideration in comparisons. Unfortunately, however, we have no way to do such comparisons between these two studies. We could say, at least, that the intracortical inhibition was normal even at the same stage of the disease as that of the patients of Abbruzzese et al, if studied with our method.

We also consider that methodological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus is critical. We have no difficulty in showing normal inhibition, but have much difficulty in showing reduced or absent inhibition because of such marked dependence of the results on the intensities of stimuli. Therefore, we used a predetermined intensity of the conditioning stimulus before we confirmed inhibition in studies of patients. We used an intensity of 5% less than the active threshold as a conditioning stimulus in the study of chorea. We did not need to change the intensity of the conditioning stimulus because we always obtained a normal inhibition with this intensity. We consider that this is very important. If using a suprathreshold (active threshold) conditioning stimulus, a facilitatory effect must often superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold below the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the results of paired magnetic stimulation study.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington’s disease. Abbruzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with which the degree of the
intracochlear inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracochlear inhibition is disturbed in patients with Huntington's disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whether it is true, the intracochlear inhibition must be normal or slightly disturbed in Huntington's disease.

R HANAJIMA
Y UGAWA
Department of Neurology, Division of Neuroscience, Graduate School of Medicine, University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo 113–8655, Japan

Critical closing pressure: a valid concept?

Czosnyka et al recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. We see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP presented (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity is not equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR):

\[ FV(t) = \frac{ABP(t) - CCP}{CVR} \]  

(1)

At the time of systolic and diastolic pressure values (ABPs, ABPd), respectively, it follows that systolic and diastolic flow (FVs, FVd) should be equal to (ABPs−CCP)/CVR and (ABPd−CCP)/CVR, respectively. However, in our opinion, the flow (which is based on a higher pressure) is more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

\[ CCP2 = 0.5ABP + 0.5CCP \]

With decreasing CVR1/CCR0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/CCR0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated values with ABP found by the authors (r=0.5; p<0.05). According to the original idea of Burton, CCP represents a certain mean ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels do not collapse (ABP>CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vasomotorization. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, I would be interested in the authors’ explanation of negative diastolic flow velocities as seen in Doppler spectra of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnia). In the case of ABP<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards CCP (CCP/FV) towards zero (equation 1). Negative flow values could, consequently, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FVs is more accurately given by cerebral perfusion pressure (CPP=ABP−ICP) than by ABP−CCP. Therefore, equation 2 changes to

\[ FV = \frac{ABP - ICC}{CVR} \]

(6)

and equation 5 to

\[ CCP2 = ABP - (1 - CVR 0) + CVR 0 \times CPP \]

(7)

Equation 7 explains well the positive correlations found between CPP2 and ABP and between CCP and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.1

ROLF R DIELH
Department of Neurology, Krank Hospital, Alfred-Krupp-Straße, 45178 Essen, Germany

References


Czosnyka et al reply:

We thank Dihl for much for the interesting letter provoking some mathematical considerations about cerebral haemodynamics.

We need to emphasise that our primary intention was to investigate Burton’s hypothesis in patients with head injury that critical closing pressure (CCP) may be represented by a sum of intracranial pressure (ICP) and the tension in the arterial walls. CCP=ICP+active tension of arterial walls As coil proposed the mathematical formula taken for calculations:

\[ CCP = ABP - ABPpp + FVpp \]

(where ABP and FV are mean values of arterial pressure and MCA flow velocity, ABPs and FVs are systolic values, ABPpp and FVpp are peak to peak amplitudes ). A graphical interpretation of this concept has been given in fig 1. CCP is an x intercept point of linear regression between subsequent systolic and diastolic values recorded within 6 second intervals of flow velocity (along y axis) and arterial pressure (along x axis).

In fact, the formula proposed by Michel et al is very similar. The only difference is that instead of the original waveforms of FV and ABP, first (fundamental) harmonic components were taken for the same graphical construction—that is:

\[ CCP = ABP - FV \]

In our paper we confirmed empirically that both CCP1 and CCP2 produced the same values in a group of patients after head injury, therefore the mathematical consideration of Dihl (equations 1–5) must contain an error!

First of all we cannot see how equation (1) from Dihl’s letter can be derived from any of our formulae. Everyone who has tried to plot momentary values from ABP pulse waveform against momentary values of FV waveform knows that it never plots a straight line (as equation (1) implies). We believe “clouds” of systolic and diastolic values of ABP and FV waveforms (fig 1 in one) can rather see an ellipsoidal shape which is very seldom regular enough to be approximated by straight section. Therefore, equation (1) in Dihl’s letter is not correct. In fact, CVR is a frequency dependent variable (represents vascular impedance) and if a linear theory can be applied, division in (1) should be substituted by a convolution with an inverse Fourier transform of “cerebrovascular admissibility”.

Definition of CVR0 as FV/ABP-CPP) is completely artificial and lacks a physiological basis. It is rather taken from the geometrical interpretation of figure 1 in. In our material equivalent of parameter CVR0 (as defined by Dihl) is 1.007 (SD 0.31) and CVR 0.972 (SD 0.29), the difference is not statistically significant. Therefore, the suggestion that the CVR1/CVR0 ratio is 0.5 is not correct. Real CVR0 should be calculated as (ABP−ICP)/FV. We fully agree that equation (5) proposed by Dihl is “useless for valid CCP calculation”. We have not used it and have never suggested anyone could do so.

The second criticism was that our CCP was positively correlated with ABP. It is not a surprise. When ABP decreases, vasodilatation occurs and arterial wall tension decreases. Therefore presuming ICP was constant, CCP should decrease. A rather weak (though significant) correlation suggests that not all of our patients were pressure reactive or ICP was not always constant.

The final issue concerning negative flow velocities is a trap Dihl has prepared for himself. We never suggested that any factor interpretable as cerebrovascular resistance (CVR0 or CVR1) should be involved in the concept of critical closing pressure. From the definition, closing is a strongly non-linear phenomenon, therefore applying linear theory here is very
risks. How risky—we can see from Dichl's letter. Cerebrovascular resistance certainly never increases to infinity, only after death.

We fully agree with the considerations regarding equations (6) and (7). CCP can be reduced by high frequency stimulation blockades of the subthalamic nucleus. Reduction in the neuronal activity of the subthalamic nucleus was indeed correctly targeted in this patient. The key to the problem of dyskinesias is that the activity of substantia nigra pars reticulata seems to be high when entering the subthalamic nucleus, and is not high when leaving the subthalamic nucleus. Enough cells are recognised large amplitude potentials. We can see from the rest of the recording electrodes, and are not very common. 

The high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response. Fibres emerging to the thalamus from the globus pallidum interna are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. 


We thank Obeso et al for their comments regarding our recent report. In summary, they raised some interesting points which need further clarification. 

As the electrical activity of the subthalamic nucleus was based on the finding that dyskinesias in the parkinsonian state is higher than in intact animals. The case recently described by Figueiras-Méndez et al is extremely interesting as it suggests that functional inactivation of the subthalamic nucleus by high frequency stimulation blockades levodopa induced dyskinesias. This is clearly at odds with the current pathophysiologic model of the basal ganglia. Thus, the finding of Figueiras-Méndez et al rises the intriguing possibility that dyskinesias depend or are mediated by neuronal firing in a given region of the subthalamic nucleus, which was blocked by high frequency stimulation. 

Measurement of afferent synaptic activity by the technique of 2-deoxyglucose (2-DG) uptake showed an increase in the subthalamic neuronal firing compatible with increased inhibition from the globus pallidum externum, particularly in the ventromedial tip of the nucleus. This contrast with the findings in monkeys with chorea induced by pharmacological blockade of the globus pallidum externum, in which 2-DG uptake was maximal in the dorsolateral portion of the subthalamic nucleus, where the sensorimotor region lies. A recent anatomical study also showed that the cortical-subthalamic efferent con-nection is somatotopically segregated, so that fibres from the supplementary motor area project to the most medial portion and fibres from the primary and premotor areas terminate in the lateral region of the subthalamic nucleus. All this heterogeneity may have pathophysiological relevance, one aspect of which could be the findings in the patient reported by Figueiras-Mendez et al. However, before the findings of this case may be used to sustain the idea, on the role of the subthalamic nucleus in the origin of levodopa induced dyskinesias, there is a crucial issue to resolve—namely, the location of the tip of the stimulation electrodes.

There are several points leading us to question the actual site of action of the electrode. (1) Stimulation of the subthalamic nucleus in Parkinson's disease has been associated with the production of dyskinesias only relieved by reduction in levodopa intake; (2) Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response. 

The idea of fibres from the supplementary motor area being possibly that dyskinesias depend or are due to the thalamus from the globus pallidum interna are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode was located ventrolaterally to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driving”). All these characteristics seems to be present in the patient discussed here. Neuronal activity in the sensorimotor area of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. 

It is very important to document in more detail the findings in the case of Figueiras-Méndez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postoperative MRI with measurements at the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

J A OBESO
G LINAZASORO
J GURIDI
E RAMOS
Centro de Neurologia y Neurocirugia Funcional, Clinica Quiron, San Sebastian, Spain
J A OBESO
M C RODRIGUEZ-OROZ
Hospiten, Tenerife, Spain
J GURIDI
Hospitaller de Navarra, Pamplona, Spain

Correspondence to: Professor J A Obeso, 30 Cizur Artea, Cizur Mayor, 31180 Navarra, Spain.


Nitric oxide in acute ischaemic stroke

The pivotal role of nitric oxide (NO) in cerebral ischaemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappoint ing, pharmacological manipulation of NO may represent a novel means of protecting the brain from ischaemic insult. One area not discussed in detail is the neuroprotective effect of 3-hydroxymethyl/4-aminopropionate coenzyme A reductase inhibitors or “statins” in cerebral ischaemia. Preliminary studies have shown that statins modulate brain nitric oxide synthase (NOS) dependent activity in a neuroprotective manner. Data from a murine model of ischaemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in normocholesterolaemic animals.1

In this investigation, statin therapy directly up-regulated endothelial NOS in the brain without altering expression of neuronal NOS. Recent findings also suggest that statin therapy influences the activity of inducible NOS. Lovastatin has been shown to inhibit cytokine mediated upregulation of inducible NOS and production of NO in rat astrocytes and macrophages, and this inhibition may represent a novel means of suppressing inflammatory responses that accompany ischaemia.

Most interestingly, these preliminary findings suggest that statin therapy may modify the behaviour of a wide variety of pharmacological agents that have favourable effects on endothelial NOS as stroke preventive therapy. Rather, it is focused on the possible ways of inhibiting neuronal NOS and inducible NOS mediated nitric oxide release after the event of acute stroke.

At present, there is a growing body of experimental evidence indicating that acute administration of statins in animal models of ischaemic stroke is neuroprotective. Their point about statins and endothelial NOS is interesting, but not relevant to neuroprotective therapy in acute stroke.

DENIS O’MAHONY
Clinical Investigation Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK

BOOK REVIEWS


That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume, but this book succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotive intensity of what was being represented. It is a device much favoured by postmodern writers who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune requirements of the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease examines syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on para-neoplastic disorders of the CNS, stiff man syndrome, neurological complications of

low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impedance, manufacture, etc. The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al.2

In our report, cells discharged tonically, to passive and/or voluntary movements and in response to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to a simple learned movement. Most interestingly, these preliminary findings suggest that statin therapy may modify the behaviour of neuroprotective agents that have favourable effects on endothelial NOS as stroke preventive therapy. Rather, it is focused on the possible ways of inhibiting neuronal NOS and inducible NOS mediated nitric oxide release after the event of acute stroke. At present, there is a growing body of experimental evidence indicating that acute administration of statins in animal models of ischaemic stroke is neuroprotective. Their point about statins and endothelial NOS is interesting, but not relevant to neuroprotective therapy in acute stroke.

DENIS O’MAHONY
Clinical Investigation Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK

BOOK REVIEWS


That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume, but this book succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotive intensity of what was being represented. It is a device much favoured by postmodern writers who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune requirements of the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease examines syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on para-neoplastic disorders of the CNS, stiff man syndrome, neurological complications of

low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impedance, manufacture, etc. The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al.2

In our report, cells discharged tonically, to passive and/or voluntary movements and in response to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to a simple learned movement. Most interestingly, these preliminary findings suggest that statin therapy may modify the behaviour of neuroprotective agents that have favourable effects on endothelial NOS as stroke preventive therapy. Rather, it is focused on the possible ways of inhibiting neuronal NOS and inducible NOS mediated nitric oxide release after the event of acute stroke. At present, there is a growing body of experimental evidence indicating that acute administration of statins in animal models of ischaemic stroke is neuroprotective. Their point about statins and endothelial NOS is interesting, but not relevant to neuroprotective therapy in acute stroke.

DENIS O’MAHONY
Clinical Investigation Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK

BOOK REVIEWS


That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume, but this book succeeds admirably in what it sets out to do, as much as a result of its literary style as its content.

The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotive intensity of what was being represented. It is a device much favoured by postmodern writers who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immune requirements of the nervous system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating disease examines syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis.

The book continues with chapters on para-neoplastic disorders of the CNS, stiff man syndrome, neurological complications of
connective tissue disorders, organ specific autoimmune, sarcoidosis, and cerebral vasculitis.

Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

JON SUSSMAN


As Alzheimer's disease becomes of increasing importance to society, basic science research in this field needs to provide the building blocks for both therapeutic interventions and accurate diagnosis. This publication is a collection of papers presented at an international Alzheimer's disease research meeting in Leipzig in 1997. This conference aimed to bring together both clinical and basic science disciplines and this is reflected in the papers selected for this book. There are 31 papers included, covering topics from early symptomatology and cognitive features to immunobiology and theoretical neuronal treatment strategies. The contributors to this book are some of the most authoritative in their field, predominantly based in Europe.

Covering all aspects of Alzheimer's disease research from the correct diagnosis to basic science approaches of treatment is ambitious for such a compact book (315 pages), and although the editors succeed in collecting an interesting series of papers around these themes, they make no claims to be comprehensive in their scope. The papers included range from fundamental research reports to reviews of the current literature. The review papers are generally excellent, concise, clear, well referenced, and illustrated—for example, there are excellent reviews of Alzheimer's disease with vascular pathology (Pasquier et al), and Lewy body disease (McKeith et al), great updates on neuropathology (Jellinger and Bancher, Braak et al), and several worthy reviews of treatment strategies for Alzheimer's disease including NSAIDS (Möller), antioxidants, and radical scavengers (Röser et al). I found the review by Reisberg et al on oncostatic models in the understanding of the management of Alzheimer's disease particularly interesting. However, the papers of original research are of more limited interest to the general reader. Although, as mentioned, the quality of illustrations is good, there is some variability in the definition of abbreviations and occasional lapses into other European languages.

Certainly, I think this book would be of value for investigators interested in the neuropathology, immunopathology, and molecular biology of Alzheimer's disease. It would make an excellent addition to libraries as a reference text for many researchers of varied interests.

CLARE GALTION


Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer's disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. Furthermore, the introduction to each chapter there is a certain sense of deja vu, although on the positive side each contribution is extremely well referenced.

The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the complications of white matter changes on neuroimaging to demen-

tia, and finally a short section examining practical questions such as the management of stroke in patients with dementia.

Although common conditions in their own right, stroke and Alzheimer's disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unpaired angiopathy and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the APOE alleles are discussed. The comprehensive section on deep white matter lesions seeks to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CEDASIL, cerebral lupus, and the primary antiphospholipid syndrome.

Some typographical errors and mistranslations detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementias.

PETER MARTIN


Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning by interweaving stories, including observation, inference, motive, and consequence in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that sees the awareness and use of narrative in clinical practice as a construct that can both


Organ transplantation, once medical exotica, is now almost routine in the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lung (UK Transplant Support Service). The following transplan
tical techniques were established at the beginning of the century in canine models. Transplan
tation of these experiments to humans awaited safe and effective immunosuppres
sion. Unfortunately, the initial forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and toluene).

Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1963, the first kidney transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world's imagination with the first heart transplan
t. His technique has been modified slightly since, but the increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokine generation (cyclosporin A, tacrolimus), renal transduction (sirolimus, levunolamide), or differentiation (15-deoxyspergualin) pathways. As a result, over the last 10 years in the United Kingdom, the 1-year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplanta
tion patients have a significant neurological complication, which without common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject, and the increasing success of organ transplantation is reflected in the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological compli
cations of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially use
tful to the neurologist without much experi
cence of transplantation are the comprehen
sive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a sig
dificant intracranial neuropathy occurs in up to 40% of kidney transplant patients. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.


The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the complications of white matter changes on neuroimaging to dementia, and finally a short section examining practical questions such as the management of stroke in patients with dementia. Although common conditions in their own right, stroke and Alzheimer's disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unpaired angiopathy and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the APOE alleles are discussed. The comprehensive section on deep white matter lesions seeks to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CEDASIL, cerebral lupus, and the primary antiphospholipid syndrome. Some typographical errors and mistranslations detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementias.

PETER MARTIN
deliver effective care as well as act as a conceptual bridge between the different disciplines. One of the great pleasures of being a doctor has always been listening to patient's stories, but the editors of this book fear that this essential art can be overtaken by dull scientific pragmatism. But, in the most outstanding chapter, writes a lucid and well reasoned account of the need to search for and maintain narrative meaning in treating psychosis. This avoids the dehumanising effect to both patients and professionals of identifying individuals by their illness as in schizophrenics. Every psychiatric library should buy this book for this paper alone, which should be required reading for all prescribers.

The rest of this book is of variable quality. There is a rather prosaic essay on gender issues, and there is repetition in various chapters concerning attachment theory, a useful but over-worked paradigm. However, there are two very fine accounts of narrative in psychotherapy by James Phillips and Jeremy Holmes.

DUNCAN MCLean


In a small accessible and easily digestible volume, the authors address a clinically important field. Faced with slim evidence on which to base clinical recommendations, they acknowledge that their very useful management advice “has often had to be based on practical clinical experience rather than the results of clinical trials or formal research…” This disclainer seems to have allowed them to mix evidence and opinion, limit references, and confuse the reader regarding the level of evidence. A pity, as the authors, with special expertise in this important area, have made a good start in putting together different aspects of the care of the woman with epilepsy in a practical book that is of direct interest and relevance to neurologists, obstetricians, general practitioners, and other specialists, and trainees. Moving on from the general to the particular, the text, although expansive in parts, glosses over some important points. Examples include that in patients with temporal lobe epilepsy the menopause is often delayed (the menopause which is only not with only enzyme inducing drugs such as valproate has also been implicated), the discussion of differences (and available formulations) between synthetic and natural progesterone, and the timing of the menopause. The text is clear and consistent, and is probably of most concern to both clinicians and families. The chapters covering all aspects of the assessment and management of anorexia nervosa and the menopause are informative and provide some new but speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electroclinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent answer is not provided. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and although the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps reflecting a prolonged editorial atypical accessibility, and although this militates against it becoming a well thumbed reference text, the book is an erudite addition to the medical literature.

RICHARD E APPLETON


Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psychiatrists practising in community settings risk assessment comes high on their list of concerns. Unsurprisingly, given the psychopharmacological expertise of the editors, this book is particularly interested in treatment resistance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient. The emphasis is very much on pharmacological management.

The second half of the book is more of a mish-mag, both in terms of the areas covered and in quality of the chapters. While some chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are followed by a thorough revision of the pharmacological management of these substances misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists and trainees. I would recommend because some aspects of the practical management of violence are missing—for example, a documented risk-benefit analysis, good false alarm, or deciding when to admit. One of the last chapters is a very good account of the management of hyperactivity in childhood, with good practical advice on the use of methylphenidate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate interest to neurologists. However general psychiatrists wishing to improve their prescribing skills will find this book useful.

SIMON FLEMINGER


The Maudsley prescribing guidelines are produced each year for a local readership, but this, the fifth edition, is the first to go public. The authors and principal contributors, a mixture of pharmacists and psychiatrists with an interest and background in clinical psychopharmacology, are to be complimented on producing a guide of manageable size and ready accessibility.

The book is divided into sections dealing with the treatment of broad groups of clinical disorders—for example, psychosis—special patient populations—for example, elderly people, with further sections on the management of emergencies and the adverse effects of psychotropic drugs. Much of the information is laid out in tabular form. It could become an indispensable resource for a busy on call visitator house officer (the dimensions would fit comfortably into the pocket of a clinical white coat, were they still to be worn) but more senior clinicians will find plenty of use for it in their clinics. It does not aim at an academic tradition, but provides a useful list of references.

There are a few cavils. The section on treatment of anxiety is skimp (one and a half pages) compared with say the treatment of depressive illness (22 pages) or schizophrenia (18 pages). The brevity is only partly explained by the undeveloped state of that particular area of psychopharmacology. Sections on the use of blood tests and indications for lumbar puncture and indications for EEG seem to have been displaced from some other primer for busy junior doctors. There is no index.

These quibbles apart, prescribing guidelines can be wholeheartedly recommended.

BRIAN TOONE
Anosognosia and mania associated with right thalamic haemorrhage

ELIZABETH LIEBSON

J Neurol Neurosurg Psychiatry 2000 68: 107-108
doi: 10.1136/jnnp.68.1.107

Updated information and services can be found at:
http://jnnp.bmj.com/content/68/1/107

These include:

References
This article cites 6 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/68/1/107#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/