Letters to the Editor

No evidence for the involvement of interleukin 2 or the immunoglobulin heavy chain gene cluster in determining genetic susceptibility to multiple sclerosis

Here we report the investigation of two promising candidate multiple sclerosis susceptibility genes. Each is biologically plausible, having a function suggesting possible involvement in the pathogenesis of the disease and positional, having existing linkage evidence supporting its candidacy. The two differ, however, in the origin of the supporting linkage evidence. This comes mainly from the analysis of animal models in the case of interleukin 2 (IL-2) and from human studies in the case of the immunoglobulin heavy chain gene cluster.

Interleukin 2 is a cytokine intimately involved with both the function and regulation of the immune system. It has both proinflammatory and anti-inflammatory actions, promoting T cell proliferation during cell mediated immune responses and, conversely, being crucial both for the development and maintenance of self tolerance. Genetic analysis of experimental autoimmune encephalomyelitis (EAE) provides strong evidence supporting the candidacy of IL-2 as a susceptibility gene.

The immunoglobulin heavy chain gene cluster is another highly promising candidate. Plasma cells and B lymphocytes are readily detected in areas of acute demyelination and the occurrence of oligoclonal immunoglobulin bands in cerebrospinal fluid of affected individuals is a distinctive feature of the disease. Moreover, the cluster is encoded towards the telomere of chromosome 14q where linkage evidence from the United Kingdom sibling pair families is at its strongest (lod score 3-0).

The gene for IL-2 is encoded on chromosome 4q26. To investigate its role as a susceptibility factor in multiple sclerosis, we typed a closely encoded microsatellite marker in 502 trio families (both parents and a single affected offspring). Transmission disequilibrium testing (TDT) of these data disclosed no significant evidence for linkage disequilibrium (table). The expression of IL-2 is under the control of transcription factor 8 (TCF8), the gene for which is encoded on chromosome 10p11. Because variation in IL-2 expression could contribute to susceptibility of multiple sclerosis, we also typed a microsatellite encoded close to the TCF8 gene in the same 502 families. Again, the TDT results (table) were negative.

We typed three microsatellite markers encoded within the immunoglobulin heavy chain gene cluster in 460 simplex families. Once again TDT failed to disclose evidence for linkage disequilibrium (table) at any of these markers. As the markers are encoded within a 200 kb region, we also subjected them to multipoint TDT analysis but no haplotypes showing significant transmission distortion were found.

These results suggest that neither of the tested candidates has any major effect in determining genetic susceptibility to multiple sclerosis. However, in considering these data it is important to remember that the negative results could represent a type II error as, even with the large numbers of simplex families used, the power of this type of candidate gene study is limited when the effects attributable to the susceptibility genes are modest. A further possibility is that the available evidence for linkage is falsely positive and that, in fact, no susceptibility genes are encoded in these regions.

The strongest evidence in the immunoglobulin heavy chain gene cluster region is significantly short of the 5% genomewide significance threshold suggested by Lander and Kruglyak (1) as third possibility is that the linkages are genuine but unrelated to the candidates we have tested. We favour this explanation with the available data suggesting that alternative candidates from these regions are responsible for the observed linkages.

We thank J Deans and M Fraser for help with the collection of samples and the members of the Association of British Neurologists for notifying families. Financial support was provided by the Multiple Sclerosis Society of Great Britain and Northern Ireland, the Medical Research Council, and the Wellcome Trust.

Robert Feakes
Belinda Smillie
Jeremy Chataway
Simon Broadley
Alastair Compton
University of Cambridge Neurology unit, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QG, UK

David Clayton
MRC Biostatistics Unit, Institute of Public Health, University Forvie Site, Robinson Way, Cambridge, CB2 2SR, UK

Alastair Compton

Table 1 Transmission disequilibrium testing results

<table>
<thead>
<tr>
<th>Marker</th>
<th>Het</th>
<th>df</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL2</td>
<td>0.89</td>
<td>7.31</td>
<td>0.12</td>
</tr>
<tr>
<td>TCF8</td>
<td>0.73</td>
<td>0.08</td>
<td>0.96</td>
</tr>
<tr>
<td>D14S1419</td>
<td>0.56</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>D14S1420</td>
<td>0.67</td>
<td>0.74</td>
<td>0.69</td>
</tr>
<tr>
<td>D14S826</td>
<td>0.74</td>
<td>1.74</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Each microsatellite was amplified by PCR from genomic DNA with fluorescent labelling of the forward primer and genotyped using the Applied Biosystems GENESCAN GENOTYPER system (primers as shown in table). TDT was performed using the TRANSMIT program version 0.5.1 considering only those alleles with a frequency of greater than 10% (corresponding to the number of degrees of freedom (df) in the table). The chromosome 14 markers are listed in map order.

The families were recruited from throughout the United Kingdom. All are white and the affected offspring meet the Poser criteria, 95% having clinically definite, category A or B, disease.

Coma in a patient with Alzheimer’s disease taking low dose trazodone and ginkgo biloba

We describe a patient with Alzheimer’s disease who developed coma a few days after starting low dose trazodone associated with ginkgo biloba. Coma was reversed by flumazenil, a specific antagonist of the benzodiazepine (BDZ) receptor. The findings are relevant in that, although many sedative effects of trazodone are well known, the drug is inactive on the BDZ receptor. On the other hand, ginkgo is active on the receptor, but sedation has so far never been reported.

In March 1999, an 80 year old woman was first evaluated in our facility and given a diagnosis of probable Alzheimer’s disease (NINCDS-ADRDA criteria) of a moderate severity (mini mental state examination of 10/30). She had no physical comorbidity or vascular risk factors. At the time of observation she was taking 3.5 mg bromazepam for mild restlessness, anxiety, and irritability, with only partial benefit (neuropsychiatric inventory: anxiety 4/12, irritability/latency 3/12). A dose of 5 mg donepezil at bedtime was added with the aim of improving both cognitive function and behaviour, together with 600 mg vitamin E twice daily.

After 3 months, no improvement of cognitive function, behaviour, or daily function could be detected. Donepezil was discontinued. Vitamin E was also discontinued due to the development of echinomorphic bruises on all limbs. Ginkgo biloba (Egb 761) 80 mg twice daily was added. Rivastigmine was not considered a feasible option because it was not possible to have frequent follow up visits during the titration phase. For a better control of behavioural disturbances, bromazepam was replaced with 20 mg trazodone twice daily.

The day after the visit, the new therapeutic regimen was initiated. Sedation or other adverse effects did not appear, and the care giver reported improvement of anxiety. On the next day, the improvement of behavioural disturbances was sustained, with the absence of sedation. At 600 pm of the third day, the patient developed instability of gait and drowsiness. At 700 pm she fell asleep.

The care giver tried to wake her by slapping her face, but without success. Overall, she had taken 100 mg trazodone and 320 mg Egb 761 in about 50 hours. A physician on call found that blood pressure was 120/55 mm Hg and her Glasgow coma scale was 6/15. The patient was taken to the nearest hospital.
where 1 mg flumazenil intravenously was administered. The patient awoke immediately.

Medicine bottles at the patient’s home were examined. The medications remaining in the containers were consistent with the prescribed doses, and medications other than those prescribed were not found anywhere in the house.

Trazodone and ginkgo were discontinued and bromazepam was resumed. The patient was re-evaluated 2 months later. Cognitive functions and behaviour were unchanged. The pathogenesis of coma would have remained unexplained in this patient had not flumazenil been fortuitously administered. This led to an investigation of the links among trazodone, ginkgo, and the GABAergic system.

Ginkgo biloba is active on cognition in Alzheimer’s disease through its antioxidant properties. Flavonoids represent the major active component of the extract and possess anti-amyloidogenic activity through action at the β-secretase enzyme level, and in elderly people it has been reported with doses greater than 75 mg daily. Trazodone is metabolised by an isozyme of cytochrome P450 (CYP3A4) into an active compound 1-(m-chlorophenyl)piperazine (mCPP). Through an agonistic action on presynaptic 5-HT2 and a2 receptors located on GABAergic nerve terminals, mCPP enhances the release of GABA. The activity of CYP3A4 can be increased by flavonoids.

We hypothesise that, in our patient, on the one hand flavonoids provided a subclinical increase of the GABAergic activity through a direct effect on the BDZ receptor, whereas on the other increased CYP3A4 function and mCPP production, inducing a further enhancement of GABAergic activity that became clinically apparent. Flumazenil might have blocked the direct effect of flavonoids, thus causing GABAergic activity to fall below the threshold of clinical manifestation (figure).

Ginkgo is widely used and is thought to be a harmless food supplement. Although we warn that the adverse effects of the simultaneous administration of trazodone and ginkgo should be further confirmed, we think that natural compounds such as ginkgo can have, in some clinical circumstances, adverse effects of similar magnitude as traditional drugs.

Pathway from trazodone to coma.

Coma

Flumazenil

BDZ binding site

↑ Release of GABA

↑ Function of GABA receptor

GABA presynaptic nerve terminal

5HT2 Receptor

α2 Receptor

↑ Production of mCPP

Ginkgo biloba

Trazodone

Flumazenil

Production of GABA

Release of GABA

Receptor

BDZ

GABA

Receptor facilitation

GABAergic neurotransmission.

Pathway from trazodone to coma.
Guillain-Barré syndrome (GBS) because antiretixia and CSF albuminocytological disso-

lation was detected in one of their three patients. Because prior infection is frequent in GBS, autoimmune mechanisms produced by microbial infection may function in the pathogenesis. A review of the literature in English turned up eight cases of BBE in which the pathogens of antecedent infection had been identified. The reported antecedent infections in BBE are herpes simplex virus, cytomegalovirus, Epstein-Barr virus, varicella zoster virus, measles virus, Salmonella typhi, and Mycoblasma pneu-

miae. We here describe a case of BBE subsequent to Campylobacter jejuni enteritis. A 70 year old housewife was admitted to our hospital on 28 July 1997. Her leg had felt heavy for a month, and she was unable to walk for several days before admission due to weakness in the left leg. She had been diagnosed with Hashimoto’s disease at the age of 57 and treated with thyroxin. On January 11 1988, she had developed dys-

phoria and weakness in the left arm and leg. On January 1997, she was experiencing weak-

ness in her left leg, which gradually disap-

peared after this. On 31 January 1997, she had developed dys-

phoria and had difficulty walking. The patient in our case responded favor-

ably to IVIg. We recommend not giving ster-

oids to treat BBE. Controlled clinical trials are

needed."

infection by C jejuni supports the speculation that BBE and GBS are closely related and that

GBS is an autoimmune disorder that occurs after microbial infection. We previously reported the occurrence of GBS in two family members after C jejuni infection. The cases of that second case are very similar to those of the case reported here; the patient was comatose and showed external ophthalmoplegia. Overlap-

ping GBS and BBE, therefore, could also be diagnosed for patients who did not have a GBBG serological test. Testing was not possible because no serum was kept. Aspinall et al9 proposed the lipopolysaccharide of the strain OH 4384 isolated from the patient with GBS has a GT1a-like structure. We partially confirmed this using anti-GT1a monoclonal antibody but in addition showed that OH 4384 has lipopolysaccharides that bear GM1, GM2, GD1a, GD1b, GT1a, or GQ1b epitopes.6 Goodyear et al10 immersed unstimulated GQ1b IgG antibodies with the lipopolysaccharide from OH 4384 and cloned three monoclonal antibodies with GQ1b reactivity. Anti-GQ1b IgG usually cross reacts with GT1a, and GQ1b is abundantly expressed in human ocular motor nerves. Infection by C jejuni bearing a GT1a-like or GQ1b-like lipopolysaccharide may induce the production of anti-GT1a or GQ1b IgG antibody, which then may bind to ocular motor nerves causing paresis of the extracou-

lar muscles in patients with overlapping BBE and GBS. Effective therapy for BBE has yet to be established. As stated above, BBE and GBS are closely related; therefore, steroids should not be used to treat BBE. Instead, the established treatments for GBS, plasmapheresis and intravenous immunoglobulin (IVIg), should be used. Some patients with BBE have responded favorably to plasmapheresis,1

and the patient in our case responded favour-

ably to IVIg. We recommend not giving ster-

oids, but using plasmapheresis (IV plasmapheresis) to treat BBE. Controlled clinical trials are required to establish the efficacy of these procedures as therapeutic for BBE.

This research was supported in part by grants-in-aid for Scientific Research (10780482 and 10557063 to Yuki) from the Ministry of Education, Science, Cu-

lure and Sports of Japan and from the Fujisaki Naito Foundation for Medical Research and a Research Grant for Neuromuscular Diseases from the Ministry of Health and Welfare of Japan. We thank Dr Masaki Takahashi (Department of Microbiol-

ogy, Tokyo Metropolitan Institute of Public Health) for the C jejuni serotyping and Dr Miichiyo Koga (Department of Neurology, Dokkyo University School of Medicine) for the anti-C jejuni antibody measurements.

Nobuhito Yuki

Masaaki Oda

koichiro Hidoya

Department of Neurology, Dokkyo University School of Medicine, Kitahakobara 880, Tochigi, 321-0293 Japan

Correspondence to: Dr N Yuki

yuki@dokkyomed.ac.jp

4 Yuki N, Wakabayashi K, Yamada M, et al. Overlap of Guillain-Barré syndrome and Bicker-

5 Yuki N, Tsuchiya Y. Familial Guillain-Barré syn-

6 Aspinall GO, McDonald DJ, Isett L, et al. Monoclonal antibodies raised against Guilla

uin-Barré syndrome-associated Campylobacter jejuni lipopolysaccharides react with neuronal gangliosides and paralyze muscle nerve prepara-

Myelopathy associated with Hashimoto’s disease

Encephalopathy associated with Hashimoto’s disease was first reported by Brain et al in 1966.1 Hashimoto’s encephalopathy is a ster-

oid responsive relapsing disorder associated with Hashimoto’s disease that often presents with stroke-like episodes, myoclonus, and cognitive impairment. Diagnostic testing usually shows a euthyroid state with increased thyroid autoantibodies, increased CSF protein and EEG abnormalities. We present the first case of myelopathy associated with Hashimoto’s disease, followed 2 months later by encephalopathy.

A 70 year old housewife was admitted to our hospital on 28 July 1997. Her leg had felt heavy for a month, and she was unable to walk for several days before admission due to weakness in the left leg. She had been diagnosed with Hashimoto’s disease at the age of 57 and treated with thyroxin. On January 11 1988, she had developed dys-

phoria and weakness in the left arm and leg. Brain CT, radiography of the cervical spine, and CSF findings were normal at this time. She gradually recovered after this. On 31 January 1997, she was experiencing weak-

ness in her left leg, which gradually disap-

peared over 2 months.

On physical examination, the blood pressure was 114/62 mm Hg. She had marked scoliosis. Neurological examination indicated a decrease of pain and temperature sensations on the right side and decrease of position and vibration sensations on the left side of the body below the Th7 level. Her muscle

Guillain-Barré syndrome (GBS) because antiretixia and CSF albuminocytological disso-

lation was detected in one of their three patients. Because prior infection is frequent in GBS, autoimmune mechanisms produced by microbial infection may function in the pathogenesis. A review of the literature in English turned up eight cases of BBE in which the pathogens of antecedent infection had been identified. The reported antecedent infections in BBE are herpes simplex virus, cytomegalovirus, Epstein-Barr virus, varicella zoster virus, measles virus, Salmonella typhi, and Mycoblasma pneu-

miae. We here describe a case of BBE subsequent to Campylobacter jejuni enteritis. A 70 year old housewife was admitted to our hospital on 28 July 1997. Her leg had felt heavy for a month, and she was unable to walk for several days before admission due to weakness in the left leg. She had been diagnosed with Hashimoto’s disease at the age of 57 and treated with thyroxin. On January 11 1988, she had developed dys-

phoria and weakness in the left arm and leg. Brain CT, radiography of the cervical spine, and CSF findings were normal at this time. She gradually recovered after this. On 31 January 1997, she was experiencing weak-

ness in her left leg, which gradually disap-

peared over 2 months.

On physical examination, the blood pressure was 114/62 mm Hg. She had marked scoliosis. Neurological examination indicated a decrease of pain and temperature sensations on the right side and decrease of position and vibration sensations on the left side of the body below the Th7 level. Her muscle
strength was evaluated as 2/5 (grade) in the left lower limb and 3/5 in the right lower limb by manual muscle test. Extensor plantar response was present on the left. Routine haematological and blood chemistry findings were within the normal range except for a mild increase of glutamic pyruvic transaminase (46 U/l, normal range 10 to 27), glutamic pyruvic transaminase (45 U/l, normal range 5 to 33) and g-ribulin (34%, normal range 9.0 to 18.3). The serum free triiodothyronine was 0.31 µg/ml (normal range 2.4 to 4.5), free thyroxine, 1.2 ng/dl (normal range 0.8 to 1.7), and thyroid stimulating hormone (TSH) concentrations, 4.84 µU/l (normal range 0.3 to 5.0), were normal. The antithyroglobulin antibody titre was 1/409600 and the antithyroid microsomal antibody titre was 1/102400. Serological tests for syphilis and HTLV-I were negative. Vitamin B₁₂, folate, angiotensin converting enzyme, ANA, anti-ds-DNA, ENA complex, and antiphospholipid antibody were normal or negative. Concentrations of circulating immune complexes were raised in blood (3.9 µg/ml, 0 to 2.9). The CSF was under normal pressure and contained 3 lymphocytes/µl, glucose 59 mg/dl, and mildly raised protein concentration at 50 mg/dl. Oligoclonal bands and myelin basic protein were absent. IgG index was normal. Further immunological results showed absence of antineural antigens. There were no abnormal antibodies in the CSF to be 1/128 and the titre of antithyroglobulin antibodies in the CSF to be 1/1600. A thoracic spinal MRI examination and myelography showed normal findings. She was given 500 mg intravenous methylprednisolone for 3 days, then oral predonisolone. Her level of consciousness improved rapidly over the next several days. She was fully alert 7 days after initiation of steroid therapy. Steroid dosage was slowly tapered and maintained at 10 mg daily. She remained well for 18 months on steroid therapy. Cerebral MRI disclosed bilateral high signal areas in front al and white matter on T2 weighted images. These findings were similar to those seen before her encephalopathy. Repeat spine MRI on 5 September 1997 showed previously unrecognised high intensity area by the T2 weighted image, on the left side of the cord at the level of the fifth and sixth thoracic vertebrae (figure).- Our patient had Hashimoto’s disease with a marked increase in antithyroid antibodies. Her thyroid function tests were normal on thyroid replacement therapy. Diffusely abnormal EEG and high CSF protein were found at her con-

dition and the pathological basis of Hashimoto’s encephalopathy are not known. Brain et al. described localised cerebral oedema as a possible cause of Hashimoto’s encephalopathy. This hypothesis may be supported by reversible MRI abnormalities and excellent response to steroid therapy. Ishii et al. postulated that a toxic effect of TRH on the CNS has an important role in Hashimo-
to’s encephalopathy. In our patients, antithyroid antibodies were detectable not only in serum but also in CSF. Shaw et al. reported that antithyroid antibodies were detectable in CSF from one of four patients with Hashimoto’s encephalopathy. Marked higher titres of antithyroid antibodies in serum compared with those in CSF in our patients might suggest that antithyroid anti-
gens in CSF were mainly derived from serum. 2

BOOK REVIEWS

Mild head injury presents the neurosurgeon with several dilemmas. Those of us who see head injury cases for the purpose of medico-legal reports have even greater problems with the topic. In particular, any statistics relating to the frequency of the condition or its possi-
ble complications are likely to be unreliable as many patients who sustain mild head injury may never be referred to neurosurgeons or even to hospital. Of those who do get admitted, in many cases the primary injury is to another body system and the sustained mild head injury is consequently ignored. Similarly, those patients who have continuing neurological symptoms after mild head injury may not readily come to the notice of the neurosurgeon. At best, therefore, all scientific papers and other reports which purport to give the incidence of this condition or of its complications should carry a health warning “to be treated with great caution”. However, this guide to the management of mild head injury begins in an admirable way by establishing carefully both the basis on which its statistics are derived and its authors’ own definition of what they mean by “mild head injury”. Thus the statistics and authors provide are likely to prove more reli-
able than most. Their careful studies indicate a probable incidence of 3% of persisting symptoms 28 days or more after mild head injury. Although the view that the “post-
traumatic” or “postconcussion” syndrome is a “litigation induced neurosis” still has some currency, particularly in legal circles, there are now sufficient pathological and imaging studies to agree a probable pathological basis for the syndrome. This volume sets out the evidence for such a case in a clear and lucid manner including some mention of the more recent MRI and SPECT evidence. Similarly, the more recent work undertaken by clinical psychologists carrying out detailed psychoso-
metric assessments of these patients has provided good supportive evidence for the reality of the continuing cognitive and performance problems that such patients have, often for prolonged periods after an apparently mild head injury. The authors present a wealth of clini-
cal and psychological data in a clear and lucid manner and the layout progresses naturally to

4 Boheml NILJ, Parnell JI, Harper CM. Revers-
sible MRI findings in a patient with Hashimo-

5 Ishii K, Hayashi A, Tamaoka A, et al. Thyrotropin-releasing hormone-induced myelo-
cytes and tremor in a patient with Hashimo-

6 Azumat@yahoo.co.jp

7 TSUTOMU AZUMA

8 MASAHIRO FUNAUCHI

9 SHIZURU DOI

10 TSUYOSHI MATSUBARA

11 Sectional Department of Internal Medicine and Clinical Laboratory, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka 537-8511, Japan

Correspondence to: Dr Tsutomu Azuma

the helpful chapters on assessment and management. The prose style is good, the points the authors wish to make are clearly presented, and the book as a whole is helpful and inclusive. It might have been more lavishly illustrated—for example, by some of the more impressive pathological material. I consider it to have earned a place on my bookshelf and I can recommend it for all those of us who have an interest in this condition and its often unfortunate consequences.

DAVID HARDY

For those not versed in the history of this text, Douglas McAlpine, Nigel Compston, and Charles Lumsden, in 1955, authored its fore-runner Multiple Sclerosis. This was then succeeded by two editions of Multiple Sclerosis: a Reappraisal with the addition of E D Acheson to the authorship. The first edition of its offspring McAlpine’s Multiple Sclerosis appeared in 1985. This current edition is inextricably linked to its past; its principal author, Alastair Compston, being the son of Nigel to whom the book is dedicated. Bryan Matthews, a current contributor, was the main author of the first edition.

Enough of the history, what of the book? As internationally recognised experts in their specific areas of multiple sclerosis, the present group of authors requires no introduction. The book contents have changed considerably since I first acquired the 1965 edition that concentrated on epidemiology (including a fold away map), clinical studies, and chemical pathology. The present text, lavishly illustrated, contains a balance of genetics, neurobiology, and pathophysiology as well as maintaining, for the generalist, authoritative sections on epidemiology, clinical presentation, diagnostic methods, treatment, and management.

Alastair Compston’s initial chapter, itself a literary gem, elegantly sets the scene, outlining the early clinical and pathological descriptions of disease as well as the experiences of sufferers from the worlds of medicine and the arts. He goes on, in subsequent chapters, to discuss epidemiology, pathogenesis, and treatment. In relation to treatment he comprehensively reviews the evidence for disease modifying therapies and, with the aid of a particularly memorable figure (14.8), addresses the symptomatic treatments available for both early and late disease. Bryan Matthews reviews the symptoms and signs of multiple sclerosis and its differential diagnosis. As would be expected, from his vast experience and clarity of writing, these sections are of great practical value—for example, the description of the warning signs (red flags) that should lead to diagnostic caution. Ian McDonald addresses imaging and other diagnostic techniques as well as pathophysiology of disease. These chapters reflect his own career at the forefront of electrophysiological investigations and thereafter the recognition and development of the potential of MRI, both diagnostically and in the understanding of disease mechanisms. George Ebers writes on the natural history, drawing on the literature and his own seminal work with Brian Weinschenker. Finally, and perhaps for the clinician most imposingly, Hans Lassman and Hartmut Wekerle describe the immunology and current state of experimental models with great clarity.

I am reminded, when praising a book so fully, of the dangers of sycophancy. Indeed, as Groucho Marx once wrote to an author pleased with his review “I am delighted that you are delighted that I am delighted”. Of course there are omissions, the authors accept that while trying to be comprehensive they have delved into their specific areas of interest. With increasing specialisation in multiple sclerosis care within the United Kingdom, there is disappointingly nothing on how to develop a service and only a page on rehabilitation and the role of therapists (although evidence based medicine possibly justifies more). There is also no mention of the economic burden of disease or the cost benefit and cost utility of available treatments and multiple sclerosis services.

These are, however, minor criticisms and the authors must be warmly congratulated on producing an outstanding reference text that Nigel Compston and his original coauthors would be immensely proud of, their intention at the outset being that of simulating interest “in the ever widening field of demyelinating disease”. This book clearly fulfils that legacy and definitively presents the current state of knowledge. In their preface, the authors state that the final solution to the problems of multiple sclerosis, in particular more effective treatments, must await another edition (or more). Indeed, Dan Quayle might well have been referring to multiple sclerosis when he famously once said, “there are a lot of uncharted waters still out there in space”.

IAN BONE

Advances and Technical Standards in Neurosurgery was created in 1974 as an adjunct to the European postgraduate training system for young neurosurgeons. It has also proved popular with accredited neurosurgeons wishing to keep up to date with recent developments in the field. The first half of each volume reviews topics in which important advances have been made, and this is followed by in depth reviews of topical subjects from experienced clinicians.

The advances section begins with a review from Lausanne of the delivery of neuroactive substances to the CNS using the technique of encapsulation of xenogenic cells to avoid the problems of immune rejection. Possible applications in pain relief and amytrophic lateral sclerosis are discussed. Fries and Perneeczky then present the Mainz experience with rigid endoscopes, both for conventional procedures such as third ventriculostomy, cyst drainage, and tumour biopsy, and then discuss newer applications such as endoscope assisted microneurosurgery of aneurysms, tumours, and as an aid to microvascular decompression of cranial nerves in the posterior fossa. The final chapter in the first section presents the history and technique of chronic deep brain stimulation for movement disorders, reviews the results from Grenoble, Lille, and Creteil, and compares the outcomes with ablative surgery and neural transplantation. In the technical standards section there are reviews of recent advances in the treatment of CNS germ cell tumours, the surgery of hypothalamic gliomas, and approaches to the anterior cranial fossa with preservation of olfaction.

The quality of reviews in this book is excellent. Each is by a renowned expert in the field, and is well referenced for further reading. Those not already familiar with this series will find it both informative and thought provoking.

ROBERT MACFARLANE
No evidence for the involvement of interleukin 2 or the immunoglobulin heavy chain gene cluster in determining genetic susceptibility to multiple sclerosis

ROBERT FEAKES, STEPHEN SAWCER, BELINDA SMILLIE, JEREMY CHATAWAY, SIMON BROADLEY, ALASTAIR COMPSTON, DAVID CLAYTON and ALASTAIR COMPSTON

J Neurol Neurosurg Psychiatry 2000 68: 679
doi: 10.1136/jnnp.68.5.679

Updated information and services can be found at:
http://jnnp.bmj.com/content/68/5/679.1

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/68/5/679.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/