LETTERS TO THE EDITOR

Postictal psychosis related regional cerebral hyperperfusion

Postictal psychosis is a known complication of complex partial seizure in particular temporal lobe epilepsy. It usually runs a benign and self-limiting course. A postictal phenomenon with focal cerebral hypofunction (similar to Todd’s palsy), rather than ongoing seizure activity, has been postulated. Surface EEG is either normal or showing non-specific slow waves. Hence, antipsychotic medications are prescribed instead of antiepileptic drugs. Until recently, the pathogenic mechanisms have remained unknown. In this communication, we report on two patients with postictal psychosis, during which a cerebral SPECT study showed a hyperperfusion signal over the right temporal lobe and contralateral basal ganglia. As hyperperfusion in ictal cerebral SPECT is closely linked to epileptic activities, our findings support a contrary explanation for postictal psychosis.

Prolonged video-EEG telemetry study was performed in patients who underwent presurgical evaluation for epilepsy surgery. Antiepileptic drugs were withdrawn to facilitate seizure recording. A diagnosis of temporal lobe epilepsy was based on analysis of the electroclinical events and, if applicable, postoperative outcome after anterior temporal lobectomy. Psychosis was diagnosed according to the fourth edition of the diagnostics and statistical manual of mental disorders (DSM-IV) criteria of brief psychotic disorders without marked stressor. HMPAO-SPECT was performed during the psychotic period, which ranged from 2–4 days after the last seizure. Interictal cerebral SPECT, brain MRI, and a Wada test were performed as part of presurgical evaluation.

Patient 1 was a 34 year old Chinese woman with complex partial seizures since the age of 18. Her seizure control was suboptimal on a combination of antiepileptic drugs. Brain MRI showed a small hippocampus on the right. Interictal EEG showed bilateral temporal sharp waves and ictal recordings confirmed a right temporal epileptogenic focus. A Wada test confirmed right hippocampal memory dysfunction. Six hours after her last secondary generalised tonic-clonic seizure after video-EEG telemetry, she began to develop emotional lability, talking nonsense, motor restlessness, and auditory hallucination. A cerebral SPECT study was performed at day 4 after her last seizure. Her psychotic features persisted although she was taking antipsychotic medication (pimozide). Cerebral SPECT showed a clear hyperperfusion signal over the right lateral temporal neocortex and contralateral basal ganglion. An interictal cerebral SPECT study was repeated at 4 weeks after postictal psychosis which showed a complete resolution of hyperperfusion signal in the right temporal lobe and basal ganglia. Anterior temporal lobectomy was performed and she became seizure free after surgery.

Patient 2 was a 44 year old man with intractable complex partial seizures since the age of 30. His seizures were intractable to multiple antiepileptic drugs. Brain MRI showed left hippocampal sclerosis. Interictal cerebral SPECT showed a relative hyperfusion area over the left hemisphere. Interictal surface EEG was non-lateralising but ictal EEG disclosed a right hemispheric onset. On withdrawal of antiepileptic drugs, seven complex partial seizures with secondary generalised tonic clonic seizures were recorded within a period of 72 hours. His usual antiepileptic drugs were then restarted. Thirty hours after his last secondary generalised tonic-clonic seizure; he began to develop emotional lability, talking nonsense, restlessness, auditory hallucination, persecutory delusion, and delusion of superstition. Cerebral SPECT study, performed 2 days later while his psychotic features persisted, showed two relative hyperperfused areas over the right temporal neocortex and contralateral basal ganglion in addition to the original hypoperfused area over the left hemisphere. An antipsychotic agent (thioridazine) was
started after the cerebral SPECT. His psychotic symptoms resolved 2 weeks later with full recovery.

Cerebral SPECT performed during the interictal period (IP) and during postictal psychosis (PP) were analysed visually and areas of hypoperfusion were identified. Quantitative data at regions of interest (ROI) were measured on coronal and axial slices containing basal ganglia (BG), mesial (MT), and lateral (LT) temporal lobe structures. Asymmetry index (ASI) was calculated as ((ROI focus−ROI contralateral)/ROI contralateral))×100%. We set an arbitrary change of ASI >100% to be significant.

Both patients showed postictal psychosis and had a regional increase in CBF over the right temporal neocortex and the left basal ganglia compared to their interictal study (figure). Quantitative analysis for patient 1 showed changes of ASI during IP and PP over right MT was +75% (−6.46476 to −1.65289); over the right LT +116.8% (1.07927 to 12.55764); and over the left BG was +206.8% (+2.07373 to 2.21574). Quantitative analysis for patient 2 showed changes of ASI during IP and PP over right MT was −3.8% (13.14217 to 12.64158); over right LT was +178.6% (10.4696 to 17.7057); and over left BG was +155.9% (−5.85556 to 3.27522).

Postictal psychosis is a distinct clinical entity associated with temporal lobe epilepsy. The diagnosis of postictal psychosis requires a close temporal relation between bouts of complex partial seizures and the onset of psychosis. The psychosis usually develops after a cluster of complex partial seizures and typically is predictive of a poor outcome.

Oncofetal matrix glycoproteins in cerebral arteriovenous malformations and neighbouring vessels

Cerebral arteriovenous malformations (AVMs) are thought to be congenital lesions exhibiting features of either mature vascular walls or embryonal anastomotic plexuses. It is generally assumed that changes in size are dependent on enlargement of the venous compartment, organisation in the setting of microhaemorrhages, and gliosis. However, recent findings are consistent with the hypothesis of ongoing angiogenesis.\(^4\) Previous research from our laboratory disclosed that peculiar isoforms of fibronectin (FN) and tenasin (TN) typically occur in vascular walls or embryonal anastomotic plexuses. Some of these vessels exhibited some staining surrounding the angiomatous nidus. In all these cases the wall of several vessels exhibited intense staining with the use of the TN-11 Ab fragment. Using the BC-1 mAb some of these vessels exhibited some staining (figure). In the control specimens (brain and cerebellum) both the FN isoform containing the ED-B sequence (ED-B+FN) and the type III repeat C TN isoform were absent despite the widespread distribution of total FN and TN in the vascular walls.

Characterisation of the employed Abs and distribution of the recognized isoforms.

<table>
<thead>
<tr>
<th>Anti-FN mAb(^1)</th>
<th>Anti-TN Ab fragments(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognised isoforms</td>
<td>Distribution of the isoform (%)</td>
</tr>
<tr>
<td>IST-4</td>
<td>IST-9</td>
</tr>
<tr>
<td>Total FN</td>
<td>Total FN</td>
</tr>
<tr>
<td>Isolos containing</td>
<td>Isolos containing</td>
</tr>
<tr>
<td>the ED-A sequence</td>
<td>the ED-B sequence</td>
</tr>
<tr>
<td>Widespread</td>
<td>Absent in adult tissues (with the exception of the regenerating endometrium)</td>
</tr>
</tbody>
</table>

Previous findings showed that ED-B+FN presents with conformational modifications in its central part and results from deregulation of FN pre-mRNA. The distribution of this isoform was found to be highly restricted in normal adult tissues. By contrast, ED-B+FN exhibited widespread distribution in the vasculature of fetal tissues, including brain, and of several types of malignancies. It was therefore regarded as a marker of angiogenesis.

Similarly, the type III repeat C TN isoform, recognised by the Ab fragment TN-11, was found to occur in the vascular walls of anaplastic gliomas. Northern blot analysis showed that the mRNA of this isoform was undetectable in normal tissues and some malignancies, but was present in large amounts in fetal tissues, including brain, and in glioblastomas.

Recent advances in the pathology of cerebral AVMs suggest that these lesions might not be static. Tyrosine kinase, an endothelial cell specific receptor upregulated in glioblastomas, was found to be highly expressed in both AVMs and in the vessels of cerebral tissue bordering the malformations, by contrast with the down regulation occurring in the vasculature of the normal brain. The pattern of distribution of structural proteins was consistent with the hypothesis of diffuse activation of angiogenesis, without specific relation to individual vessel types.

Furthermore, use of the cell proliferation marker MIB-1 showed endothelial proliferation in arterioles, venules, and capillaries of the cerebral tissue neighbouring AVMs. The present findings indicate that a specific response to haemodynamic stress or actually reflects an intrinsic angiogenic potential in the absence of pathological data, the evidence suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis possibly requiring revision.

Hashimoto’s encephalopathy presenting as “myxoedematous madness”

The neuropyschiatric sequelae of hypothyroidism range from lethargy and mental slowing to the florid psychotic illness referred to as “myxoedematous madness”. The last condition is characterised by frank hypothyroidism accompanied by psychosis, and may respond completely to thyroxine. More recently described is a syndrome of subacute encephalopathy, associated with high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits in the presence of normal structural neuroimaging. In most cases, the encephalopathy occurs without any gross change in circulating concentrations of thyroid hormones, suggesting that an inflammatory process is responsible for the cerebral dysfunction. In the absence of pathological data, the evidence for a specific pathogenetic mechanism is largely circumstantial: a small vessel vasculitis and immune complex deposition have both been suggested.

Although none of the published cases of Hashimoto’s encephalopathy has described psychosis as a primary feature, it is possible that “myxoedematous madness”, a condition first described in detail by Asher in 1949 lies in a range of encephalopathic phenomena mediated by autoimmune mechanisms. This suggestion would certainly be consistent with the range of clinical presentations of other autoimmune cerebral vasculitides. As autoimmune thyroiditis is the commonest cause of thyroid failure in this country, high titres of thyroid autoantibodies, raised CSF protein, EEG abnormalities, and perfusion deficits have been present in at least some of Asher’s original 14 cases. Although most had florid myxoedematous features at psychiatric presentation, this may simply reflect the diagnostic criteria of diagnosing subclinical thyroid disease before rapid laboratory assays became widely available. Many features of the present case, however, favoured an endocrine rather than an inflammatory mechanism, suggesting that the condition of “myxoedematous madness”, though rare, remains a valid diagnostic entity.

A 63 year old market stallholder without medical or psychiatric history was brought to a local psychiatric hospital by the police. His business had been in decline for several months, and his family had noticed uncharacteristic emotional lability. In the weeks preceding admission he had experienced delusions and hallucinations, and adopted uncharacteristic behaviour. He had reported a vision of the crucifixion, and the voice of his dead mother. He claimed that his wife had plotted his death. His house was occupied by the devil, drove around aimlessly in his car, and appeared constantly fearful and withdrawn. On the day of admission he had made a bonfire in the garden and burned his wife’s clothes, family photographs, furniture, and business papers. When his wife and son tried to intervene he...
became aggressive and threatened them with a saw. The general practitioner was called and suspected a new psychotic and was a severe depressive illness. Police assistance was requested because of the patient's continuing violent behaviour.

On admission he was unkempt but cooperative and appeared alert. He denied depression, but displayed no insight into the irregularity of his behaviour. No psychotic features were seen, although during the admission he consistently rationalised all reported psychotic phenomena. He was aggressive towards staff and made repeated attempts to abscond. General physical examination was unremarkable. Neurological examination was normal except for spoken language, which was fluent and grammatical, but contained word finding pauses, circumlocutions, and occasional semantic errors (for example, “I just want to get my feet back on the table”). Formal neuropsychological testing, and a screen of laboratory tests for reversible causes of encephalopathy, were performed on admission, and results are presented below (column A). Attention is drawn to the mild naming deficit, and poor performance on the Rey figure, which was due to planning rather than visuospatial errors, suggesting a predominantly “dysexecutive” pattern. CT and EEG were both normal and the SPECT abnormal.

Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

<table>
<thead>
<tr>
<th>Laboratory (units)</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full blood count</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Erythrocyte sedimentation rate</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Urea and electrolytes</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Liver function tests</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>B12 and folate</td>
<td>Normal</td>
<td>Not tested</td>
</tr>
<tr>
<td>VDRL</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Thyroid stimulating hormone (mU)</td>
<td>5.4</td>
<td>0.97</td>
</tr>
<tr>
<td>T4</td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>Antithyroid microsomal antibody titer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychometric (normal/predicted range):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folstein MMSE (>24)</td>
<td>25/30</td>
<td>25</td>
</tr>
<tr>
<td>NART IQ</td>
<td>10th percentile</td>
<td>16th percentile</td>
</tr>
<tr>
<td>WAIS-R (verbal)</td>
<td>13th percentile</td>
<td>Not tested</td>
</tr>
<tr>
<td>WAIS-R (performance)</td>
<td>27th percentile</td>
<td>Not tested</td>
</tr>
<tr>
<td>FAS verbal fluency (>30)</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Cognitive estimation test (<60)</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Graded naming test (>15)</td>
<td>10/30</td>
<td>16/30</td>
</tr>
<tr>
<td>Digit span forwards (>5)</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (copy) (36)</td>
<td>25.5</td>
<td>24</td>
</tr>
<tr>
<td>Rey-Osterreith complex figure (recall) (30%)</td>
<td>Not tested</td>
<td>75%</td>
</tr>
</tbody>
</table>

Laboratory and neuropsychological results at presentation (A) and at 12 month follow up (B)

In summary, therefore, this patient presented in clear consciousness with a first episode of acute psychosis, and evidence of subtle executive and linguistic neuropsychological disturbance, on the background of gradual behavioural and affective change. He was profoundly hypothyroid due to an autoimmune illness. The cerebral illness had an irreversible component of his illness recovered fully, and the antithyroid microsomal antibody titre fell markedly after thyroxine replacement, although his mild neuropsychological deficits remained unchanged. Corticosteroids were not used at any stage.

The response to thyroxine does not, in itself, imply that the cerebral illness had an endocrine origin; a recent report described a patient with a subacute encephalopathic illness and compensated hypothyroidism in the presence of increased antimicrosomal antibodies, all of which responded to thyroxine replacement. In this case, however, both EEG and SPECT were abnormal, the SPECT showing multiple areas of severely reduced perfusion, which normalised with treatment. By contrast, in the present case the EEG was normal and the SPECT abnormality was marginal and changed little, if at all, with treatment. The evidence for a significant vascular component to the illness is, therefore, unconvincing.

The mild and relatively circumscribed neuropsychological deficits coupled with florid psychotic phenomena, also contrast with the profound global disturbance of cognition usually associated with Hashimoto's encephalopathy. This distinction suggests that microvascular disruption and thyroid hormone depletion may emphasise different aspects of the clinical range in Hashimoto's encephalopathy. Although the present case would support Asher's conclusion that the psychiatric features of Hashimoto's encephalopathy typically respond to thyroid replacement, it additionally suggests that subtle neurological deficits may be apparent even in the absence of obvious cerebral perfusion deficits, and that these may not be fully reversible.
failing over him”. His wife mentioned bizarre, useless movements of his left hand which were present from the beginning of the disease.

On admission, he was awake, bradyphrenic, and partially collaborative. His cutaneous, hallucinatory, disturbed by hallucinations. The affect was sad and he had partial insight for his mental dysfunction. He was disoriented for time, place, and situation. He could understand speech and was able to follow simple instructions involving two consecutive components. Naming was preserved. Prominent dysphasia and dyscalculia were noticed. Immediate recall and short term memory were severely disturbed, whereas long term memory, especially for personal life events, was relatively spared. Abstract thinking was severely affected. Bimanual movements, such as clapping, were extremely difficult.

The cranial nerves were normal as were ocular fundi. The motor examination showed normal force. Deep reflexes were symmetric and plantar responses were flexor. The right arm had a dystonic posture. His gait was ataxic on a wide base.

At times, the left arm would spontaneously rise in front of the patient during speaking or while using his right hand. He was unaware of these movements until they were brought to his attention. When questioned about their purpose, the patient denied that they were voluntary. No grasping of either hand or foot was found. The patient had no cortical sensory loss.

The laboratory data including blood chemistry, haematology, and sedimentation rate were normal, as were folic acid, vitamin B12, antithyroid, haematology, and sedimentation rate. Malaria was tested. Prominent dysphasia and dyscalculia were noticed. Immediate recall and short term memory were severely disturbed, whereas long term memory, especially for personal life events, was relatively spared. Abstract thinking was severely affected. Bimanual movements, such as clapping, were extremely difficult.

The literature seems to describe distinct forms of alien hand. All share the occurrence of involuntary movements contrary to the patient’s stated intent, but the types of movement differ. In the callosal form, there are purposeful movements of the non-dominant hand. In the dominant form, there is grasping and utilisation behaviour of the dominant hand. In the corticobasal degeneration, there are aimless movements of either hand. When a consequence of tumorous or vascular pathology, alien hands can perform complex acts such as trying to tear clothes or undoing buttons. The description by MacGowan et al has characteristics of the callosal form (especially in patient 2). However, our case suggests that the alien hand sign in CJD may appear in a different type, performing less complex movements which resemble those reported by Riley et al in corticobasal degeneration. These authors described the alien limb as “involutarily rising and touching the mouth and eyes” (patient 1). The patient thought that she “was powerless to stop this movement” and when directed to stop responded “I can’t”. Another patient’s left arm was at times “elevated in front of him”, while he was “unaware of this situation until his attention was called to it” (patient 10). Another related phenomenon coined as “arm levitation” was reported in progressive supranuclear palsy. In these patients the arm involuntarily raised and performed semi-purposeful movements.

One common denominator between CJD, corticobasal degeneration, and progressive multifocal leukoencephalopathy, in which an alien hand sign has also been described, is multifocality. In corticobasal degeneration, it was proposed that more than one site is affected or that a “release” phenomenon occurs accounting for the aetiology of alien hand. In CJD, bilateral cortical damage to motor areas might be the origin of their subsequent isolation and disconnection.

We suggest that CJD should be added to the differential diagnosis of diseases presenting with an alien hand with or without myoclonus.

We are indebted to Professor Eran Zareedi, Department of Physiology, University of California, Los Angeles, USA.

R INZELBERG
P NISIPEANU
S C BLUMEN
R L CARASO
Department of Neurology, Hillel Yaffe Medical Center, Hadera, Israel

Correspondence to: Dr R Inzelnberg, Department of Neurology, Hillel Yaffe Medical Center, Hadera, 38100, Israel
email neurology@hillel-yaffe.health.gov.il

Recurrent peripheral neuropathy in a girl with celiac disease

The involvement of the peripheral nervous system (PNS) in children with celiac disease is particularly rare. Furthermore, in both children and adults with celiac disease, neurological complications are chronic and progressive.

We report on a 12 year old girl affected by celiac disease, who on two separate occasions presented with an acute peripheral neurological syndrome after accidental reintroduction of gluten in her diet.

This patient was born uneventfully to healthy, non-consanguineous parents with no family history of neurological or metabolic diseases. At the age of 6 months she was diagnosed as having celiac disease according to the European Society of Paediatric Gastroenterology and Nutrition (ESPGAN) criteria. Since then she was on a strict gluten free diet and was asymptomatic until the age of 10 years when severe diarrhoea, vomiting, and abdominal pain manifested 6 days after the intake of corn flakes erroneously thought to be gluten free. No previous infections had been noticed. One week after the onset of these symptoms she experienced acute weakness and pins and needles sensation confined to her legs. At that time her parents stopped her intake of corn flakes on the suspicion that these were responsible for the symptoms. Despite this, symptoms worsened during the next 2 days, confining her to bed.

At hospital admission, she was alert and mentally stable. Results of general physical examination were unremarkable. Neurological examination disclosed symmetric, predominantly distal, weakness of the legs; knee jerks and ankle reflexes were depressed; plantar reflexes were flexor. Distal stocking glove decrease in pin prick and temperature with sparing of proprioception and light touch. Coordination tests were normal.

Laboratory investigations showed a white cell count of 9300/mm³. The results of the following investigations were within the normal limits: haemogram, erythrocyte sedimentation rate, serum urea, nitrogen, electrolytes, creatinine, glucose, transaminase, bilirubin, immunoglobulins (Igs), lead, iron, copper, urinalysis, urinary porphyrin, folic acid, and vitamins A, B1, B 6, B12, and E. Anti-tissue transglutaminase antibodies (tTG) and endomysial antibodies (EmAs), and IgA antireticulum antibodies, specific and non-specific organ autoantibodies, IgA and IgG antigliadin antibodies (AGAs), IgA antigliadin antibodies (AGAs), IgA antienterocyte antibodies (EMA), and IgA antireticulocyte antibodies (ARA), assayed by enzyme linked immunosorbent assay (ELISA) and immunofluorescence (IF) were also negative. Lumbar puncture was not performed. Anti-bodies against gangliosides GM1 and GM2, myelin associated glycoprotein and myelin Downloaded from http://jnnp.bmj.com/ on July 7, 2017 - Published by group.bmj.com
basic protein were not tested. Nerve conduc-
tion studies were consistent with a predomi-
nately motor demyelinating peripheral neu-
ropathy (table). Her symptoms improved spontane-
ously and she was discharged home after 2 weeks. For 2 years she was asympto-
matic on a gluten free diet. At the age of 12 she presented acutely with severe abdominal pain 8 days after a weekly intake of bread meant to be gluten free. Two weeks later, due to persisting gastrointestinal symptoms, her parents excluded the bread from her diet. After 2 further weeks, while the abdominal pain was gradually improving, she had a new episode of acute weakness in the lower limbs and sensory abnormalities in-
cluding burning paraesthesia. On neurologi-
cal examination the legs showed marked diminution in muscle power; absent deep
tendon reflexes, and a reduction in pain and
temperature; light touch, perception of posi-
tion, and vibration were preserved. Walking was impaired and the patient was bedridden.
Otherwise the examination was normal. A haemogram showed white cell counts of
9700/mm³. Laboratory investigations were within normal values as in the past. IgA and IgG, AGA, IgA, EMA, and IgA ARA as assessed by ELISA and IF were again negative. Nerve conduction studies confirmed the presence of a predominantly motor demyelinating neu-
ropathy (table). The parents refused consent for a lumbar puncture or nerve biopsy.

Over the next 2 weeks her neurological dis-
abilities spontaneously improved until full recovery was complete. After 4 weeks, AGA, EMA, and ARA were still negative. On her most recent admission, 1 year after the onset of her first neurological symptoms, she is still on a strict gluten free diet and has no residual symptoms or signs.

The natural history of celiac disease is well known and the typical celiac enteropathy is often associated with several other disorders. However, as celiac disease is a relatively common and lifelong condition, it is likely that some of these associations may occur by chance.

This patient, who was diagnosed as having frank celiac disease at the age of 6 months, experienced two episodes of acute peripheral neuropathy, at the age of 10 and 12 years, respectively. Two major pieces of evidence strongly support the assumption of a gluten derived disease: (1) the episodes occurred on both occasions when gluten was accidentally reintroduced in the diet; and (2) the response to a gluten free diet was reasonably rapid, occurring within weeks.

The present case, however, differs clinically from those with neurological involvement pre-
viously reported. In the paediatric age group,
examined using a rating scale for the examination of frontal release signs (FRSS), with nine operationally defined items, each on a seven point semiquantitative scale. The nine reflexes were paratonia and palomental, hand grasp, foot grasp, glabellar, rooting, snout, and visual/tactile sucking reflexes. Neuropsychomological scores included the assessment of frontal lobe function (trailmaking tests A and B, behavioural dyscontrol scale, and the controlled word association test) and generalised cognitive impairment (CAMCOG). Depression was assessed using the Hamilton rating scale for depression, 15 item geriatric depression scale, and diagnostic criteria for DSM IV major depressive disorder. Family history of depression, wish to die, and suicidal ideation within the past year were also recorded, as were blood pressure and a checklist for chronic physical illness.

Table 1 Primitive reflexes in patients with peripheral vascular disease (n=25) and controls (n=25)

<table>
<thead>
<tr>
<th>Hand grasp</th>
<th>Foot grasp</th>
<th>Glabellar</th>
<th>Palomental</th>
<th>Paratonia</th>
<th>Rooting</th>
<th>Snout</th>
<th>Sucking (tactile)</th>
<th>Sucking (visual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>pValue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>274.0</td>
<td>0.15</td>
<td>312.5</td>
<td>199.5</td>
<td>287.5</td>
<td>287.0</td>
<td>235.5</td>
<td>287.5</td>
<td>261.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.001</td>
<td>0.15</td>
<td>0.29</td>
<td>0.01</td>
<td>0.44</td>
<td>0.08</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

*Higher mean score in people with peripheral vascular disease.

Small numbers of patients, which may also have obscured some significant findings between the two groups, limit the present study. However, there is some evidence that clinically relevant cerebrovascular disease may accompany peripheral vascular disease and that a prominent disruption of frontal/subcortical brain function may not present with hard neurological signs. As it is possible that silent brain infarction was present in patients with peripheral vascular disease, further studies incorporating brain imaging are required before there can be a clearer understanding of the relation between peripheral and central vascular pathology.

I thank Dr Robert Howard for supervision of this work and Professor Mr Paul Baskerville for allowing me to interview patients under their care. The study was carried out as part of a University of London MD thesis.

RAHUL RAO
Department of Old Age Psychiatry, Maudsley Hospital
Institute of Psychiatry, London

Correspondence to: Dr Rahul Rao, Department of Old Age Psychiatry, Guy's, King's, and St Thomas Medical School, Job Ward, Thomas Guy House, Guy's Hospital, St Thomas Street, London SE1 9RT; UK email rao@globalnet.co.uk

Factitious clock drawing and constructional apraxia

A 45 year old man presented with a 1 day history of headache, possible seizures, and left sided weakness. On the day of presentation the patient's wife had twice found him, inexplicably, on the floor. After the second such episode she brought him to hospital for evaluation. Examination disclosed a complete left hemiplegia and hemianesthesia, although muscle tone was documented to be normal and the plantar responses downgoing bilaterally. Brain CT was normal and routine blood examination was unremarkable. There were no further seizure-like episodes and the patient was transferred to this hospital 10 days later, hemiplegia unchanged, for possible angiography and further investigations.

He was an ex-smoker with hypercholesterolaemia and peripheral vascular disease which had been treated by a left femoral angioplasty 5 years earlier. The angioplasty was complicated by the occurrence of a pseudoaneurysm thought to be related to dye injection, and phenytoin had been prescribed for a short time thereafter. There was a remote history of heavy alcohol use, but he had been abstinent for several years. His father had had a stroke at the age of 65.

Six months earlier the patient had also collapsed at home and been taken to hospital with a left hemiplegia. Brain CT at that time was normal, as were carotid Doppler studies and an echocardiogram. During that admission to hospital, several generalised seizure-like episodes were seen, some with retained consciousness, and he had again been started on phenytoin therapy. A follow up brain MRI was normal and it was concluded that the hemiplegia was non-organic in origin. He was described to have made a gradual, near complete, recovery from this first hemiplegic episode and was scheduled for an imminent return to work at the time of his relapse.

On transfer to this hospital the patient was alert, orientated, and cooperative. Although up to date on current affairs and able to describe the investigations performed at the transferring hospital, he scored only 23/30 on a mini-mental state examination, with absent three word recall, impaired registration, and poor copying of a two-dimensional line drawing. Further bedside neuropsychological testing showed other findings indicative of constructional apraxia and left hemineglect. Specifically, when asked to draw a clock with the time at 10 minutes to 2 o'clock, all the numbers, and the clockhands, were placed on the right hand side of the clock outline (figure A). Copying of three dimensional line drawings was also significantly impaired (figure B). When asked to bisect a line, the patient did so only minimally to the right of the midpoint (58% of the distance from the left side).

Cranial nerve examination suggested an incongruent and inconsistent left hemiopisia to confrontation testing but was otherwise normal, including bilaterally symmetric optokinetic nystagmus. Motor examination showed paralysis of the left arm and leg, with bilaterally symmetric bulk, tone, and deep tendon reflexes. The plantar response was flexor bilaterally. Sensory examination showed decreased pinprick and absent light touch, joint position sense, and vibration sense on the entire left side. There was also impaired perception of a tuning fork's vibration on the left side of the forehead, with a distinct demarcation in the midline. The rest of the physical examination was unremarkable.

Brain CT and MRI, CSF examination, and routine EEG were normal. Routine haematological and metabolic analyses plus erythrocyte sedimentation rate, serum lactate, prothrombin time, partial thromboplastin time, fasting serum glucose, HbA1c, serum Ig survey, and thyroid stimulating hormone were all within normal limits. A hypercoagulability profile was negative. A lipid profile showed mild hyperlipidaemia with increased low
density lipoprotein (3.92 mmol/l) and triglycerides (1.90 mmol/l) and low high density lipoprotein (0.73 mmol/l). Serum phenytoin concentration was therapeutic at 74 μmol/l. An ECG was normal.

Ophthalmological consultation and formal visual field testing demonstrated a concentrically constricted field of mild degree in the right eye and tunnel vision in the left eye. The patient consented to overnight video-EEG monitoring and was seen on multiple occasions to move his left arm and/or leg in a normal fashion, at one point using the left arm to readjust his bed covers shortly after arousal from sleep, before glancing briefly at the video camera and completing the task with his right arm. The prolonged EEG was normal.

A formal neuropsychological assessment performed in hospital documented impaired attention, concentration, and working memory, as well as several atypical calculation and spelling errors, the second involving unusual “near miss” letter substitutions or reversals (for example, “amixey”, “executive”). The formal testing identified no consistent evidence of visuospatial deficits or constructional apraxia. The findings were interpreted as inconsistent with the patient’s history but the possibility of a factitious aetiology was not specifically addressed—that is, tests designed to detect malingering during neuropsychological testing were not administered by the examiner, who had not been informed at the time of consultation of the presumptive neurological diagnosis of malinger- ing or factitious disorder.

No further investigations were performed and the patient was transferred via the original hospital to a rehabilitation facility and subsequently discharged to home. Confronted with the findings of the video monitoring the patient appeared sanguine and accepting of the evidence that he should be able to move his left side. Six months later he was ambulatory but otherwise not significantly improved. He had been assessed by a psychiatrist but had refused psychiatric follow up, electing instead to be followed up by a psychologist. He understood his diagnosis to be “conversion disorder” and reported that he was actively collecting information on the subject via the internet.

Outpatient brain SPECT and visual and somatosensory evoked potentials performed 1 year after discharge demonstrated no hemispheric abnormalities. The patient remained off work and was receiving disability funding. He walked with a limp favouring his left side and complained of persistent decreased sensation on the left side. Forced choice sensory testing of finger and arm movement on the left demonstrated performance to be worse than chance (68% wrong choices). Motor bulk, tone, and reflexes were symmetric and plantar responses downgoing. He drew a clock normally at the 1 year follow up.

The clinical and laboratory findings described above indicate beyond any doubt the non-organic nature of this patient’s left hemiplegia/hemianesthesia. His seizure-like episodes at presentation are presumed to have been non-epileptic in origin (as had been suspected during his previous admission to hospital) although this cannot be definitively proved.

The inability to copy line drawings or to draw a clock is, from a neuropsychologist’s perspective, typically associated with parietal lobe dysfunction, usually of the non-dominant hemisphere, especially if associated with left hemispatial neglect. To our knowledge, this is the first reported case of factitious clock drawing and constructional apraxia. Bedside mental status testing also demonstrated the more common simulated deficits of impaired attention and absent word recall. In retrospect, the severe neglect on clock drawing was perhaps “too good to be true”, especially in the light of the near normal line bisection demonstrated on the same day. The mirror image distortion of the house was also very unusual and, furthermore, the mirror reversal itself is evidence of lack of clinical neglect. The distortion of the cube, however, could easily be misinterpreted as evidence of organic constructional impairment if seen in the absence of the other relevant clinical and laboratory information.

During follow up, the patient admitted to feeling tremendous occupation related stresses, and described how he had come to both fear and detest his job. Given the clear benefit to the patient of removal from his work environment, the relapse of his symptomatology just as he was scheduled for return to work after his first non-organic hemiplegic episode, and the intentionality required to feign poor clock drawing and constructional apraxia, there is much to support a diagnosis of malingering. Nevertheless, classification as a factitious disorder is at least as justifiable in view of the patient’s willingness to undergo medical investigations, including video monitoring.

It is unclear how or when the patient acquired the information needed to mimic a constructional apraxia. Previous bedside neuropsychological evaluations may have served to familiarise him with the format of such testing, acting as an impetus to research the issue of stroke and focal brain deficits (which might also have occurred after his father’s stroke), much in the same way he is now researching conversion disorder, thereby discovering what expected answers should look like. Despite repeated questioning, however, no evidence could be gathered from the patient to support this speculation.
appropriately. Neurological examination showed contralateral gaze paresis, supranuclear vertical gaze palsy, difficulty converging, left sided flaccid hemiparesis, and dense, left sided hemianesthesia. Deep tendon reflexes were absent on the left and Babinski’s reflex was present on the left. In addition, visual extinction and neglect were present.

At the time of onset of right sided weakness the patient insisted that he was “fine,” and an ambulance was called over his objections. After being examined, the patient acknowledged that he had had a stroke, but, despite his hemiparesis, insisted that he was ready to go home and go back to work. His belief in his ability to walk led to near falls, and he was moved closer to the nurses’ station for closer observation. He told the nurses that someone else’s arm was in his bed. On one occasion, holding up his left arm with his right, he told the nurse to, “take it away; it keeps scratching me.” That the left arm “smelled funny” was another reason he wanted the nurses to take it away.

Four weeks after the stroke he first acknowledged that his left arm belonged to him, but, to conserve energy, he was often asleep. Otherwise, by this time he had a moderate hemiplegia and recognised “a little weakness,” but continued to insist that he was well and able to return to work. By the 6th week after his stroke the patient more consistently acknowledged that he was weak on the left side of his body. A request for disabled housing “so that I won’t be a burden to my family” seemed to indicate an appreciation of his impaired space when asked if he was feeling well, within an hour of making such statements the patient might insist that after a week’s exercise he would be ready to return to work. His awareness of his hemiplegia fluctuated for 8 weeks after his stroke before being fixed, but remained shallow after 12 weeks; he no longer planned to return to work and applied for social security disability insurance “because they say I’m disabled.”

The patient’s mood was remarkably cheerful and optimistic. A week after the stroke he was noted to praise extravagantly the hospital food, and the nurses found him “talkative.” When he arrived on our ward 11 days after the stroke, he was in frequent conversation with fellow staff and boasted of having fathered 64 children. His girlfriend was surprised when she kissed her front in the staff because he had never previously displayed such affection before. He reported excellent energy and expansively invited all of the staff to his house for thanksgiving. Sleep was not disrupted or reduced and he had a good appetite. When beginning exercise he would be ready to return to work.

Late during his recovery, although he was undoubtedly improved, he was able to correctly recognise and produce facial emotional information. Simple attention was intact, but attentional control (backward span and mental control) was impaired. Visuomotor tracking was slow and he had significant problems with conceptual shifting (both auditory and visual). Language processing difficulties included very poor reading ability, impaired confrontation naming, and impaired performance on a verbal task of fluency and initiation. Auditory comprehension was mildly impaired. Vocabulary scored formally in the borderline impaired range, as did abstract verbal reasoning. On tests of praxis he demonstrated a tendency to use the hand as object. Memory performances were normal and intact. His initial recall of two paragraphs scored formally within the low average range and after a 30 minute delay, he was able to recall most of the information initially encoded, scoring formally within the average range.

Structural brain MRI on admission to the emergency room showed a large right thalamic hemorrhage with mass effect and oedema, with oedema extending into the cerebral peduncle with susceptibility consistent with deoxyhaemoglobin. Also present was increased T2 signal bilaterally in frontal areas consistent with ischaemic changes. Brain CT 30 days after stroke showed, in addition to the thalamic lesion, moderate cerebellar atrophy and mild to moderate prominence of the frontal cortical sulci compatible with cerebro atrophy.

Functional MRI performed 44 days after the stroke showed a large right thalamic haematoma. Functional MRI performed the same day demonstrated a 2 cm area of absent cerebral blood volume at the posterior margin of the right thalamus without any evidence of decreased cerebral blood volume within the right parietal, frontal, or temporal cortex.

This is a case of anosognosia of hemiplegia and mania co-occurring in a patient with a large right thalamic haemorrhage. Although anosognosia and mania are not generally thought of as occurring together, when Babinski introduced the term anosognosia he used it as one of his examples, in a case in which, thought was concerned, was “a little overexcited,” and in a later paper he presented a case in which there was “a certain agitation, which expresses itself by exaggerated loquacity, a decrease in attention, and a tendency to erotic ideas.”

Weinstein and Kahn noted that euphoria was common in patients with anosognosia. Moreover, although, “cutting” emphasised that apathy is the mood more usually associated with anosognosia, 10% of his patients with anosognosia were described as having “euphoric mood.”

Right sided thalamic lesions are known to produce both anosognosia and mania, but the relation of each to the pathology is unclear. Only some of the patients with right hemisphere lesions are manic or agnostic. These two syndromes may be related to dysfunction of different neural networks and only occur together when a disease process affects both networks.

Another possibility is that these syndromes are aetiologically related. Could anosognosia be a manifestation of mania? Although it is easy to conceive how elevated mood might facilitate anosognosia of hemiplegia (or other types of anosognosia), it is difficult to explain the presence of denial of ownership and dislike of the left arm (other anosognosic phenomena) on the basis of euphoria. Moreover, Starkstein et al., finding that similar frequencies and severities of major and minor depression were present in patients with and without anosognosia, suggest that a particular mood state may not necessarily influence right.

Several explanations have been proposed to explain the phenomenon of anosognosia. All the models invoke dysfunction of the cerebral cortex, especially the parietal cortex, which is interesting that this patient’s functional MRI failed to demonstrate decreased CBV in the parietal lobe.

In summary, we present a case of a patient accompanying anosognosia with mania and a right thalamic haemorrhage. The coexistence of mania and anosognosia may be more common than previously appreciated. The association with anosognosia implies that the mechanisms implicated in the pathogenesis of secondary mania may be similar to those of anosognosia. The absence of abnormal parietal, temporal, or frontal lobe function by functional MRI in this case is intriguing.

ELIZABETH LIEBSON
Department of Psychiatry, Tufts, New England Medical Center, 750 Washington Street, Box 1007, Boston, MA 02111, USA. Telephone 001 617 636 1633; email eliebson@opal.tufts.edu

Epileptic cardiac asystole

A patient is reported on with habitual episodes of collapse and loss of consciousness associated with EEG evidence of focal epileptiform discharges. Simultaneous ECG recordings disclosed 25 seconds of cardiac ventricular asystole occurring 24 seconds after the onset of electrical seizure activity. After changes to antiepileptic medication and the insertion of a permanent cardiac pacemaker she had no further episodes. In cases of epileptic cardiac dysrhythmia, isolated EEG or ECG recordings may prove insufficient and prolonged simultaneous ECG/EEG monitoring may be required.

Cardiac arrhythmias subsequent to epileptic seizures have been recognised for more than 80 years. They provoke diagnostic confusion and may be a mechanism of sudden unexplained death in epilepsy. Whereas sinus tachycardia was noted to accompany more than 90% of epileptic seizures, isolated bradycardia was seen much
less commonly (only 1 of 74 seizures recorded). A review in 1996 of the “ictal bradycardia syndrome” showed only 15 documented cases in the literature of either bradycardia or asystole associated with seizures. Most patients had temporal lobe seizures. The longest duration of asystole previously reported is in a 17 year old man with temporal lobe epilepsy who sustained a 22 second pause in cardiac output. More typically the asystolic periods in documented cases are in the region of 5–10 seconds. Shorter duration asystole may not compromise cerebral function sufficiently to cause loss of consciousness. Implantation of a cardiac pacemaker is advocated but does not ensure that lapses of consciousness are eliminated if these are directly related to the seizure rather than to the secondary asystole. We report on a patient with epileptic cardiac asystole of 25 seconds duration demonstrated by prolonged simultaneous EEG/ECG monitoring which responded well to pacemaker insertion.

A previously well 34 year old right handed builder was referred with a 1 year history of fortnightly episodes of loss of consciousness. There was no associated warning, aura, chest pain, or palpitations and the patient was only aware of the episode once consciousness was
restored and he found himself lying on the floor. On recovery there was no confusion, drowsiness, dysphasia, or diuresis. Often, however, he sustained soft tissue injuries to his face and scalp.

Witnesses reported that the patient would, within seconds of going to sleep, suddenly collapse to the ground where he would remain unconscious, inaccessible, and motionless for 90 to 120 seconds. On two occasions he appeared confused and disoriented immediately before a collapse. During the period of unconsciousness he would demonstrate no involuntary movements, orofacial automatisms, or cyanosis but he would become pale and “ashen” while staring straight ahead with a glazed look. The end of the episode his heart would return to normal and within 2 minutes he would have fully recovered. Unusually during one reported episode of unconsciousness he was seen to briefly extend the fingers of both hands.

He was admitted to his local hospital and CT, MRI, interictal EEG, and 24 hour ECG were normal. No episodes were witnessed while he was an inpatient but they were thought to be epileptic in origin and therefore he was started on phenytoin, with no benefit. Carbamazepine was added, again with minimal effect.

The patient was then referred to the Epilepsy Assessment Centre of The National Society for Epilepsy and National Hospital for Neurology and Neurosurgery for further investigation and management.

Cardiovascular and neurological examination was normal as were MRI and routine interictal EEG. Sixteen channel ambulatory EEG using an Oxford Instruments digital EEG receiver was performed continuously for 340 hours before an episode was captured. Interictal rare spikes were seen over the right frontocentromedial region during sleep. The onset of the episode was not witnessed and the patient was found lying on the floor, regaining consciousness at about 07:06. The event EEG showed a short run of bilateral semirhythmic 2–3 Hz activity at 07:04:34 (figure A), persisting for 8 seconds before being obscured by muscle and movement artefact.

Twenty four seconds later, at 07:04:58, the EEG changed from sinus rhythm at 90 bpm to a brief period of sinus bradycardia, followed by a period of asystole with only very occasional ventricular complexes lasting 10 seconds (figure B). After a few seconds of bradycardia then tachycardia, sinus rhythm was restored. Throughout the episode the QT interval on the ECG remained within normal limits. The EEG became visible again 16 seconds into the asystolic period, at which time it was dominated by diffuse low amplitude slow activity at <1–2 Hz which persisted for 10 seconds (figure C). This was followed by marked attenuation of the EEG activity over the next 10 seconds before large amplitude generalised rhythmic <1 Hz activity became apparent. Diffuse theta activity was seen for a further 15 seconds before the EEG returned to its resting state.

A VVI permanent pacemaker was inserted. The phenytoin was withdrawn and replaced by lamotrigine. Carbamazepine was left unchanged. The patient was discharged, his medication left unaltered, and at follow up 9 months later reported no further episodes.

Cardiac dysrhythmias are an uncommon but serious consequence of partial seizures. Our case is unusual because of the duration of cardiac arrest and the association of an episode with a series of 26 patients with 74 temporal lobe seizures in which simultaneous EEG and ECG recordings were acquired, ictal arrhythmias occurred in 52% of seizures, the commonest being irregular abrupt changes in heart rate, (both acceleration and deceleration) occurring towards the end of the period of EEG abnormality. Interictally, patients with epilepsy seem no more likely than age and sex matched healthy subjects to experience arrhythmias although in one study patients with epilepsy had a faster ventricular rate and a longer QT interval than control subjects. It has been hypothesised that there is laterisation with respect to central autonomic cardiac control with an increase in heart rate seen after an increase in production of amobarbital and inactivation of the left hemisphere and a decrease in heart rate on right hemispheric inactivation. Experimental stimulation of the rostral posterior insular cortex in anaesthetised rats has been shown to induce tachycardia and more caudal region stimulation to cause bradycardia. Addition ally, prolonged stimulation resulted in ventricular ectopies, heart block, QT prolongation, and death. In presurgical temporal lobectomy patients stimulation of the left insular cortex (particularly posteriorly) produced bradycardia and a depressor response significantly more often than tachycardia and a pressor effect. It is suggested that an ictal epileptogenic discharge in the insular cortex may result in cardiac arrhythmias. Recurrent episodes of loss of consciousness are a common clinical feature. An accurate diagnosis relies principally on the patient’s and witnesses’ accounts of events. Further investigations are frequently required which are often normal unless an episode is captured during monitoring. Recording solely the EEG or the ECG may result in erroneous conclusions being drawn and insufficient or inappropriate therapy being instituted. Distinction between a primary cardiac arrhythmia and a secondary central arrhythmia is possible only with simultaneous EEG/ECG recordings.

FERGUS J RUGG-GUNN JOHN S DUNCAN SHELDON J M SMITH Epilepsy Research Group, University Department of Clinical Neurology, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK

Correspondence to: Professor John S Duncan, National Society for Epilepsy, Chalfont St Peter, Gerrards Cross, Bucks SL9 0RJ, UK

email j.duncan@ucl.ac.uk

Respiratory insufficiency in a patient with hereditary neuropathy with liability to pressure palsy

Hereditary neuropathy with liability to pressure palsy (HNPP) is an autosomal dominant disorder, the molecular basis of which is a 1.5 mb deletion in chromosome 17p11.2 including the peripheral myelin protein-22 (PMP-22) gene. HNPP typically presents recurrent pressure palsies of peripheral nerves, such as the axillary, median, radial, ulnar, or peroneal nerves, at common entrapment sites. Respiratory muscle weakness has not been previously reported in HNPP. We describe a patient with large岸 respiratory failure and proximal muscle weakness were prominent features.

The patient started to have dyspnoea on exertion at the age of 44. At the age of 47, he noticed a slowly progressive weakness of the pelvic girdle and lower limbs. At the age of 57, he experienced difficulty in going up stairs. However, he was almost independent in daily life. At the age of 60, he was admitted to the Queen Red Cross Hospital with a respiratory insufficiency patient with a coma due to CO, narcosis (PCO2 117.6, PO2 64.0). Responding to mechanical ventilatory support, he completely recovered consciousness within a day. His respiratory condition in the daytime improved to that previously. However, he needed mechanical ventilation during sleep because of nocturnal hyperventilation.

The patient had no history of diabetes mellitus, pulmonary diseases, or other medical problems. There was no familial history of neurological disorder, including entrapment neuropathies. After a few months, he noted that in his teens he had experienced some episodes of right peroneal and right axillary nerve palsy which resolved themselves over a few months.

In a neurological examination, the patient’s mental state and cranial nerves were normal. Evidence of muscular atrophy in the lumbar lordosis was found. The muscular atrophy was prominent in the shoulder girdle, intercostal muscles, paravertebral muscles, and pelvic girdle, and moderate atrophy was present in all four limbs (figure). There was a moderate weakness of the shoulder and pelvic girdle and mild weakness of the distal limbs. The thorax showed poor respiratory movement, and the patient showed paradoxical movement of the abdomen in the supine position. Tendon reflexes were hypoactive in all limbs. The patient’s sensations of touch and pain were mildly impaired in the four limbs. His position sense was normal. His vital capacity was 1.9 l (55% of the normal mean) in the sitting position, but 1.3 l (38%) in the supine position. The percentage of forced expiratory volume in 1 second was normal (99%) on bronchography at inspiration and expiration showed poor movement of the diaphragm but no abnormality in the lung field. Routine haematological and serological studies gave normal results. No monoclonal or polyclonal proteins were detected. IgG and IgM antibodies to gangliosides GM1 and GD1b were negative. Analysis of CSF showed 1 lymphocyte/mm3 and 25 mg/dl protein. Motor nerve conduction studies showed prolonged distal latencies in the right median (8.8 ms (normal value in our laboratory <4.6)) and ulnar (6.2 ms (normal value in our laboratory <3.6)) nerves, and moderate decreased conduction velocities in the right median (57%) and ulnar (45%) nerves (normal>45), ulnar (45 ms (normal>49), tibial (35 ms (normal>38)), and peroneal (29 ms (normal>41)) nerves. There were moderate decreases in the amplitude of compound action potentials in all the nerves tested, and an amplitude reduction of 50% was detected across the cubital tunnel of the right median nerve. Nerve conduction studies were prolonged in all the nerves tested. The latency in the right phrenic nerve was mildly increased.
delayed (8.7 ms (normal<8.0)). Sensory nerve conduction studies showed a reduced amplitude of sensory nerve action potentials and conduction slowing in all the nerves tested. Electromyography carried out in the supraspinatus, deltoid, biceps, flexor carpi ulnaris, brachioradialis, quadriceps femoris, biceps femoris, tibialis anterior, and gastrocnemius muscles showed polyphasic motor unit potentials of long duration, but denervation potentials were rare. A left sural nerve biopsy showed scattered tomaculous thickening of the myelin sheath and some abnormally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm² normally thin axonal myelin sheaths. The density of myelinated fibres was reduced (5726/mm²). A gene analysis disclosed a 53% gene dose of PMP-22 related to normal controls, using Southern blots of DNA digested with EcoRI. Given the possibility of superimposing demyelinating neuropathy, especially chronic inflammatory demyelinating polyneuropathy, oral prednisolone (60 mg/day) was given for 1 month. However, the patient’s clinical condition did not respond to this treatment. Pulmonary dysfunction and proximal muscle weakness were almost steady during the next 3 years.

We examined the patient’s elder sister (64 years old), elder brother (62 years old), and younger sister (58 years old), although they had no neurological complaints. All of them had experienced generalised hyporeflexia or areflexia but no weakness or sensory loss, and nerve conduction studies showed moderate conduction slowing with accentuation at the common entrapment sites, suggesting demyelinating neuropathy.

Our patient recalled experiencing recurrent episodes of transit entrapment mononeuropathies, and the familial occurrence of asymptomatic entrapment neuropathy was detected by nerve conduction studies. The presence of tomacula, and genetic analysis confirmed a diagnosis of HNPP. However, the patient’s dominant clinical features—respiratory failure and proximal muscle weakness—were atypical for HNPP. Although respiratory muscle weakness has been reported in hereditary motor and sensory neuropathy (HMSN), there has been no report of respiratory insufficiency associated with HNPP to our knowledge.

The weakness of the truncal muscles, including the respiratory accessory muscle, is a possible cause of respiratory failure in our patient. On the other hand, he had experienced hypoventilation in the supine posture and paradoxical movement of the abdomen, which suggested diaphragmatic weakness. Also, chest radiography showed poor movement of the diaphragm. Although the prolongation of distal latency in the phrenic nerve was mild considering the severity of respiratory failure, assessment of axonal loss is not possible with phrenic nerve stimulation. In fact, phrenic nerve latency is not necessarily associated with pulmonary dysfunction in HMSN.

Diffuse proximal weakness in our patient is an uncommon finding as for HNPP. Mancardi et al. reported on three patients with progressive sensory-motor polyneuropathy associated with 17p11.2 deletion, and the initial symptom of one patient was proximal weakness in one arm. We propose that our patient represents a clinical phenotypic variability among HNPP. It may be necessary to pay attention to respiratory function in HNPP.

Spinal accessory neuropathy and internal jugular thrombosis after carotid endarterectomy

Spinal accessory neuropathy is a rare complication of carotid endarterectomy (CEA). Internal jugular venous thrombosis after CEA has also been reported rarely, but is likely more common; as internal jugular...
Ischaemic stroke in a sportsman who consumed MaHuang extract and creatine monohydrate for body building

We report the first case of extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate. This should alert the community to possible serious adverse effects of energy supplements.

A 33 year old man had a severe aphasia on awakening in the morning of 23 January 1999. He did not complain of any other symptoms. He was referred to our department on 26 January 1999. He had a Wernicke aphasia with a slight right sided face and arm weakness and a right Babinski sign. His blood pressure was 140/60 and his pulse 54 per minute. Brain CT showed signs of extensive left middle cerebral artery infarct. Cervical ultrasound duplex scanning and cervical angiography were normal. Cerebral MR-SPF examination and EEG were also normal except for a patent foramen ovale.

The patient had no vascular risk factors, in particular no tobacco use, and he was perfectly fit until his stroke. He was a sportsman, with 2 hours daily intensive training for body building. He was working as a baggage handler in an international airline company. During a recent journey to Miami, Florida, he bought tablets of “energy pills” in a shopping store to enhance his athletic performances. The first drug contained MaHuang extract (corresponding to 20 mg ephedra alkaloids), 200 mg caffeine, 100 mg L-carnitine, and 200 µg chromium per two capsules. The second drug contained 6000 mg creatine monohydrate, 1000 mg taurine, 100 mg inosine, and 5 mg coenzyme Q10 per scoop. He consumed 40–60 mg ephedra alkaloids, 400–600 mg caffeine, and 6000 mg creatine monohydrate daily for about 6 weeks before his stroke.

Although a paradoxical embolism through a patent foramen ovale in this patient cannot be excluded as he recently had a transatlantic flight, there was no deep venous thrombosis and D-dimers were normal. However, ephedrine has an indirect sympathomimetic action and has been used for arteriole vasconstriction in addition to other catecholaminergic effects. Both ischaemic and haemorrhagic stroke associated with ephedrine use have been reported. Acute myocardial infarction and acute psychosis have also been reported after taking ephedrine and other sympathomimetic drugs. Ephedrine and its metabolites are natural products that are used in non-prescription medicines for multiple uses. Ephedra in the tablets in the tracts, which contains ephedrine, is used among young sportsmen and sportswomen as an energy supplement in non-prescription tablets in some countries. Although no cardiovascular side effects have been reported with the use of creatine monohydrate, this compound, used in association with other drugs as energy supplement may have deleterious side effects. This may be particularly true when used at high doses in combination with sympathomimetic drugs as in our patient. Renal dysfunction has also been reported after oral creatine supplements. Our patient had a slight increase in creatine concentration.

venous thrombosis is often asymptomatic, or presents with non-specific pain, it is probably unrecognised in many cases.7 Concurrent ipsilateral spinal accessory neuropathy and internal jugular venous thrombosis after CEA is expected to be rare, and this is underscored by the lack of published cases. Despite this apparent rarity, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

We report on a patient who developed right spinal accessory neuropathy and internal jugular vein thrombosis after right CEA. A 59 year old man underwent right CEA for possibly symptomatic stenosis. Angiography had shown 90% stenosis of the right internal carotid. The operation was done under general anaesthesia. Postoperative complications included right internal jugular venous thrombosis, which was detected by the lack of published cases. Despite this, a common pathogenetic mechanism for postoperative spinal accessory neuropathy and internal jugular venous thrombosis may well be present, at least in some cases, which may lead to the consideration of the possibility of both when either is discovered.

Although the onset of either spinal accessory neuropathy or internal jugular venous thrombosis in our patient cannot be determined precisely, it is likely that both developed at about the same time. The delayed worsening of spinal accessory neuropathy in this case suggests postoperative scarring or inflammation. The lack of improvement after a year, as in some other cases of spinal accessory neuropathy after CEA, implies considerable axonal injury, but does not clarify the manner of injury.
it remained in the normal range. Whether the use of high doses of caffeine can enhance the cardiovascular effect of ephedrine remains a possibility as stroke after taking a combination of caffeine and amphetamine has been reported.

Drug addiction in sportsmen and sportswomen is becoming a major concern in our societies, involving both professionals and amateurs. As energy supplements, thought to enhance performance, are easily available in some countries without the need of medical prescription, everybody should be aware that these so called “benign” drugs may have major adverse effects.

This first case report of an extensive cerebral infarct in a young sportsman consuming high doses of MaHuang extract and creatine monohydrate should alert the sport community to this possible adverse effect of energy supplements, particularly when used in multiple combination.

K VAHEDI
V DOMIGO
P AMARENCO
M-G BOUSSER
Service de Neurologie, Hôpital Lariboisière, Paris, France

Correspondence to: Dr K Vahedi, Service de Neurologie, Hôpital Lariboisière, 2 Rue A Paré, 75010 Paris, France
e-mail vahedi@ccr.jussieu.fr

Petroclival meningioma as a cause of ipsilateral cervicofacial dyskinesias

Hyperkinetic movement disorders of facial and neck muscles such as blepharospasm, hemifacial spasm, facial myokimia, and cervical dystonia have rarely been associated with unilateral brainstem or posterior fossa pathologies. We report a case of unilateral cervicofacial dyskinesias due to an ipsilateral petroclival meningioma.

A 32 year old left handed woman complained about left sided facial dysesthesia of the upper quadrant of her face for 1 year. In addition she had intermittent ipsilateral headache. A left sided facial palsy and hypogeusia developed. When progressive hearing loss and persistent ipsilateral tinnitus occurred she sought medical advice. She was referred to our department for further treatment after a large tumour in the left cerebellopontine angle had been demonstrated by MRI. On admission, the left corneal reflex was absent. There was marked hypoaesthesia of the first two divisions of the left trigeminal nerve and a mild left facial palsy. There was also hypogeusia of the left half of the tongue. Speech was slightly dysarthric. During examination dystonic and choreic movements of the left facial muscles were seen. The dystonic grimacing increased when the patient was being observed. There were also intermittent jerky dystonic head movements with turning of the head to the left, associated with slight elevation of the left shoulder. The facial movement disorder was clearly different from hemifacial spasm. There were no tonic or clonic synchronous contractions of facial muscles and no signs of involuntary coactivation. The patient barely noted the dyskinesias. Audiometry showed a hearing threshold at 30 Db on the left side and lack of stapedius reflex on the left side. Oculovestibular response to caloric stimulation was

(A) Axial T2 weighted SE MR images of a 32 year old woman with left sided cervicofacial dyskinesias show a large left petroclival meningioma comprizing the brainstem. (B) Coronal inversion recovery MR scans demonstrate marked displacement and distortion of the brainstem due to the petroclival meningioma. (C) Gadolinium enhanced axial T1 weighted SE MR scans 3 months postoperatively show complete removal of the tumour and normalisation of the displacement of the brain stem.
decreased on the left side. Furthermore, there was mild left dysarthrochokinesia.

Neurology of the facial nerve was normal on both sides. Needle myography of the left frontalis and orbicularis oculi did not show signs of denervation.

An MRI study showed a large gadolinium enhancing tumour within the left cerebellar pontine angle extending to the cavum Meckeli with marked displacement of the brainstem to the contralateral side (figure A and B). Cerebral angiography showed a discrete blush of the tumour as typically seen in meningiomas. The tumour was totally removed by a combined transpetrosal supratentorial and infratentorial presigmoidal approach. The postoperative course was uneventful and there were no new deficits. The facial palsy improved slightly as well as the trigeminal hypeaesthesia. Audiology remained unchanged. Postoperative imaging showed no residual tumour and the displacement of the brain stem within the posterior fossa had resolved (figure C). Marked improvement of the left sided craniofacial dyskinesias occurred during the next weeks.

The postoperative improvement of the dystonic and choreic grimacing and the cervical dystonia indicates a causal association between the petroclival meningioma and the segmental hyperkinetic movement disorders. Such a relation is supported also by the absence of a family history of movement disorders and the absence of previous exposure to neuroleptic medication. Hyperkinetic movement disorders due to tumours of the brainstem or of the posterior fossa have been reported only rarely. Asymmetric blepharospasm was recently found in a patient with an ipsilateral mesencephalic cyst. 6 Hemifacial spasm was seen in patients with parietal neoplasms, meningiomas, and epidermoid tumours of the cerebellopontine angle. 7 Acoustic neuromas and anaplastic pontocerebelar glioma can be associated with facial myokymia and spastic parietic facial contracture. 7 Also, cervical dystonia due to tumours of the cerebellopontine angle have been reported recently. 3

The pathophysiological mechanisms responsible for dystonic movement disorders caused by structural or functional lesions of the brainstem are not fully understood. The possibility of denervation supersensitivity of cranial nerve nuclei has been proposed previously. Alternatively, enhanced excitability of brainstem interneurons has been suggested. This pathophysiological mechanism is supported by the findings of blink reflex studies in patients with blepharospasm, spasmodyc dysphonia, and cervical dystonia. Tolosa et al found significantly less inhibition of the test stimulus polysynaptic late response and marked enhancement of the recovery curve of the late response under such conditions compared with the response in healthy subjects. 7

Our case provides further evidence that functional impairment by compression and distortion of the brain stem may cause hyperkinetic cervicofacial movement disorders. It is thus supported also by the notion that such movement disorders are accessible to surgical treatment of the underlying pathology. Therefore, patients with cranial or cervical dystonia or choreic dyskinesia should undergo MRI imaging to rule out surgically treatable causes.

THOMAS POHLE
JOACHIM K KRAUSS
Department of Neurosurgery, Inselspital, University of Berna, Berna, Switzerland

JEAN-MARC BURGUNDER
Department of Neurology

Correspondence to: Dr J K Krauss, Department of Neurosurgery, University Hospital, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
email joachim.krauss@nch.ma.uni-heidelberg.de

Acute multifocal cerebral white matter lesions during transfer factor therapy

Transfer factor is an active substance of unknown structure present in dialysable leukocyte extract which is assumed to transfer cell mediated immunity in an antigen specific fashion. 1 The mechanisms of action of transfer factor are still far from clear; in vitro dialysable leukocyte extract increases macrophage activation and interleukin (IL) 1 production and enhances leukocyte chemotaxis and natural killer function. Transfer factor has been reported to stimulate the cell mediated antigen specific response in patients with various infections; 1 therefore, treatment with transfer factor has been suggested in patients with selective deficits in cell mediated immunity such as in some refractory neoplasms and chronic infections. Moreover, it has been used in the treatment of uveitis. 2 Administration of dialysable leukocyte extract has seemed to be free of hypersensitivity, long lasting side effects, or complications, except for transitory hyperpyrexia. 3

We report on a patient in whom multiple white matter lesions developed after taking dialysable leukocyte extract orally for uveitis. A 28 year old man was admitted to hospital because of headache, mental confusion, and right hemiparesis. He had recurrent bilateral uveitis from the age of 12 to 14 with retinal lesions in the right eye. In January 1995 retinal vasculitis was diagnosed at fundoscopy and in July 1995 he started oral transfer factor as dialysable leukocyte extract twice a week. He complained of generalised weakness after the second dose and the referring symptoms developed after the third dose.

Neurological examination on admission showed mental confusion and severe right spastic hemiparesis with Babinski’s sign. No fever or meningismus were present.

Laboratory examinations on admission showed a slight increase in total serum protein (8.4 g/l, normal 6.0-8.0 g/l, although serum protein fraction was normal), antistreptolysin titer (355 IU/ml, normal <200 UI/ml), and anticardiolipin IgG (30 UI/ml, normal 6-12 UI/ml). Negative results were obtained for Epstein-Barr virus, toxoplasma gondii, the Paul Bunel reaction, anti-HIV, and the markers of hepatitis B virus and C infection were negative.

Cell, protein, and glucose concentrations in CSF were normal. No oligoclonal bands or antibody against CMV, Herpes simplex, Varicella zoster, Epstein-Barr virus, Coxsackie, Adenovirus, Enterovirus or Borrelia burgdorferi were present. Polymerase chain reaction search for Herpes simplex 1 and 2, Varicella zoster, CMV, Epstein-Barr virus, and JC virus in the CSF was negative.

Brain MRI showed several extensive asymmetrical lesions in the subcortical and periventricular cerebral white matter, some of which exerted a mass effect on the nearby CSF spaces. All lesions exhibited thick ring-like enhancement after intravenous contrast administration (figure). The brain stem, cerebellum, and cervical spinal cord were spared.

The patient had a progressive spontaneous remission of symptoms and signs. The neurological examination 20 days after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin titres (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded muscle, and antineutrophil cytoplasmic antibody, lupus anticoagulant, cryoglobulins, immune complexes, complement fractions, and neoplastic markers.

Seralogical investigations showed IgG but not IgM against cytomegalovirus (CMV), Herpes simplex, Varicella zoster, Epstein-Barr viruses, and Toxoplasma gondii; the Paul Bunel reaction, anti-HIV, and the markers of hepatitis B and C infection were negative.

Weinert et al observed several extensive asymmetrical lesions in the subcortical and periventricular cerebral white matter, some of which exerted a mass effect on the nearby CSF spaces. All lesions exhibited thick ring-like enhancement after intravenous contrast administration (figure). The brain stem, cerebellum, and cervical spinal cord were spared.

The patient had a progressive spontaneous remission of symptoms and signs. The neurological examination 20 days after onset showed slightly increased deep tendon reflexes on the right side and was normal 40 days later; all laboratory analyses were normal except for antistreptolysin tites (265 UI/ml). Two MR scans at 1 and 4 months after onset showed progressive reduction of lesions without contrast enhancement but a new large lesion in the left occipital white matter, which showed moderate contrast enhancement. At present, after 5 years, the patient is in a good state of health and neurological examination and laboratory tests are normal.

The close temporal relation between assumption of dialysable leukocyte extract therapy and appearance of cerebral white matter lesions in our patient supports the possibility that the association of the two events might not be casual. Despite the absence of biopsy, we reasonably excluded...
the diagnosis of vasculitis or neuro-Bechet's disease although in the absence of biopsy. In fact, the clinical, laboratory, and MRI findings were not typical and a low titre of anticardiolipin antibodies is found in 2% of healthy subjects.7

The occurrence at different time of focal cerebral white matter lesions highly supports the diagnosis of multiple sclerosis, but some clinical and laboratory findings in the our patient are not typical for this condition. Mental confusion is not common at the onset patient are not typical for this condition. Although confusion in multiple sclerosis whereas it is commonly found in acute disseminated encephalitis.1 In addition, CSF without oligoclonal banding argues against a diagnosis of multiple sclerosis, whereas it is commonly found in acute disseminated encephalitis.2 On the other hand the possibility that acute disseminated encephalitis may recur has been accepted3 and on the basis of the patient’s clinical picture and CSF, we favoured such a diagnosis.

The pathogenic mechanisms underlying the triggering, development, and duration of multiple sclerosis and acute disseminated encephalitis are still far from clear despite the progress made in unravelling them. Some findings suggest that acute disseminated encephalitis and multiple sclerosis lie at the two poles of an autoimmune range, in which autotigent reactivity is only temporary and direct against a single antigen in acute disseminated encephalitis and multiple antigens in multiple sclerosis.

Although the hypothesis that dialysable leucocyte extract had triggered an autoimmune disorder in our patient cannot be proved, our finding is in line with the report of multiple cerebral lesions after therapy with IL-2 in patients with malignancies or HIV infections.6 On the other hand, the fact that acute disseminated encephalitis is often correlated with the administration of foreign proteins, such as during vaccinations or viral infections led us to postulate in this patient a cell mediated immunological mechanism. Therefore, an immunological cross reaction between viral antigens (or other foreign material contained in vaccines) and various parts of the nervous system resulting in acute disseminated encephalitis might have occurred. As already noted, dialysable leucocyte extract contains a multitude of immunosimulating or potentially activating substances so it is impossible to pinpoint which one could have been responsible for the demyelinating effect seen in our patient. This notwithstanding, our finding indicates that neurological surveillance is worthy in patients assuming dialysable leucocyte extract therapy.

FRANCESCO G FOSCHI
LORENZO MARISIGLI
MAURO BERNARDI
Semiontica Medica, Dipartimento di Medicina Interna, Epatoologia e Cardioangiologia, Università degli Studi di Bologna, Policlinico Sant'Otsola, via G Massarentin9, 40138 Bologna, Italy. Telephone 0039 51 308943; fax 0039 51 308966; email: fgfosci@tin.it

Fahr’s disease and Asperger’s syndrome in a patient with primary hypoparathyroidism

Abnormal calcium phosphate metabolism has not previously been associated with Asperger’s syndrome, a form of pervasive developmental disorder. Nor have symmetric calcifications of the basal ganglia, dentate nuclei and cortex, or Fahr’s disease7—whether idiopathic or associated with hypoparathyroidism—previously been associated with this handicap. We present the case of a 24 year old man with Asperger’s syndrome, primary hypoparathyroidism, and multifocal brain calcifications.

According to medical history, the patient’s mother had received weekly injections of Depoprovera during pregnancy. A single child born after a normal term delivery, he underwent surgery for an inguinal hernia at 3 weeks. Developmental milestones were only moderately delayed. At 9 months, he rolled instead of crawling. He walked at 15 months, spoke at 2 years with poor articulation, and still speaks in short, unelaborated sentences. His social and language development lagged in grade school and he occasionally got into fights. In late adolescence, antisocial behaviour took the form of shoplifting and repeated long distance calls to pornographic hot lines. As an adult, his social adaptation remains poor: he currently lives with his mother and works irregularly as a dishwasher in a restaurant. He is indifferent, isolated, and resists novelty. He enjoys repetitive and solitary activities such as slot machine games and playing the piano.

Neurological examination showed bilateral hyperreflexia, mild impression of fine finger movements, dysgraphaesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal movements, dysgraphaesthesia on sensory testing, and a manneristic gripping handshake. There were no extrapyramidal

Brain CT, axial section: dense calcific deposits in the basal ganglia, thalamus, and orbitofrontal cortex consistent with Fahr’s disease.
symptoms. His IQ score was in the low range (WAIS-C=85 at the age of 13; Barbeau-Pinar=82 at the age of 17). He also presented an impairment on the Tower of London test, which measures executive function, and in a task assessing the understanding of others’ intentions. These two findings are reliably present in pervasive developmental disorders, in this IQ range. In addition, his performance on the Tower of Toronto test disclosed impaired performance in procedural learning. Psychiatric assessment showed scores above the cut off for autism according to the autism diagnostic interview (ADI-R), a standardised interview that requires specific training and those administering it to have a 0.90 reliability with other researchers. The subject was positive for the diagnosis of autism, being above cut off values in the three relevant areas of communication, social interactions, restricted interests, and repetitive behaviours. Nevertheless, he did not present delay in language acquisition or morphological atypicalities in language development, which corresponds to DSM-IV criteria for Asperger’s syndrome.

Brain CT showed dense calcium deposits in the basal ganglia, thalamus, cerebellar dentate nucleus, and orbitofrontal cortex, consistent with Fahr’s disease (figure). Subsequently, there was increased activity in the basal ganglia relative to the cerebral cortex. A fine banded karyotype was normal. Serum calcium was 1.55 mM (normal 2.15–2.55 mM); phosphate 1.69 mM (normal 0.70–1.34 mM); serum calcium was 1.55 mM (normal 2.15–2.55 mM); phosphate 1.69 mM (normal 0.70–1.34 mM); and urinary calcium was 0.8 mM (normal 2.5–6.3 mM). Serum parathyroid hormone was below 0.6 (normal 1.0–6.55 µM), and a nuclear scan of the parathyroid glands showed an absence of activity. With a combination of vitamin D3-calcium supplementation and cognitive-behavioural therapy, serum calcium, and phosphate concentrations normalised and his behaviour improved marginally.

Asperger’s syndrome is a subtype of pervasive developmental disorder of unknown aetiology. Evidence for involvement of specific brain regions in pervasive developmental disorder is scarce and inconclusive. Although the tempo-orbital region is the most often involved in pervasive developmental disorders’ abnormal functioning of the frontal lobe is suspected from replicated findings of executive function deficits and from occasional findings of frontal hypometabolism or abnormal macroscopic brain morphology. Abnormal cell counts and morphology in the cerebellar hemispheres have also been reported, but the relation of these findings to autism is controversial.

Fahr’s disease consists of symmetric calcifications, located mainly in the basal forebrain and cerebellum, which are of various aetiologies. Cognitive and behavioural abnormalities may be present when calcifications occur early in development. A fortuitous association between pervasive developmental disorders and hypocalcemia, given the paucity of published cases, is plausible in the presented patient. Nevertheless, our case suggests that abnormal phospho-calcium metabolism could produce an autistic syndrome when brain calcifications cause specific neuropsychological deficits, due to their localisation. For example, errors of social judgement may be related to calcifications of the orbitofrontal cortex, whereas dysfunction of frontal-basal ganglia circuits may contribute to repetitive and ritualistic activities. Additionally, developmental lesions of the basal ganglia and cerebellum may contribute to the abnormalities of sensory attention, procedural learning, and motor intention in this patient.

The finding that the clinical picture of autism can be found in a wide range of medical conditions giving rise to organic brain dysfunction is not new, but the relation between these conditions and autism are often considered meaningless. By contrast, this case, similarly to some others suggests that dysfunction in key brain circuits may result in behavioural and cognitive abnormalities currently indistinguishable from idiopathic pervasive developmental disorder. This case also suggests that careful biological assessment of this group of patients may disclose focal brain lesions associated with identifiable cognitive deficits. Could these clinical coincidences be instructive for a neurodevelopmental model of autism?

E STIP
N BLACK
J M IKOE
L MOTTRON
Hospital LH Lafontaine, Département de Psychiatrie, Université de Montréal, 7331, rue Hochelaga, Montréal (Québec) H1N 3V2, Canada.

Correspondence to: Dr Emmanuel Stipe, Centre de Recherche Fernand Séguin, Hospital LH Lafontaine, Département de Psychiatrie, Université de Montréal, 7331, rue Hochelaga, Montréal (Québec) H1N 3V2, Canada.
email stipe@umontreal.ca

Hypertrophic atlantoaxial ligamentations: an unusual cause of compression of the upper spinal cord

The craniovertebral junction can be affected by several pseudotumorous masses extrinsically located, such as rheumatoid panus, hypertrophic non-union of odontoid fracture, post-traumatic cicatrix, synovial cysts, tumorous calcium pyrophosphate dihydrate crystal deposition, taphaceous gout, calcification of the posterior longitudinal ligament, synovial disease-like pigmented villonodular synovitis, and synovial chondromatosis. Hypertrophy of the atlantoaxial ligamentations as a consequence of degenerative disease was recently recognised as an individual entity. Only five previous cases have been published. We add another case to the short series available in the literature, emphasising that as the cause of the spinal cord compression is amenable to surgical removal, symptomatic patients should be diagnosed and treated without delay.

A 66 year old woman presented with a rapid development of progressive spastic tetraparesis and an unremarkable medical history. There was no osteolysis or instability on plain cervical radiography and C.T. A bone scan with 99mTc was unremarkable. Magnetic resonance imaging showed a rare-odontoïd extradural mass that was homogeneous and isointense on T1 weighted signal, deme-
Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

A 63 year old woman who fell off her bicycle had a left temporal region head injury with evidence of initial loss of consciousness of 5 minutes and scalp excoriation of that area. On arrival at our hospital 30 minutes later she was alert and oriented. Cranial nerve functions, including extraocular motion and hearing, were preserved. Pain and temperature sensations of the right side, including her face, showed a 70% decrease compared with the left side; however, position and vibration sensations were normal. Other neurological examinations, including motor function, coordination, and deep tendon reflexes, were normal. The patient’s only complaints were left temporal headache and right hemihypaesthesia.

Brain CT on admission showed a discrete and linear high density at the left ambient cistern. On and linear high density at the left ambient cistern without other intracranial lesions. On neuroimaging studies, almost always associated with chronic subluxation: MR imaging. The brain stem was shorter on the injured side. The mechanism of midbrain injury in our patient should be kept in mind even in minor head injury.

Brain MRI, taken 3 days later, demonstrated an intraparenchymal lesion, at the surface of the left dorsolateral midbrain in high intensity on a T2 weighted image. The high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The loss of pain and temperature sensation improved gradually and the patient was discharged 2 weeks later.

T2 weighted images 1 month later showed a more localised lesion in the same area. The coronal slices showed a high intensity lesion at the level of lower midbrain coinciding with the tentorium level, disclosed as a low line between the occipital lobe and the cerebellar hemisphere (figure). The neurological deficits almost disappeared 6 months later.

Somatosensory impairment including pain is one of the most common complaints among patients with craniovascular injury. Responsible lesions for sensory impairment, detectable by neuroimaging studies, almost always accompany associated neurological deficits.

To our knowledge, a selective injury at the spinothalamic or trigeminothalamic tracts due to closed head injury has not been highlighted in the neurological literature.

(A) CT on admission showed a discrete and linear high density at the left ambient cistern. (B) Axial T2 weighted image taken 3 days later showed an intraparenchymal lesion, at the left posterolateral midbrain in high intensity. (arrow) The margin was rather obscure. The high and low intensity lesion corresponding to haematoma on CT was seen in the ambient cistern in the axial image. (arrow head) Taking both CT scans and MRI, this case was diagnosed as traumatic midbrain contusion. (C) An axial T2 weighted image 1 month later demonstrated a more discrete lesion at the dorsolateral midbrain tegmentum (arrow). (D) A coronal image showed a discrete high intensity lesion at the level of the lower midbrain (arrow) coinciding with the level of the tentorium, which was shown in low line coronal slices showing a high intensity lesion corresponding to haematoma on CT was seen in the ambient cistern (figure). Taking both CT scans and MRI into consideration, this case was diagnosed as traumatic midbrain contusion.

The location of contusion was at the lower dorsolateral midbrain, coinciding with the tentorial edge level. Initiation of injury was the surface of the midbrain; however, due to the proximity of the tentorial edge to the midbrain on the injured side, tentorial contact to the midbrain supposedly occurred more readily. Brain MRI findings support the anatomical features of this traumatic coup injury. This injury is not rare in patients with severe head injury, accompanied by other intracranial lesions, and is often caused by lateral displacement of the brain stem relative to the tentorium. It is influenced by congenital variation in the size and shape of the tentorial incisura. The brain stem of the patient with a narrow incisura is more vulnerable to the direct contusive effects than that of a patient with a wider incisura. Therefore, even in minor head injury, this mechanism may occur in patients preconditioned with narrow tentorial incisura, which may have been the case in our patient.

The concept of tentorial coup injury against the midbrain is not new. It usually accompanies various degrees of conscious disturbance and other long tract signs, sensory deficits as well as cerebellar and cranial nerve palsy due to the midbrain lesion or other associated intracranial lesions.

The clinical manifestation of our patient may represent one of the mildest forms of the midbrain contusion. Therefore, when we see a patient with post-traumatic sensory deficit, the possibility of this tentative injury should be kept in mind even in minor head injury.

NAOKATSU SAEKI
YOSHINORI HIGUCHI
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
KENRO SUNAMI
Kanazawa Ichibahosu Hospital, Japan
AKIRA YAMAURA
Departments of Neurological Surgery, Chiba University, School of Medicine, Chiba, Japan
Correspondence to: Dr Naokatsu Saeki, Department of Neurological Surgery, Chiba University, School of Medicine, 1–8–1 Inohana, Chuoh-ku, Chiba-shi, Chiba Japan 260-8870
email saeki@med.m.chiba-u.ac.jp

J Neurol Neurosurg Psychiatry 2000;68:100–126

CORRESPONDENCE

Toluene induced postural tremor

We read with interest the article by Miyagi et al1 and comment on the medical treatment of toluene induced tremor. Microdialysis experiments in rats have shown that inhalation of toluene increases extracellular γ-amino butyric acid (GABA) concentrations within the cerebellar cortex which progressively explains why GABA agonists including benzodiazepines (for example, clonazepam) are not very effective in toluene induced tremor and ataxia. Rat experiments also showed a 50% reduction in brain catecholaminergic neurons.2 Degeneration of certain cerebral pathways is probably responsible for the loss of this dopaminergic innervation.3 Dopamine agonists could therefore be of potential interest in the treatment of toluene induced tremor. This hypothesis was explored in a recently described case,4 which showed remarkable clinical and iconographic similarities with that described by Miyagi et al: (a) long history of chronic toluene inhalation, (b) marked postural tremor, (c) progressive worsening of the symptoms despite abstinence from inhalant misuse, and (d) mild cerebral atrophy and minimal level signal intensity in globus pallidi, thalami, red nuclei, and substantia nigra on T2 weighted MRI. As our patient’s tremor was progressive, medical treatment with a dopamine agonist was considered. One particular agent (amantadine) caught our attention because it had proved successful in the treatment of postural tremor of heredodegenerative disorders in which the dentatorubro-olivary system is affected. In addition, there is evidence that catecholaminergic pathways are also involved in this type of ataxias, supported by loss of expression of these neurotransmitters in the CSF of patients with heredodegenerative ataxias.5 In our patient, amantadine hydrochloride (100 mg twice daily) abolished postural tremor and ataxia completely over a 3 month period.

Subsequently, the treatment was discontinued, which resulted in relapse of tremor and ataxia. He was rechallenged to amantadine, which progressively offered him the same clinical improvement as in the first 3 months. After 3 years the treatment was discontinued without any sign of relapse.

Although this finding needs confirmation, amantadine treatment could form a new approach in the medical treatment for toluene induced tremor and ataxia. Intractable cases would then justify a more aggressive approach such as ventrointermedius thalamotomy.

YOLANDE HANSSENS
Drug Information Services, Hospital Pharmacy

Correspondence to: Dr Dirk Deleu, College of Medicine, PO Box 35, Sultan Qaboos University, Al-Khod, Muscat-123, Sultanate of Oman email deleu@omantel.net om

3 Bjoraas S, Naslund LU. Biochemical changes in different brain areas after toluene inhalation. Toxicol 1989;49:36.

Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis

Nabbout et al2 have attempted to identify the risk factors for the progression of subependymal nodules into giant cell astrocytomas (SEGAs) in tuberous sclerosis complex. In attempting to develop screening strategies that avoid iatrogenic morbidity, patient inconvenience, and excess cost, it is essential that the natural history of these lesions in the general population of patients with tuberous sclerosis complex be understood well.

We think that there are two problems with this study that may make the physician cautious about accepting the factors identified by Nabbout et al as a basis for a screening programme. The first is that this study was performed in a population that had been referred to a tertiary medical centre, and then had been further selected by virtue of having had at least 3 years tertiary centre follow up and needing two MR scans of the head. The prevalence of astrocytomas and risk factors, and hence the positive predictive value of any screening test in a general population of patients with tuberous sclerosis complex is likely to be different from those described in the highly selected group studied in this paper. The second point is that the authors have made a potentially misleading decision to exclude more than half their study sample because they do not have lesions close to the foramen of Monro. It is not certain that all SEGAs arise from lesions close to the foramen. They may arise in the fourth ventricle. Furthermore, the late presentation of many lesions in the lateral ventricles has, in the past, precluded accurate determination of their point of origin. Our study selects 24 of 60 patients who had met their entry criteria but does not state how many of the excluded 36 patients had no subependymal nodules or nodules that were not “near the foramen of Monro”. Inclusion criteria is given for what constitutes proximity to the foramen. The authors were apparently not blinded at the point when they selected which patients had lesions near to the foramen and therefore there is an obvious issue of potential selection bias.

The consequence of excluding these patients may have been that false significance is given to their results. The data they present are fragile. Consider, for example, the consequence of introducing from these 36 non-selected patients a hypothetical single case that had a family history of tuberous sclerosis complex and a subependymal nodule which enhanced with gadolinium. The effect would be to remove the stated statistical significance (using Fisher’s exact test) between the outcome and both of these explanatory variables.

Identifying the risk factors that can tell us which subependymal lesions will become invasive is important. As subependymal nodules and SEGAs seem to be histologically identical it is unlikely that pathologists will provide an answer. The study of Nabbout et al suggests some new hypothesis and stimulates others. However, the definitive answer will not be provided by studies of selected samples but by follow up of a population based sample of patients with tuberous sclerosis complex. In the absence of such a study we would be cautious about implementing screening programmes based on what may be misleading criteria.

FINBAR J K O’CALLAGHAN
ANDREW LUX
JOHN OSBORNE
Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom

Correspondence to: Dr Finbar J K O’Callaghan, Bath Unit for Research in Paediatrics, Royal United Hospital, Bath BA1 3NG, United Kingdom

Atypical form of amyotrophic lateral sclerosis: a new term to define a previously well known form of ALS

We read with interest the article by Sasaki et al concerning the atypical form of amyotrophic lateral sclerosis (ALS). The pattern of muscular atrophy in these patients differed from that of typical ALS in that severe muscle involvement was confined to the upper limbs, predominantly the proximal portion and shoulder girdle, sparing the face and the legs until late in the disease’s course or until the terminal stage.

Over the past few years, we have noticed a growing interest in the renaming of this clinical form of ALS, which has its origins and predomination in the proximal muscles and upper limbs and little or no effect of either a bulbar nature or in the lower limbs. Thus Hu et al4 coined the term ‘fair limb syndrome’ to describe a subgroup of patients affected by ALS that predominately showed signs of lower motor neuron disease in the upper limbs, without significant functional involvement of other regions on clinical presentation. This subgroup of patients was clinically characterised by the display of progressive atrophy and weakness affecting the proximal muscles in the upper limb muscles in a more or less symmetric manner.

Recently, along these lines, Katz et al5 described a series of patients affected by an adult onset motor neuron disorder restricted to the upper limbs, with severe proximal and varying degrees of distal involvement, calling it amyotrophic brachial diplegia syndrome. Other terms used in the past to refer to this form of ALS have been dangling arm syndrome, suspended form, oranguatan sign, dead arm sign, bibrachial palsy, rizomelic amyotrophy, and the idea of naming it a distinctive phenotype of a neurogenic

"man-in-the-barrel" syndrome has even been suggested.

Probably all these terms used to define this variation of ALS are synonyms for an older, well-known condition, the scapulohumoral form, or the chronic anterior poliomyelitis reported by Volpini in 1886 and known in Franco-German literature as Volpini-Bernhardt’s form of ALS.

At certain stages of the disease’s clinical course, it is probably difficult to differentiate it from progressive muscular atrophy (PMA). Some authors have said that PMA with late onset scapulohumeral distribution (over 45 years of age) generally leads to ALS as a matter of course.1 Be that as it may, the truth is that the atypical form of amyotrophic lateral sclerosis behaves differently from typical ALS. The comparative study with the rest of the ALS group supplied important clinical findings, such as little or no functional impairment of the bulbar muscles or legs. Hu et al also made four important statistical discoveries.

(1) The prevalence of this form of ALS constituted 10% of the ALS group as a whole (n=395). (2) The age of onset of this form was similar to the rest of ALS. (3) There was a predominance among men (the male/female ratio was 9:1 in this form, compared to similar ratios in the rest of ALS). (4) There was similarity to the rest of ALS. (n=395). (2) The age of onset of this form of ALS constituted 10% of the ALS group as a whole (n=395). (2) The age of onset of this form was similar to the rest of ALS. (3) There was a predominance among men (the male/female ratio was 9:1 in this form, compared to similar ratios in the rest of ALS). (4) There was similarity to the rest of ALS. (n=395).

Some of these patients have a long ALS clinical course, in that they usually preserve ambulatory ability, albeit with gait disorders, for more than 5 years after the onset of symptoms.

On a personal level, we also note two findings characteristic of these patients. In the initial stages of the illness, there is no effect on the diaphragm and the respiratory muscle failure occurs much later than in the typical form of ALS. This can be seen in the follow up of the results obtained in the respiratory function tests (FVC, PMax, and PEmax). We do not know the reason for either the characteristic distribution of weakness or muscle atrophy. A meticulous study shows that there is an atrophy of the deltoideus (and the paraspina) and a loss of strength in the external rotation of the shoulder (infraespinaus, supraespinaus, and teres minor). As a consequence, the upper limbs adopt a characteristic position, with the shoulders slumped, and the arms, forearms, and hands in pronation.

The atrophy and weakness of the infraespinaus and the supraespinaus, that act as an active ligament in scapulohumeral articulation, would explain the presence of subluxation of the shoulder joints in these patients.

Finally, we are in complete agreement that the occurrence of cervical spondylosis and ALS can cause difficulty in diagnosis. The problem lies in the fact that cervical spondylosis is a common condition. It is found in 83.5% of men and 80.7% of women over the age of 55. The faster progressive deterioration of the symptoms, the appearance of bulbar signs, and the absence of sensory symptoms and signs would favour the diagnosis of ALS.1

Isolated dysarthria

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monophasis of the tongue in patients with isolated dysarthria from stroke.2 As in their patients transcortical magnetic stimulation induced absent or delayed cortical responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticothalamic pathway.

On the whole, this report is plausible, but we would like to comment on the underlying mechanism of isolated dysarthria. As in the case of isolated dysarthria reported by Urban et al, all of our patients with isolated dysarthria had lacunar infarctions involving the internal capsule and corona radiata.1 Measurement of cerebral blood flow with IMP-SPECT in these patients disclosed frontal cortical hypoperfusion, particularly in the anterior opercular and medial frontal regions. Anterior opercular lesions produce facio-pharyngo-glossomotor aphasia (anterior opercular syndrome), and damage to the medial frontal regions, involving the supplementary motor area, causes speech expression disorders. White matter lesions can disrupt afferent and efferent fibre connections in motor and sensory areas, resulting in dysfunction of these cortices.3 Therefore, we postulated that isolated dysarthria results from interruption of corticospinal networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending pathways.4

To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. This study included that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria.5

Lingual pathologies are evident in three of seven patients reported by Urban et al and in two of 12 by us. This indicates that isolated dysarthria originates in interruption of multiple organs necessary for articulation as well as a lingual monoparesis.

References

Sasaki et al reported for their interest in our article concerning the atypical form of amyotrophic lateral sclerosis (ALS).1 Over many years, several researchers have recognised this peculiar distribution of muscle atrophy in clinical practice. The clinical manifestations consist of the muscular atrophy confined to the arm and the girdle and the arms (proximally dominant), absence of deep tendon reflexes in the arms, almost normal deep tendon reflexes in the legs, and subluxation of the shoulder joints. Some patients progress to bulbar involvement, as indicates, many terms have been coined to describe this peculiar pattern of the muscular atrophy such as flaccid arm, orangutan sign, dead arm sign, suspended form, flail arm syndrome, amyotrophic spinal bulbar palsy and man-in-the-barrel syndrome. Several researchers classified into a category of motor neuron disease (ALS) or spinal progressive muscular atrophy). However, others could not exclude the possible cause of cervical diseases such as dissociated motor loss in the upper extremity. In fact, these patients had cervical abnormalities such as cervical cord lesion, corona radiata. By contrast with clinical awareness of this peculiar pattern of muscular atrophy, no pathological confirmation of the diagnosis was made until we first reported necropsy cases in our articles.1,2 Now, these patients with their peculiar pattern of muscular atrophy are considered to be ALS or subtype of ALS. In my private opinion, “dangling arm syndrome” and “dead arm sign” seems to be the most suitable term depicting this type of motor neuron disease.

I agree with Hu et al reporting four important statistical discoveries in this form of ALS: the prevalence percentage of 10% of the whole ALS group, the similar age onset to the rest of ALS, a predominance among men (the male/female ratio was 9:1 in the study), and a longer median survival. It is clinically important to give wider publicity to the existence of this atypical form of ALS to avoid unnecessary surgical intervention for cervical abnormalities.

Correspondence to: Correspondence to: Dr Josep Gamez, Servicio de Neurologia, Hospital General Universitari Vall d’Hebron, Passeig Vall d’Hebron, 119–135, 08035 Barcelona, Spain. email: 12784@jgre.cat

Isolated dysarthria

We read with interest the article by Urban et al. Using transcranial magnetic stimulation, the authors demonstrated electrophysiological evidence for a central monophasis of the tongue in patients with isolated dysarthria from stroke. As in their patients transcortical magnetic stimulation induced absent or delayed cortical responses at the tongue, the authors ascribed isolated dysarthria to interruption of the corticothalamic pathway. On the whole, this report is plausible, but we would like to comment on the underlying mechanism of isolated dysarthria. As in the case of isolated dysarthria reported by Urban et al, all of our patients with isolated dysarthria had lacunar infarctions involving the internal capsule and corona radiata. Measurement of cerebral blood flow with IMP-SPECT in these patients disclosed frontal cortical hypoperfusion, particularly in the anterior opercular and medial frontal regions. Anterior opercular lesions produce facio-pharyngo-glossomotor aphasia (anterior opercular syndrome), and damage to the medial frontal regions, including the supplementary motor area, causes speech expression disorders. White matter lesions can disrupt afferent and efferent fibre connections in motor and sensory areas, resulting in dysfunction of these cortices. Therefore, we postulated that isolated dysarthria results from interruption of corticospinal networks indispensable for speech output, involving the thalamocortical and corticostriatal fibres as well as the corticobulbar fibres. In fact, lacunar infarctions around the internal capsule-corona radiata are likely to underlie these ascending and descending pathways.

To assess corticopontocerebellar tract function, Urban et al investigated cerebellar blood flow in patients with isolated dysarthria using HMPAO-SPECT. This study included that the corticopontocerebellar tract is preserved in isolated dysarthria because of no evidence for cerebellar diaschisis on SPECT. Their SPECT findings on cerebellar blood flow were similar to our results. However, we wonder whether cerebral cortical blood flow was preserved in their patients, because our SPECT study suggested frontal cortical dysfunction as an underlying mechanism of isolated dysarthria. Lingual pathologies are evident in three of seven patients reported by Urban et al and in two of 12 by us. This indicates that isolated dysarthria originates in interruption of multiple organs necessary for articulation as well as a lingual monoparesis. Although interruption of the corticoluminal pathways is a likely cause of isolated dysarthria, it should be borne in mind that damage to other descending and ascending projections may contribute to isolated dysarthria
Okuda et al draw attention to their article on pure dysarthria in Stroke which we read with much interest. They refer to 12 patients with pure dysarthria, 11 of whom showed multiple bilateral infarctions involving the internal capsule and corona radiata. The main difference to our series of seven patients is the multiple involvement of the brain. We think that the single lesion as collected by us is a more appropriate approach to correlate lesion topography with impaired function. The findings of Okuda et al are in line with our conclusion that interruption of the corticolegnal pathway is a key factor in the pathogenesis of dysarthria of extracerebellar origin. Obviously, impairment of the corticolegnal tract of one hemisphere by a single small lesion is an adequate condition for dysarthria. The patients of Okuda et al may be due to infarction in other parts of the brain compared with the lesion causing pure dysarthria.

The discrepancy between the two studies may not be mainly due to the different stage of the disease between the two groups of patients. Although the duration of the disease is one factor to judge the disease stage, the severity of the disease (stage of the disease) is also positively correlated with CAG repeat number.

We may have to take CAG repeat number into consideration in comparisons. Unfortunately, however, we have no way to do such comparisons between these two studies. We could say, at least, that the cortical inhibition was normal even at the same stage of the disease as that of the patients of Abbruzzese et al, if studied with our method.

We also consider that methodological differences are very important in paired magnetic stimulation. The results strongly depend on the intensities of both a conditioning and a test stimulus. Especially, the intensity of the conditioning stimulus is critical. We have no difficulty in showing normal inhibition, but have much difficulty in showing reduced or absent inhibition because of such marked dependence of the results on the intensities of stimulation. Therefore, we used a threshold of the conditioning stimulus before we confirmed inhibition in studies of patients. We used an intensity of 5% less than the active threshold as a conditioning stimulus in the study of chorea. We did not need to change the intensity of the conditioning stimulus because we always obtained a normal inhibition with this intensity. We consider that this is very important. If using a suprathreshold (active threshold) conditioning stimulus, a facilitatory effect must often superimpose on the intracortical inhibition. This makes the interpretation difficult. Was the intensity of 80% of the resting threshold below the active threshold in their patients? In our experience, 80% of the resting threshold was sometimes above the active threshold. These factors must be considered in interpreting the result of paired magnetic stimulation.

Such a methodological problem is inherent in human studies because we have no direct way of detecting the threshold of the motor cortex. Our two results must be true. We may have two completely different interpretations of these results. (1) The intracortical inhibition is normal in Huntington's disease. Abbruzzese et al showed the reduced inhibition because they used a high intensity conditioning stimulus with which the degree of the
intracortical inhibition is often decreased even in normal subjects. The 80% of the threshold for relaxed muscles must correspond to different values relative to the threshold for active muscles in patients from that in normal subjects. (2) The intracortical inhibition is decreased in patients with Huntington’s disease. This slight abnormality could be detected with their method but not with ours because their method has better sensitivity in detecting an abnormality than ours. Whether true or false, this intracortical inhibition must be normal or slightly disturbed in Huntington’s disease.

Critical closing pressure: a valid concept?

Czosnyka et al recently published a study investigating the clinical significance of critical closing pressure (CCP) estimates in patients with head injury. We see problems both with the theoretical foundation of their CCP concept and with the interpretation of their results.

Firstly, the physiological meaning of both formulae of CCP proposed by Michel (CCP1 and CCP2, respectively) is questionable. The implication of both presented equations is that the instantaneous value of cerebral blood flow velocity (FV(t)) at a given moment t is equal to arterial blood pressure at the given time (ABP(t)) minus CCP divided by cerebrovascular resistance (CVR)

\[
\text{FV}(t) = \frac{\text{ABP}(t) - \text{CCP}}{\text{CVR}} \quad (1)
\]

At the time of systolic and diastolic phases, CVR is based on ABP (ABP), FV(t) should be equal to (ABP±CVR)/CVR and (ABP±CPR)/CVR, respectively. However, it has not been shown that the vascular resistance variable for the static pressure/flow connection (CVR), concerning mean pressures and flows) is different from and is in general much higher than resistances determining dynamic pressure/flow relations (CVR1) as in the case of pulsatile pressures. Therefore, equation 1 cannot be applied to describe dynamic flow. This can best be illustrated using the frequency domain approach (ABP=mean pressure, FV=mean flow velocity, A1=amplitude of the pulsatile pressure wave, F1=amplitude of the pulsatile flow wave).

\[
\text{FV}(t) = \frac{\text{ABP} - \text{CCP}}{\text{CVR}} \quad (2)
\]

Inserting equations 2 and 3 into the frequency domain equation for CCP2 of the authors

CCP2=ABP-A1/F1×FV

leads to

\[
\text{CCP2} = \text{ABP} - \text{FV} \times \left(\frac{\text{ABP} - \text{CCP}}{\text{CVR}} \right)
\]

Observe that CCP2 is only in the case of CVR1=CCP2 equal to CCP. Under the more realistic assumption that CVR1 is equal to about half of CVR0 it follows for CCP2:

\[
\text{CCP2} = 0.5 \times \text{ABP} + 0.5 \times \text{CCP}
\]

With decreasing CVR1/CCR0 ratios, CCP2 becomes more and more dependent on ABP and independent of CCP. In any case, without exact knowledge of the CVR1/CCR0 ratio, equation 4 is useless for a valid CCP calculation.

The second criticism concerns the correlation of the calculated CVR1/CCR0 values with mean ABP found by the authors (p<0.05). According to the original idea of Burton,1 CCP represents a certain mean ABP value below which small vessels begin to collapse. CCP should, therefore, be a constant value independent of the actual ABP. On the other hand, this significant correlation can be explained by our equation 5, again indicating the missing physiological basis of the CCP concept of the authors.

Thirdly, it seems doubtful that CCP could be estimated using pressure and flow values from ABP ranges clearly above CCP and flow values clearly above zero flow, respectively. As long as small vessels have not collapsed (ABP>CCP) it is not possible to decide whether their actual wall tension is determined more by transmural pressure or by active vonostronction. However, the relative contribution of both effects is critical for the limit of CCP.

Finally, I would be interested in the authors’ explanation of negative diastolic flow values as seen in Doppler spectra and 'clouds' of arteries with a high vascular resistance (peripheral arteries, middle cerebral artery during strong hypocapnia). In the case of ABP<CCP and a small vessel collapse according to the model of the authors, CVR should increase towards = and FV towards zero (equation 1). Negative flow values could, consequently, not occur.

I suggest that the relation between pulsatile pressure and flow should be better described using the concept of different static and dynamic resistances (CVR0 and CVR1). The driving pressure of the mean FV is more accurately given by cerebral perfusion pressure (CPP=ABP-ICP) than by ABP-CCP. Therefore, equation 2 changes to

\[
\text{FV}(t) = \text{ABP} - \text{ICP} \quad (6)
\]

and equation 5 to

\[
\text{CCP2} = \text{ABP} \left(1 - \frac{\text{CVR1}}{\text{CVR0}} \right) + \frac{\text{CVR1}}{\text{CVR0}} \quad (7)
\]

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.

Rolf R Diehl
Department of Neurology, Krupp Hospital, Alfred-Krupp-Straße, 4517 Essen, Germany

7 Equation 5 to

\[
\text{CCP2} = \text{ABP} \left(1 - \frac{\text{CVR1}}{\text{CVR0}} \right) + \frac{\text{CVR1}}{\text{CVR0}} \quad (7)
\]

Equation 7 explains well the positive correlations found between CCP2 and ABP and between CCP2 and ICP, respectively, without assuming a connection between CCP2 and Burton’s concept of “critical closing pressure”.

Rolf R Diehl
Department of Neurology, Krupp Hospital, Alfred-Krupp-Straße, 4517 Essen, Germany

High frequency stimulation of the subthalamic nucleus and levodopa induced dyskinesias in Parkinson's disease

Reduction in the neuronal activity of the subthalamic nucleus leading to diminished excitation of the globus pallidum internum is associated with chorea-ballism in monkeys. Levodopa induced dyskinesias are currently thought to share a similar pathophysiology but recent findings also suggest that abnormal patterns of neuronal firing in the globus pallidum internum may be relevant. Mal patterns of neuronal firing in the globus pallidum internum may be as relevant. The thalamic nucleus pallidum internum may be as relevant.

Levodopa induced dyskinesias are currently associated with chorea-ballism in monkeys. Evidence from 2-deoxylucose (2-DG) uptake showed an increment in the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

There are several points leading us to question the actual site of action of the electrocoagulation.

(1) Stimulation of the subthalamic nucleus as Parkinson's disease has been associated with the production of dyskinesias only by reduced delivery in levodopa intake. Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response to the procedure. Firing predominantly to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is placed ventrally, the results are contradictory to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

In summary, there are several points leading us to question the actual site of action of the electrocoagulation.

(1) Stimulation of the subthalamic nucleus as Parkinson's disease has been associated with the production of dyskinesias only by reduced delivery in levodopa intake. Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response to the procedure. Firing predominantly to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is placed ventrally, the results are contradictory to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

In summary, there are several points leading us to question the actual site of action of the electrocoagulation.

(1) Stimulation of the subthalamic nucleus as Parkinson's disease has been associated with the production of dyskinesias only by reduced delivery in levodopa intake. Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response to the procedure. Firing predominantly to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is placed ventrally, the results are contradictory to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

In summary, there are several points leading us to question the actual site of action of the electrocoagulation.

(1) Stimulation of the subthalamic nucleus as Parkinson's disease has been associated with the production of dyskinesias only by reduced delivery in levodopa intake. Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response to the procedure. Firing predominantly to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is placed ventrally, the results are contradictory to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.

In summary, there are several points leading us to question the actual site of action of the electrocoagulation.

(1) Stimulation of the subthalamic nucleus as Parkinson's disease has been associated with the production of dyskinesias only by reduced delivery in levodopa intake. Moreover, Benabid et al who pioneered this technique, consider the induction of dyskinesias by high frequency stimulation of the subthalamic nucleus as a good indicator of a very positive response to the procedure. Firing predominantly to the thalamus from the globus pallidum internum are placed dorsocaudally to the subthalamic nucleus and could be blocked by high frequency stimulation. (2) When the recording electrode is placed ventrally, the results are contradictory to the subthalamic nucleus in sagittal planes 11 mm or less, neuronal activity is characterised by action potentials of large amplitudes (0.5–1.0 mV) with low background activity, tonically firing neurons, and absent sensorimotor responses (“driven”). All these characteristics seem to be present in the patient described here. Neuronal activity in the sensorimotor region of the subthalamic nucleus is different from the above but on occasions the distinction may not be easy. Accordingly, it is very important to document in more detail the findings in the case of Figueiras-Mendez et al. Ideally, we would like to see the trajectory and length of the different recording tracks, the effects of microstimulation, and the postsurgery MRI with measurement of the tip of the electrodes. If, as assumed, the subthalamic nucleus was indeed correctly targeted in this patient, the pathophysiology of the basal ganglia will need to be revisited.
Nitric oxide in acute ischaemic stroke

The pivotal role of nitric oxide (NO) in cerebral ischaemia has been elegantly highlighted in the recent editorial by O’Mahony and Kendall. Although studies of neuroprotective agents have been largely disappointing, pharmacological manipulation of NO may represent a novel means of protecting the brain from ischaemic insult. One area not discussed in the editorial is the neuroprotective effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors or “statins” in cerebral ischaemia. Preliminary studies have shown that statins modulate brain nitric oxide synthase, neural NO production and activity in a neuroprotective manner. Data from a murine model of ischaemic stroke demonstrate that prophylactic statin therapy reduces infarct size by about 30%, and improves neurological outcome in normocholesterolaemic animals. In this investigation, statin therapy directly regulated endothelial NO synthase (eNOS) expression in the brain without altering expression of neuronal NO synthase (nNOS). Lovastatin has been shown to inhibit cytokine mediated upregulation of inducible NOS and production of NO in rat astrocytes and macrophages, and this inhibition may represent a mechanism for suppressing inflammatory responses that accompany ischaemia. Most interestingly, these preliminary findings suggest that statin therapy may modify the cerebral and circulation of other faces of brain NO in a synergistically neuroprotective manner. These and other vascular effects of statins in cerebral ischaemia are potentially of great importance in human neuroprotection and understanding the role of NO in the brain. The Potential Study of Pravastatin in the Elderly at Risk (PROSPER) study will help clarify their role in human cerebrovascular disease.

CARL J VAUGHAN
Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, The New York Presbyterian Hospital, Starr 4, 525 E 68th Street, New York, New York 10021, USA
NORMAN DELANTY
Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
Correspondence to: Dr Carl J Vaughan email evaughan@nyhmmed.cornell.edu

BOOK REVIEWS

That neuroimmunology has come of age is demonstrated by the profusion of volumes published on the subject in recent years. This volume focuses on the central nervous system, and aims to satisfy the curiosity of both the clinician faced with a diagnostic conundrum and the experimental immunologist inquiring into the clinical relevance of his findings. At first sight it seems improbable that both of these goals might be achieved in one volume; this book however, succeeds admirably in what it sets out to do, as much as a result of its literary style as its content. The intrusive authorial voice fell into disfavour in literary circles around the turn of the century because it was thought that calling attention to the act of narrating might detract from realistic illusion, so reducing the emotional intensity of what was being represented. It is a device much favoured by postmodern writers, who expose the nature of fictional constructs. The intrusive medical author never dropped out of fashion, although in these days of evidence based prejudice, authorial omniscience might be considered suspect. The authors of this volume are intrusive in a guiding conversational manner that makes this book by far the most readable of the neuroimmunological texts.

The book opens with a highly accessible chapter on immunology, requirements and review system. There follows a chapter that integrates the neurobiology of multiple sclerosis with contemporary issues of aetiology, cell injury, and repair. Next, a chapter on inflammatory demyelinating diseases examines syndromes of isolated demyelination, acute disseminated encephalomyelitis and allied conditions, and some of the syndromes of demyelination that are now accepted as part of the range of multiple sclerosis. The chapters on demyelinating disease are drawn to a close by a discussion of existing and experimental therapies for multiple sclerosis. The book continues with chapters on para-neoplastic disorders of the CNS, stiff man syndrome, neurologically complications of low background activity found in our recordings is only due to the better signal-to-noise ratio of the electrodes used. “Good recording electrodes” depend on many variables such as tip size, tip profile, insulation material, impendence, manufacture, etc. “The signal-to-noise ratio of the cells in question has the same ratio as the subthalamic nucleus cell shown by Hutchinson et al.” (b) In our report, cells discharged tonically, but cells fired phasically, this differentiation was found along the trajectory of the electrode. Unfortunately, this point was not mentioned in the paper. It would surely have changed the opinion of Obeso et al. Considering the mentioned patient, a total of eight neurons were recognised as belonging to the subthalamic nucleus in the right hemisphere, with a mean frequency of 74 Hz (range 38–109 Hz). Four of them responded to passive and/or voluntary movements and one was considered tremorgenic. The stimulating electrode was placed in laterality 11. One track was performed. In the left hemisphere, two tracks were performed. One track was sacrificed by the poor responding activity of the cells recorded. In the other track, nine neurons were recorded in the subthalamic nucleus (always following the above mentioned criteria) with a mean of 69 Hz (range 17–98 Hz). Five cells responded to passive and/or voluntary movements. One of them was also positive to tremor. The stimulating electrode was placed in laterality 12. The track while stimulating electrodes was always tested in the surgery before creating it and, only when the symptoms are considered of unquestionable benefit it is left in the chosen place. The final position of the electrodes, assessed by ventriculography, was as follows: (a) posteroanterior: 1.5 mm behind the mean point of intercommissural line, (b) height: 6.5–6.5 mm below the intercommissural line, and (c) lateral: 12 mm for the right hemisphere, and 11.5 mm for the left hemisphere.

ROBERTO FIGUEIRAS-MÉNDEZ FERNANDO MARIN-ZARZA JOSE ANTONIO MOLINA FÉLIX JAVIER JIMÉNEZ-JIMÉNEZ MIGUEL ORTÍ-PAREJA CARLOS MAGARINOS MIGUEL ANGEL LOPEZ-PINO VICENTE MARTÍNEZ Correspondence to: Correspondence to: Dr F Jiménez-Méndez, C/Corregidor, Jose de Pasamonte 24 3ºD, 28030 Madrid, Spain

connective tissue disorders, organ specific autoimmune, sarcoidosis, and cerebral vasculitis.

Each chapter is an appropriate length and well referenced; the wood is always clearly visible between the trees. This book is sufficiently readable and small to be recommended as holiday reading. Its only drawback is that in making erudition so readily available, one risks being outshined yet again by one's registrar.

JON SUSSMAN

As Alzheimer's disease becomes of increasing importance to society, basic science research in this field needs to provide the building blocks for both therapeutic interventions and accurate diagnosis. This publication is a collection of papers presented at an international Alzheimer's disease research meeting in Leipzig in 1997. This conference aimed to bring together both clinical and basic science disciplines and this is reflected in the papers selected for this book. There are 31 papers included, covering topics from early symptomatology and cognitive features to immunobiology and theoretical neuronal treatment strategies. The contributors to this book are some of the most authoritative in their field, predominantly based in Europe.

Covering all aspects of Alzheimer's disease research from the correct diagnosis to basic science approaches of treatment is ambitious for such a compact book (315 pages), and although the editors succeed in collecting an interesting series of papers around these themes, they make no claims to be comprehensive in their scope. The papers included range from seminal research reports to reviews of the current literature. The review papers are generally excellent, concise, clear, well referenced, and illustrated—for example, there are excellent reviews of Alzheimer's disease with vascular pathology (Pasquier et al), and Lewy body disease (McKeith et al), great updates on neuropathology (Jellinger and Bancher, Braak et al), and several worthy reviews of treatment strategies for Alzheimer's disease including NSAIDS (Möller), antioxidants, and radical scavengers (Rösler et al). I found the review by Reisberg et al on ontogenetic models in the understanding of the management of Alzheimer's disease particularly interesting. However, the papers of original research are of more limited interest to the general reader. Although, as mentioned, the quality of illustrations is good, there is some variability in the definition of abbreviations and occasional lapses into other European languages.

Certainly, I think this book would be of value for investigators interested in the neuropathology, immunopathology, and molecular biology of Alzheimer's disease. It would make an excellent addition to libraries as a reference text for many researchers of varied interests.

CLARE GALTON

Organ transplantation, once medical exotica, is now almost universally performed in the United Kingdom each year are performed cadaveric organ transplants of about 1800 kidneys (in addition to 160 live kidney donors), 700 livers, and 450 heart/lungs (UK Transplant Support Services). In basic surgical techniques were established at the beginning of the century in canine models. Transplantation of these experiments to humans awaited safe and effective immunosuppression. Various forms of immunosuppression were radiation (total body or total lymphoid) and non-selective chemical reagents (benzene and tolouene). Then the antiproliferative drug 6-mercaptopurine (6-MP) was introduced, shortly followed by a derivative, azathioprine, with improved oral bioavailability. Combined with corticosteroids, these allowed the first human solid organ transplants to be performed: in 1954 the first lung transplant in Mississippi and liver transplant in Colorado. Then in 1967 Christian Barnard captured the world's imagination with the first heart transplant. His technique has been modified slightly since, but the increasing success of organ transplantation rests mainly on improved immunosuppression with drugs that selectively suppress lymphocytes by inhibiting lymphokine generation (cyclosporin A, tacrolimus), renal transduction (sirolimus, lefunomide), or differentiation (15-deoxyspergualin) pathways. As a result, over the last 10 years in the United Kingdom, the 1 year survival of grafts has improved from 80% to 90% (kidney), 55% to 75% (liver), and 70% to 90% (heart/lung).

Wijdicks estimates that 10% of transplant patients have a significant neurological complication, typified by common being neurotoxicity of immunosuppressive drugs, seizures, and failure to awaken. Yet this is the first text devoted to the neurological aspects of organ transplantation. It is therefore a timely subject. The main text is included in the excellent Blue Books Of Practical Neurology series. Twenty authors contribute (one Dutch, one Swiss, the rest American) to four chapters on the transplant procedures themselves followed by 10 chapters on neurological complications of transplantation including failure to awaken, and psychiatric, neuromuscular and demyelinating complications. Especially useful to the neurologist without much experience of transplantation are the comprehensive chapters on immunosuppressive drugs and the opportunistic infections associated with them (most commonly Listeria monocytogenes, Aspergillus fumigatus, and Cryptococcus neoformans). The peripheral nerve and plexus injuries associated with transplantation are painstakingly described; astonishingly a significant ulnar neuropathy occurs in up to 40% of kidney transplants. The Cincinnati Transplant Tumour Registry has recorded information on 10 813 cancers arising de novo in organ allograft recipients worldwide and here are presented the data in the 300 of these with CNS involvement. This is one for the shelves of any neurologist involved in organ transplantation.

ALASDAIR COLES

Volume nine of the Current Issues in Neurodegenerative Disease series examines the interplay between cerebrovascular disease and dementia, particularly Alzheimer's disease. Two hundred pages of what are essentially 20 brief review articles comprise this text, sadly without any illustrations. Except for the introduction to each chapter there is a certain sense of deja vu, although on the positive side each contribution is extremely well referenced.

The book is divided into five sections covering the historical concepts of vascular and Alzheimer's dementias, the arguments for a pure vascular dementia, the role of Alzheimer's disease in the genesis of dementia after stroke, the contributions of white matter changes on neuroimaging to dementia, and finally a short section examining practical questions such as the management of stroke in patients with dementia. Although common conditions in their own right, stroke and Alzheimer's disease do seem to cross paths more often than would be expected by chance alone, and more often than can be explained by the presence of unproved angioatherotic and recurrent lobar haemorrhages. Perhaps common genetic factors are responsible and here the ApoE alleles are discussed. The comprehensive section on deep white matter lesions seeks to explain the connection further—and convinces the reader that there is still a lot which is not well understood. It is in this section particularly that illustrations are greatly missed. Brief mention is made of other conditions which may produce white matter changes and dementia such as CADASIL, cerebral lupus, and the primary antiphospholipid syndrome.

Some typographical errors and mistranslations detract a little further from a book which seems unlikely to appeal to most neurologists, although it will no doubt be a source of reference to those working in the field of cognitive disorders, particularly vascular dementias.

PETER MARTIN

Evolutionary biologists would probably tell us that the enchantment of stories is due to survival having been dependent on the passing of oral culture from one generation to the next. Information put in narrative form not only delights, but is easily recalled. Stories also construct meaning through understanding, inference, motive, and consequences in a fashion that informs future action. Our experience of the world is constructed around such narratives. They define us as individuals, family members, professionals, and cultural groups.

This book is a series of essays on psychotherapy, psychiatry, and also medicine that see the awareness and use of narrative in clinical practice as a construct that can both

Downloaded from http://jnnp.bmj.com/ on July 7, 2017 - Published by group.bmj.com
deliver effective care as well as act as a conceptual bridge between the different disciplines.

One of the great pleasures of being a doctor has always been listening to patient's stories, but the editors of this book fear that this essential art can be overtaken by dull scientific pragmatism. However, in the most outstanding chapter, writes a lucid and well reasoned account of the need to search for and maintain anecdotal meaning in treating psychosis. This avoidance of dehumanising effect to both patients and professionals of identifying individuals by their illness as in schizophrenics. Every psychiatric library should buy this book for this paper alone, which should be required reading for all psychiatric trainees.

The rest of the book is of variable quality. There is a rather prosaic essay on gender issues, and there is repetition in various chapters concerning attachment theory, a useful but over worked paradigm. However, there are two very fine accounts of narrative in psychotherapy by James Phillips and Jeremy Holmes.

DUNCAN MCLEAN

In a small accessible and easily digestible volume, the authors address a clinically important field. Faced with slim evidence on which to base clinical recommendations, they acknowledge that their very useful management advice “has often had to be based on practical clinical experience rather than the results of clinical trials or formal research...” This disclaimer seems to have allowed them to mix evidence and opinion, limit references, and confuse the reader regarding the level of evidence. A pity, as the authors, with special expertise in this important area, have made a good start in putting together different aspects of the care of the woman with epilepsy in a practical book that is of direct interest and relevance to neurologists, obstetricians, general practitioners, midwives, general practitioners, midwives, and trainees.

Moving on from the general to the particular, the text, although expansive in parts, covers some important points. Examples include (a) which oral vitamin K preparations are considered safe in pregnancy (phytomenadione), (b) differential efficacy of various antiepileptic drugs in different syndromes versus side effect and teratogenicity profile, (c) more information on the limitations of available evidence to support the statement “no monotheory human abnormality reported” with certain new antiepileptic drugs in pregnancy, (d) the need to consider antiepileptic drug contraindications to and indications for lumbar puncture in all patients (including those taking antiepileptic drugs) who meet the most sensitive time of the fetus to the induction of malformations by exogenous agents.”

Despite these comments (made with an eye on the next edition) I would recommend this book to all those involved in the care of women with epilepsy.

LINA NASHEF

Childhood Epilepsies and Brain Development is the fruit of a symposium held in 1997 to try and bridge the chasm between those working in the clinic or at the bedside and those in the laboratory. Both groups must collaborate and communicate to improve the management of children (and old patients) with epilepsy.

The book is essentially a collection of monographs of heterogeneous content and style and the result, perhaps not surprisingly, is that some of the component parts are better than the whole (the chapters) and section will clearly be of particular interest to those who treat children and their families. The chapters on infantile spasms and Lennox-Gastaut syndrome are informative and provide some new and speculative insights into the pathogenesis of spasms. However, it was surprising that severe myoclonic epilepsy of infancy did not merit a specific chapter in view of the unique electroclinical evolution and natural history of this syndrome. The crucial issue of the cognitive and behavioural sequelae of early and frequent seizures on the immature brain, which is probably of most concern to both clinicians and families, is succinctly addressed in two chapters—although a clear and consistent consensus regarding whether it is true or false is not possible. The chapters covering basic neurophysiology, neurogenetics, and neuropsychopathology, are erudite and fascinating but at times are incomprehensible. Further work is needed, including answering the fundamental question—why does the first seizure occur—before the clinician and basic scientist are able to talk the same language—for the benefit of the patient with epilepsy.

The concept of Childhood Epilepsies and Brain Development is innovative and commendable and the authors of the monographs are interesting and informative, the overall impression is that the individual parts (the chapters) are better than the whole (the book). The lack of an index is a strange omission, perhaps reflecting a prolonged editorial atypical sensitivity, and although this militates against it becoming a well thumbed reference text, the book is an erudite addition to the mossy fibre-like sprouting of the epileptological literature.

RICHARD E APPLETON

Difficult clinical problems in psychiatry come in many forms. Diagnosis often causes difficulty, particularly in cases which demand some assessment of the role of physical illness in symptom formation. Perhaps for most psychiatrists practising in community settings risk assessment comes high on their list of concerns.

Unsurprisingly, given the psychopharmacological expertise of the editors, this book is particularly interested in treatment resistance. The first 6 chapters give excellent reviews of the management of clinically relevant topics—for example, refractory schizophrenia or the difficult panic patient. The emphasis is very much on psychopharmacological management.

The second half of the book is more of a mixed bag, both in terms of the areas covered and the quality of the chapters. There are a few very useful chapters covering all aspects of the assessment and management of anorexia nervosa and chronic fatigue are covered by a thorough review of the pharmacological management of substance misuse. Then come two weak chapters on behavioural disturbances in old age and the violent patient in the community. This last chapter will be of particular interest to community psychiatrists but is not one that I would recommend because some aspects of the practical management of violence are missing—for example, a documented risk-benefit analysis, good failsafe communication, or deciding when to detain. One of the last chapters is a very good account of the management of hyperactivity in childhood, with good practical advice on the use of methylphenidate.

Apart from the chapters on chronic fatigue and the treatment of tardive dyskinesia there is little in this book which is of immediate interest to neurologists. However general psychiatrists wishing to improve their prescribing skills will find this book useful.

SIMON FLEMINGER

The Maudsley prescribing guidelines are produced each year for a local readership, but this, the fifth edition, is the first to go public. The authors and principal contributors, a mixture of pharmacists and psychiatrists with an interest and background in clinical psychopharmacology, are to be complimented on producing a guide of manageable size and ready accessibility.

The book is divided into sections dealing with the treatment of broad groups of clinical disorders—for example, psychosis—special patient populations—for example, elderly people, with further sections on the management of emergencies and the adverse effects of psychotropic drugs. Much of the information is laid out in tabular form. It could become an indispensable resource for a busy on call senior house officer (the dimensions would fit comfortably into the pocket of a clinical white coat, were they still to be worn) but more senior clinicians will find plenty of use for it in the clinic. It does not aim at great ambition, but provides a useful list of references.

There are a few cavils. The section on treatment of anxiety is skimpy (one and a half pages) compared with say the treatment of affective illness (22 pages) or schizophrenia (39 pages). The brevity is only partly explained by the undeveloped state of that particular area of psychopharmacology. Sections on use of new drugs and indications for lumbar puncture and indications for EEG seem to have been displaced from some other primer for busy junior doctors. There is no index.

These quibbles apart, prescribing guidelines can be wholeheartedly recommended.

BRIAN TOONE
Selective hemihypaesthesia due to tentorial coup injury against dorsolateral midbrain: potential cause of sensory impairment after closed head injury

NAOKATSU SAEKI, YOSHINORI HIGUCHI, KENRO SUNAMI and AKIRA YAMAURA

J Neurol Neurosurg Psychiatry 2000 68: 117-118
doi: 10.1136/jnnp.68.1.117

Updated information and services can be found at:
http://jnnp.bmj.com/content/68/1/117

These include:

References
This article cites 2 articles, 0 of which you can access for free at:
http://jnnp.bmj.com/content/68/1/117#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/