Fear can interrupt the continuum of memory

I had always thought that the existence of post-traumatic amnesia, characterised by gaps in the patient’s memory of events after an accident, particularly if the remaining “snapshots” of memory were particularly vivid, isolated image, patient must have been knocked out, albeit briefly. I had always rejected the concept that fear, acute anxiety, panic, that which the layman calls “shock”, could be responsible for the phenomena of post-traumatic amnesia. That is until about 6 months ago.

I was driving in the wet, too fast, in a convoy in the outside lane. The conditions were appalling, and I was alert. Six or seven cars in front of me were involved in a “front to rear shunt”, precipitated by a car that had been stuck on the inside lane behind a slow moving vehicle, darting without warning into the outside lane.

I remember seeing this car do this, I have a vivid image of seeing a car, perhaps two away from me, suddenly appearing at right angles—I could see its rear end to the left of, and the front end to the right of the car in front of me. I have no recollection of putting my brakes on, and then I have a very clear image of the car in front of me coming towards me as I skidded. This was a crystal clear isolated image, associated with an absolute conviction that I was about to die—the car was a small red Honda saloon, the front passenger was wearing a flowery hat, the hanging toy, the sure fire knowledge memories I did have were extremely vivid—the memory of events, and that furthermore those mechanisms had not worked. My next recollection is of looking down through my opened door (without any memory of opening it) at the thick mud of the central reservation, and thinking that I would have to clean my shoes after walking on it. At that point clear and continual memory is restored and I went to hospital in a study of spinal anaesthesia, and was immediately stored at anaesthesia, and was immediately stored at.

Relation of age to CSF folate concentrations in elderly surgical patients.

Folate in CSF and age

Low serum and red cell folate concentrations have been reported in up to 42% of elderly subjects in the community or acute geriatric medical admissions, and in 20%–82% of psychogeriatric admissions. Although widely attributed to dietary causes, we have long known that there is a causal link between folate deficiency, depression, or dementia. Recent community studies have suggested a significant rise in serum total homocysteine and fall in serum folate with age¹; there has been renewed interest in a link between Alzheimer’s disease, depression, folate deficiency, and raised serum total homocysteine. Other studies suggest that high homocysteine and low folate concentrations are independent risk factors for premature occlusive vascular disease, including cerebrovascular disease. Remarkably, folate in the form of methyl folate is concentrated in CSF by an active transport process at concentrations about three times that in serum. We have had the opportunity to study CSF folate in a group of elderly patients undergoing spinal analgesia.

Folate in CSF was measured in 41 patients undergoing surgery at Northwick Park Hospital in a study of spinal anaesthesia and postoperative spinal analgesia by the Department of Anaesthetics. The operations were hip replacement (22), knee replacement (four), hernia (eight), haemorrhoids (three), and varicose veins (four). There were 17 men and 24 women, mean age (SD) 74.6 (13.4) years. The patients were otherwise healthy and were not taking medication other than analgesics before surgery.

With informed consent, 2 ml CSF were withdrawn at the fasting recumbent position under local anaesthetic before spinal anaesthesia, and was immediately stored at −70°C. Folate in CSF was measured by microbiological assay using a chloramphenicol resistant strain of L. casei.

The figure shows a highly significant decline in CSF folate with age. The mean CSF folate (28 (SD 7.4) µg/ml) between ages 40 and 59 fell 5% between age 60 and 69 (20.6 (SD 8.1) µg/ml). The greatest fall was after the age of 70, with a 27% fall between 70 and 79 (20.3 (SD 5.8) µg/ml) and a 54% fall between 80 and 99 (13.0 (SD 5.4) µg/ml). (analysis of variance (ANOVA) F=11.73, p<0.001). The correlation between age and CSF folate was −0.72 (p<0.1). Our findings provide further evidence of a link between folate concentrations and age, and, for the first time, directly in the nervous system. Although we did not measure serum folate concentrations, others have already reported a fall in serum folate and rise in plasma homocysteine with age. Our subjects were not anemic or macrocytic and were not known to have medical or psychiatric disorders. It is unlikely, therefore, that the significant decline in CSF folate can be attributable simply to dietary deficiency. Other possibilities include a gradual failure with aging of the active transport mechanism which carries methyl folate into the nervous system.

Whether due to aging or acquired deficiency, there is evidence causally relating folate status to mental function, especially depression and dementia. Controlled and uncontrolled clinical trials suggest a specific effect of folate on mood and cognitive function. The effects of folate on mental function are mainly mediated through numerous methylthionine pathways in the nervous system and are similar to the effects of S-adenosylmethionine (SAM), the major methyl donor in the brain which obtains its methyl group mainly from methyl folate.

Malcolm Laundy

Department of Haematology, Northwick Park Hospital, Harrow, Middlesex HA1 3DB, UK

Correspondence to: Dr E H Reynolds
reynolds@bucks-net.sct

Anterior superior alveolar neuropathy: an occupational neuropathy of the embouchure

A 31 year old French hornist was referred for evaluation of a 9 month history of pain in her right upper lip. A member of a major symphonic orchestra, she regularly played 4-6 hours a day. Her symptoms began after a heavy period of playing, with a sensation of excess pressure in the right upper lip, and was noted shortly thereafter by frank pain in this area. She spontaneously distinguished between two types of pain. The first was a constant dull ache, extending from the midline 1cm laterally onto the vermilion lip. She noticed that brushing her teeth or eating could trigger pain in this region. Her second pain sensation was different from the first—electric, lancinating pain originating in the midline and extending to her right of the midline. There were no parasthesias of the lips, cheeks, or jaw, and she had no symptoms of facial weakness.

She compensated for her difficulties and maintained her usual high level of professional performance. Brief periods of rest reduced temporary improvement; however, her symptoms recurred when she resumed performing. There were no other complaints and her family history and medical history were unremarkable.

Except for her right lip, neurological examination was normal including careful sensory evaluation of the anterior teeth, gums, and palate. Her right first incisor was noted to protrude slightly in front of her left. As shown in the figure, light touch sensitivity was reduced in the right lip (wide cross hatching). A smaller region (narrow cross hatching) and lancinating pain overlying a diagram of the lips. Dashed lines indicate the position of the first incisors, and the contact of the french horn mouthpiece with the lips is shown as a stippled circle.

Sensory loss (wide cross hatching), focal pain (narrow cross hatching), and lancinating pain (arrow) are shown overlying a diagram of the lips. Dashed lines indicate the position of the first incisors, and the contact of the french horn mouthpiece with the lips is shown as a stippled circle.

Player experience tremendous pressure from the mouthpiece, sometimes sufficient to cause muscle strains or even traumatic tears in the orbicularis oris.1

This patient’s sensory disturbance localized to the anterior superior alveolar nerve. The superior alveolar nerve divides into a posterior, middle, and anterior group. Branches from these divisions form a plexus that innervates the dental pulp, periodontal membrane, adjacent gingiva, buccal gingiva, and the upper teeth. The posterior, middle, and anterior branches innervate the molar, premolar, and incisor teeth, respectively. Only the anterior superior alveolar nerve travels with the infraorbital nerve to exit through the infraorbital foramen.2 In our patient, her prominent right first incisor predisposed a terminal branch of this nerve to focal entrapment by the overlying mouthpiece.

Injuries related to occupation are increasingly recognized among performing artists. Focal entrapment neuropathies of the arm have been well described in musicians. This patient shows that similar occupational neuropathies may affect the lips and face. We are aware of two other reports of patients similar to ours.3,4 Given that the force exerted on the lips by the mouthpiece of a French horn has been measured to be as high as 50 N, with displacements of the incisors of up to 18 μm during playing, it is not surprising that these neuropathies occur.

French horn and trumpet mouthpieces are significantly smaller than those of the trombone and tuba, and so mouthpiece forces are concentrated onto a very small lip surface area. We suspect that there are other French horn and trumpet players who have experienced similar symptoms to our patient. Entrapment neuropathy is a potentially reversible cause of disability in brass players, and should be considered in the differential diagnosis of embouchure dysfunction. I thank Drs Jonathan Aviv, and Michael Gelb, for their assistance in caring for the patient.

STEVEN FRUCHT
Columbia-Presbyterian Medical Center, 710 West 168th Street, New York, NY 10032, USA

Correspondence to: Dr S F Frucht
sf216@columbia.edu

3 Lederman RJ, Trumpet player’s neuropathy. JAMA 1987;257:1526.

Clinical and MRI discordance in a case of delayed radiation myelopathy

Delayed radiation myelopathy (DRM) is a rare complication of radiotherapy, especially when the total dose delivered to the spinal cord is less than 50 Gy. From the limited data reported on the radiological features of DRM, typical MRI changes of cord swelling and gadolinium enhancement on T1 weighted images and increased intramedullary signal on T2 weighted images often correlate well with progression of neurological symptoms. We report a case of DRM in which the clinical features remained static at a level corresponding only to the lower end of the abnormal intramedullary lesion seen on MRI, without radiological evidence of blood-brain barrier breakdown, suggesting that pathological changes to the spinal cord and radiation are not always displayed as visible changes on MRI.

A previously well 71 year old woman presented in December 1997 to the ear, nose and throat department with hoarseness and difficulty swallowing, having discovered a lump in the right side of her neck. Laryngoscopy showed a right pyriform fossa tumour, histologically confirmed as a lymphoepithelioma after biopsy. Staging neck CT revealed a large extensive tumour in the right pyriform sinus and lateral pharyngeal wall with associated lymphenadopathy extending to the thoracic inlet.

Between April and May 1998, she received chemotheraphy comprising 5-fluourouracil and cis-platinum. Radiotherapy was started in June 1998 with fields covering the pyriform sinus and neck, anterior supraclavicular fossa, and posterior neck. The calculated dose delivered to the cervical spinal cord was 42.5 Gy in 2 Gy equivalent fractions.

Over the next 4 months, she improved clinically and on review in October 1998 there were no signs of tumour. MRI was confirmed on laryngoscopy. She remained well until November 1998 when she began to notice progressive numbness and weakness spreading proximally up both legs over a period of 6 weeks, such that she was unable to walk. Soon thereafter, she developed urinary incontinence and constipation. At this time, cervical and thoracic spine MRI (figure) disclosed cervical cord swelling with a spindel shaped cavity of low signal intensity on T1 weighted images and high signal intensity on T2 weighted images extending from C4 to the upper end of T1. There was no cord enhancement after the administration of gadolinium.

On neurological review in January 1999, she was incontinent of urine and faeces and was able to mobilise only with the aid of a walking frame. There was generalised weakness in both legs with mild reduction in strength of hip flexion, knee flexion, and extension, but no detectable weakness in the arms. There was a loss of spinthalamic sensation below the level of T5 bilaterally, and a subjective feeling of altered sensation in both hands.

Over the ensuing 4 months, her level of disability progressed such that she was unable to walk or transfer independently. Further examination disclosed flaccid paralysis of both legs and minor weakness of the intrinsic muscles of both hands. There was reduced perception of pain and temperature sensation below the level of C8. She commenced hyperbaric oxygen therapy given on a daily basis for 3 weeks but there was no symptomatic recovery.

After a recurrence of her original swallow- ing difficulties, she was found to have a tumour recurrence in her pyriform fossa at biopsy, with associated lymphenadopathy. No further radiotherapy was given. At last review in February 2000, she had no movement in both legs and minor weakness of the intrinsic muscles of both hands, with preserved power in proximal upper limb muscles. Sensation above the level of C8 was intact.

Diagnostic criteria of DRM as outlined by Pallis et al5 stated that the spinal cord should
Due to the inflammatory nature of the pathogenic mechanisms mediating CNS damage during multiple sclerosis, association studies have focused on candidate genes coding for immunorelevant molecules. The interleukin (IL)-1 gene cluster (including IL-1α, IL-1β, IL-1RN), located on the long arm of chromosome 2 (2q12–22; OMIM Database of National Center for Biotechnology Information; www3.ncbi.nlm.nih.gov:80/Omim) and polymorphic in different sites, represents a good target for association studies in multiple sclerosis. IL-1, in fact, has been detected within multiple sclerosis lesions. Moreover, lipopolysaccharide stimulated peripheral blood monocytes of patients with multiple sclerosis produce more IL-1α and IL-1β than controls. Due to the potential involvement of IL-1α and IL-1β in multiple sclerosis, a genetically determined polymorphic variation in their production may contribute to the occurrence of multiple sclerosis, or modulate its clinical features.

Furthermore, we have recently reported the association between the variable number of tandem repeat polymorphism (VNTR) of IL-1RN with multiple sclerosis occurrence and prognosis. IL-1α -889 and IL-1β -551 polymorphic loci are located 375 and 320 kb respectively from IL-1RN VNTR. To determine whether a particular allele or genotype of IL-1α -889 and IL-1β -551 polymorphic variables of multiple sclerosis, we performed a case-control association study in a large cohort of patients with multiple sclerosis and age and ethnicity matched healthy controls.

Patients were clinically diagnosed at the multiple sclerosis centre of the San Raffaele Hospital in Milano as affected by definite multiple sclerosis according to Poser’s criteria. All patients had a relapsing-remitting course. Genotype frequencies of the IL-1α -889 polymorphism were calculated in a cohort of 399 patients with sporadic relapsing-remitting multiple sclerosis (247 women, 152 men; mean age 37.3 (SD 12); mean age at disease onset 27.3 (SD 9.3)) and 439 healthy controls (151 women, 288 men; mean age 37.6 (SD 10.6)). Gene frequencies of the IL-1β -551 polymorphism were calculated in a cohort of 321 patients with chronic relapsing-remitting multiple sclerosis (203 women, 118 men; mean age 38 (SD 12); mean age at disease onset 27.4 (SD 9.2)) and 403 HC (146 women, 257 men; mean age 38 (SD 10.9)).

IL-1α -889 and IL-1β -551 C/T polymorphisms were characterised by polymerase chain reaction (95°C 30 seconds, 55°C 30 seconds, and 72°C 40 seconds; 40 cycles) using genomic DNA and following primers: IL-1α -889 primers 5'-AAGCTTGTTCTACCACCTTGC-3' and 5'-TATGAGCCTTCCATG-3'; IL-1β -551 primers 5'-GAACTAGGC-3' and 5'-ATGGATGCATCGCT-3'. Amplified products were digested with restriction endonuclease (NcoI and AvaI). Furthermore, we have recently reported the potential involvement of IL-1α and IL-1β in multiple sclerosis, a genetically determined polymorphic variation in their production may contribute to the occurrence of multiple sclerosis, or modulate its clinical features.

Due to the inflammatory nature of the pathogenic mechanisms mediating CNS damage during multiple sclerosis, association studies have focused on candidate genes coding for immunorelevant molecules. The interleukin (IL)-1 gene cluster (including IL-1α, IL-1β, IL-1RN), located on the long arm of chromosome 2 (2q12–22; OMIM Database of National Center for Biotechnology Information; www3.ncbi.nlm.nih.gov:80/Omim) and polymorphic in different sites, represents a good target for association studies in multiple sclerosis. IL-1, in fact, has been detected within multiple sclerosis lesions. Moreover, lipopolysaccharide stimulated peripheral blood monocytes of patients with multiple sclerosis produce more IL-1α and IL-1β than controls. Due to the potential involvement of IL-1α and IL-1β in multiple sclerosis, a genetically determined polymorphic variation in their production may contribute to the occurrence of multiple sclerosis, or modulate its clinical features.

Furthermore, we have recently reported the association between the variable number of tandem repeat polymorphism (VNTR) of IL-1RN with multiple sclerosis occurrence and prognosis. IL-1α -889 and IL-1β -551 polymorphic loci are located 375 and 320 kb respectively from IL-1RN VNTR. To determine whether a particular allele or genotype of IL-1α -889 and IL-1β -551 affects other clinical variables of multiple sclerosis, we performed a case-control association study in a large cohort of patients with multiple sclerosis and age and ethnicity matched healthy controls.

Patients were clinically diagnosed at the multiple sclerosis centre of the San Raffaele Hospital in Milano as affected by definite multiple sclerosis according to Poser’s criteria. All patients had a relapsing-remitting course. Genotype frequencies of the IL-1α -889 polymorphism were calculated in a cohort of 399 patients with sporadic relapsing-remitting multiple sclerosis (247 women, 152 men; mean age 37.3 (SD 12); mean age at disease onset 27.3 (SD 9.3)) and 439 healthy controls (151 women, 288 men; mean age 37.6 (SD 10.6)). Gene frequencies of the IL-1β -551 polymorphism were calculated in a cohort of 321 patients with chronic relapsing-remitting multiple sclerosis (203 women, 118 men; mean age 38 (SD 12); mean age at disease onset 27.4 (SD 9.2)) and 403 HC (146 women, 257 men; mean age 38 (SD 10.9)).

IL-1α -889 and IL-1β -551 C/T polymorphisms were characterised by polymerase chain reaction (95°C 30 seconds, 55°C 30 seconds, and 72°C 40 seconds; 40 cycles) using genomic DNA and following primers: IL-1α -889 primers 5'-AAGCTTGTTCTACCACCTTGC-3' and 5'-TATGAGCCTTCCATG-3'; IL-1β -551 primers 5'-GAACTAGGC-3' and 5'-ATGGATGCATCGCT-3'. Amplified products were digested with restriction endonuclease (NcoI and AvaI).

Statistical analyses were performed with the SAS statistical package (SAS Institute Inc, Cary, NC, USA). The p values were considered not significant (NS) when greater than 0.05. Gene frequencies were compared by χ² test with two degrees of freedom. The homogeneity of Kaplan-Meier disease free curves over strata was tested using the rank statistics (log-rank and Wilcoxon tests).

The IL-1α and IL-1β alleles were in Hardy-Weinberg equilibrium in the populations and their distributions were not affected.
Hyperhomocysteinaemia in Alzheimer’s disease and expression of cell cycle markers in the brain

We report that moderately increased concentrations of serum total homocysteine in Alzheimer’s disease are associated with the expression of cyclin B (p=0.04), which was independent of the other factors. The nuclear expression of cyclin E is evidence that the neurons have re-entered the cell division cycle whereas expression of cyclin B indicates progression of the cycle to the G2 phase. We suggest that the association of hyperhomocysteinaemia with cyclin E expression, but not with cyclin B expression, may indicate a mitogenic role for homocysteine. The mechanism could be indirect, through the action of homocysteine on the cerebral vasculature, or it might be a direct mitogenic action of homocysteine on neurons. Further work is required to test these hypotheses. The rate of atrophy of the hippocampus in Alzheimer’s disease is more rapid in patients with increased concentrations of serum homocysteine. Thus, if entry into the cell cycle is part of the pathogenic process, then lowering homocysteine concentrations in the blood might slow the progression of the disease.

Table 1 IL-1A and IL-1B genotype frequencies in healthy controls (HC) and in patients with multiple sclerosis (MS) as well as in patients with different disease courses (benign and non-benign)

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>HC</th>
<th>Benign</th>
<th>Non-benign</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1A</td>
<td>CC</td>
<td>47</td>
<td>18 (185)</td>
<td>19 (196)</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>45</td>
<td>17 (177)</td>
<td>20 (203)</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>8</td>
<td>3 (33)</td>
<td>5 (58)</td>
</tr>
<tr>
<td>IL-1B</td>
<td>CC</td>
<td>39</td>
<td>12 (132)</td>
<td>19 (159)</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>48</td>
<td>15 (155)</td>
<td>20 (211)</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>14</td>
<td>3 (14)</td>
<td>12 (43)</td>
</tr>
</tbody>
</table>

by sex or age (data not shown). We found a similar genotype distribution between patients with multiple sclerosis and healthy controls for both IL-1A and IL-1B polymorphisms (table). IL-1A: multiple sclerosis v healthy controls, \(\chi^2 = 0.5, \text{NS} \); IL-1B: multiple sclerosis v healthy controls, \(\chi^2 = 0.2, \text{NS} \).

The possible association between giving an IL-1A or IL-1B genotype and accumulation of clinical burden over time was assessed by comparing two groups of patients with multiple sclerosis differing for their disease outcome and classified as “benign” (patients with a stabilised expanded disability status scale (EDSS) score<3 at least 10 years from disease onset) and “non-benign” (patients with an EDSS score>3 within 10 years from disease onset, table). In the case of the IL-1A polymorphism, the gene frequency of 91 benign was not statistically different from those of the 107 non-benign patients with multiple sclerosis (\(\chi^2 = 5.9, \text{NS} \)). As for the IL-1B polymorphism, the gene frequency of the 73 benign patients was also similar to those of the 82 non-benign patients with multiple sclerosis (\(\chi^2 = 4.0, \text{NS} \)).

To assess whether IL-1A and/or IL-1B genotypes had an influence on the age at onset of multiple sclerosis, Kaplan-Meier disease free survival curves were calculated, plotting the age at diagnosis v onset of each patient versus the respective IL-1 genotype (data not shown). Again, neither IL-1A (log rank \(\chi^2 = 3.9, \text{NS} \)) nor IL-1B (log rank \(\chi^2 = 0.72, \text{NS} \)) genotypes seemed to affect the distribution of the age at multiple sclerosis onset.

A handful of inflammation associated polymorphisms have been shown to positively associate with the occurrence of multiple sclerosis or to influence its clinical variables, including polymorphisms located within or nearby the HLA locus (important for multiple sclerosis susceptibility), or the IL-1RN, IL-4 and IL-1B genes (possibly important in modulating the course of disease).

Our analysis could not demonstrate any association between these two previously untested IL-1A and IL-1B promoter polymorphisms and the occurrence of multiple sclerosis, the age at disease onset, or the accumulation of clinical burden over time in affected patients.

Given the inflammatory nature of multiple sclerosis pathophysiological lesions and the positive association of the related IL-1RN VNTR with some of the clinical features of multiple sclerosis, these results are somewhat unexpected and contrast with data coming from similar genetic studies in Alzheimer’s disease, a degenerative disease of the CNS where the role of inflammatory mechanisms is not as established as in multiple sclerosis.

These data contribute to the debate over the role of inflammation in multiple sclerosis, especially as recent reports have surprisingly suggested that inflammation may even be protective (rather than having a pathogenic role) in experimental animal models of multiple sclerosis.\(^1\)

This work was supported by a grant from the Armenise-Harvard Foundation.

CINCIA FERRI
FRANCESCA LUISA SCIACCA
LUIGI MARIA EDOARDO GRIMALDI
Department of Neuroscience, Neuroimmunology Unit, DIBIT, Department of Neuroscience, San Raffaele Scientific Institute, via Olgettina 58, 20122 Milano, Italy

GIUSEPPE MAGNANI
GIUSEPPE SANTUCCIO
GIANCARLO COMI
NICOLA CANAL
Multiple Sclerosis Center
IRCCS Oasi Maria Santissima, Troina, Italy

LUIGI MARIA EDOARDO GRIMALDI
IRCCS Oasi Maria Santissima, Troina, Italy

Correspondence to: Dr L M E Grimaldi
luigi.grimaldi@hsr.it

Serum total homocysteine concentrations (mean ± SD) in relation to neuronal expression of cyclin B and cyclin E

<table>
<thead>
<tr>
<th></th>
<th>Absent</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>p Value</td>
<td>ANOVA, Kruskal-Wallis</td>
<td></td>
</tr>
<tr>
<td>Cyclin B</td>
<td>17.1 (8.7)</td>
<td>16.5 (4.5)</td>
</tr>
<tr>
<td>Cyclin E</td>
<td>15.39 (4.2)</td>
<td>18.1 (6.2)</td>
</tr>
</tbody>
</table>
We thank H Refsum and P Ueland for the homocysteine assays. This work was supported by grants from Bristol-Myers Squibb and Research into Aging.

ZS NAGY
M Z SMITH
M M ESIRI
L BARNETSON
A D SMITH

OPTIMA, University Department of Pharmacology
Mansfield Road, Oxford OX1 3QT. UK
and Department of Neuropathology, Radcliffe Infirmary
NHS Trust, Oxford OX2 6HE, UK

Correspondence to:
Professor A D Smith
Correspondence to: david.smith@pharm.ox.ac.uk

CORRESPONDENCE

Visual field defects associated with vigabatrin monotherapy in children

In the December issue of this Journal Lawden et al found in an adult population receiving vigabatrin (VGB), mostly in association with other antiepileptic drugs, a high prevalence (52%) of visual field defects. These abnormalities were not reversible after discontinuation of VGB therapy.

Since 1990, several authors have reported circumferential narrowing of the visual field with characteristic temporal sparing in patients treated with VGB. Although a visual field defect is the most common cause for discontinuation of VGB therapy, no conclusive data are presently available to explain the pathogenesis of this major side effect.1,2

Interestingly, retinal dysfunction has been primarily described in patients receiving VGB in combination with other antiepileptic drugs, whereas only a few cases have been reported in patients treated with VGB monotherapy.3,4 Since increasing attention to this complication, the actual prevalence of visual field defect associated with VGB therapy remains poorly defined. Backstrom et al have reported a prevalence of less than 0.15% and the Hoechst Marion Roussel Pharmaceutical Company has estimated that the incidence of visual field defect is about 0.15%. Other authors, including Lawden et al, however, have recently challenged these data, suggesting a considerably higher prevalence.1,3 Such discrepancies can be explained by several factors, including delayed appearance of visual field defects after initiation of VGB treatment (several months up to 7 years), high prevalence of non-symptomatic cases,5 and lack of systematic studies. In addition, the often used automated perimetry (Humphrey field analysers) seems to be significantly less sensitive than the Goldmann kinetic perimetry in detecting visual field defects. These limitations are particularly relevant in assessing the incidence of visual field defects in the paediatric population, given the limited compliance during visual field testing and difficulties of diagnosing visual symptoms in very young children.

We have followed up 13 paediatric patients treated with VGB monotherapy, whom we have systematically screened for detect visual field defects associated with this therapy, even in the absence of visual symptoms. Our patients were aged 5 to 16 years (mean 10.5 (SD 3.8) years) and received VGB monotherapy for localisation-related epilepsy during an average period of 41 (SD 18) months (range 8–64 months). In all cases, significant improvement of seizure control was obtained. Routine visual field examinations were not performed until the first reports of visual field defects associated with VGB treatment were published.6 Since 1997, systematic kinetic perimetry was performed in all patients and careful attention was paid to identify visual symptoms during routine follow up visits. Clinical evidence of impaired peripheral vision was not apparent in any of our patients. However 8/13 (62%) were diagnosed with retinal dysfunction characterized by moderate, concentric narrowing of the visual field with temporal sparing in six patients and severe narrowing of the visual field without temporal sparing in two patients; VGB therapy was discontinued in all patients with visual field defects. Partial recovery after discontinuation of the therapy was not found in any of our patients. By contrast with the above results, no evidence of visual field defects was discussed in any of our patients. By contrast with the above results, no evidence of visual field defects was discussed in any of our patients.6

To our knowledge, these data constitute the largest reported series of VGB monotherapy in the paediatric population. Our results show that, despite severe limitations in diagnosing visual field defects in children, systematic screening can detect visual field anomalies in the paediatric population. Routine screening should be performed even in non-symptomatic children. Similarly to recent reports in the adult population,7 our data show that visual field defects are not limited to patients receiving VGB in combination with other antiepileptic drugs but can develop also in children on VGB monotherapy. Our series data in a paediatric population are similar to the data reported by Lawden et al in an adult population. They also suggest an overall prevalence of visual field defects considerably higher than previously reported, and show that retinal lesions associated with VGB therapy are not reversible.

ANA LUCHETTI
ALESSANDRA AMADI
GIUSEPPE GOBBI

Unità Operativa di Neuropsichiatria Infantile,
Ospedale Maggiore, CA Ospedali Riuniti, Viale Giuseppe Montano 2,
40133 Bologna, Italy

GIANNA BERTANI

Unità Operativa di Neuropsychiatria Infantile,
Arcispedale S.Maria Nuova, Via del Repubblica 80,
42100 Reggio Emilia, Italy

Correspondence to: Dr Giuseppe Gobbi
Giuseppe.Gobbi@ausl.bologna.it

Pharmacological target of central stimulants is the mesocorticolimbic dopamine system, and particularly the terminals that synapse in the nucleus accumbens, another concept coming back in the paper by Giovannoni et al. Hence we suggested that a derangement of this pathway was very likely to have a contributory role in the pathogenesis of depression. Again there was a replication by at least one independent experimenter.

Now, in the work by Giovannoni et al., this earlier evidence not only is indirectly confirmed, but has gained another, more complex clinical significance. Indeed, the picture that they describe includes, apart from mood disturbances, a series of behavioural abnormalities that are akin to those of addicted people. However, the basic concept remains that, as dopamine is the pleasure transmitter and Parkinson's disease is the dopamine disease, one of the multiple Parkinson's disease facets is a disease of the brain pleasure centres.

ROBERTO CANTELLO
Department of Medical Sciences, Section of Neurology, Ospedale Maggiore, Clinica Neurologica, 28100 Novara, Italy
cantello@med.unipmn.it

Giovannoni and Lees reply:
Cantello further highlights the involvement of the dopaminergic system in mood and reward. His earlier work demonstrates that this system is dysfunctional or hyporesponsive in patients with Parkinson's disease who are depressed. In comparison patients with Parkinson's disease with hedonic homeostatic dysregulation have cyclical dysfunction of the dopaminergic reward system, with periods of hypofunction and hyperfunction. It is well known and widely accepted that patients with Parkinson's disease have a cyclical mood disorder, which mirrors the fluctuations in their motor function. What we wanted to highlight in our article is that in a few patients this cyclical mood disorder provides the substrate for the development of a behavioural disorder not too dissimilar from addiction. We deliberately avoided using the term addiction because of its negative connotations and the difficulty of untangling the motor requirements from the mood elevating effects of dopamine replacement therapies.

GIOVANNONI
A J.LEES
Departments of Clinical Neurology and Neurochemistry, Institute of Neurology, Queen Square, London WC1N 3BG, UK
Correspondence to: Dr G Giovannoni
g.giovannoni@ion.ucl.ac.uk

BOOK REVIEW

Cysticercosis (Taenia solium) is the commonest parasitic disease of the central nervous system. The infestation is endemic in several countries in Latin America, Asia, and Africa. Epilepsy is by far the most common clinical manifestation and in endemic areas it is the commonest cause of seizures in adults.

This is an excellent monograph with authors who are very experienced in dealing with cysticercosis. The “disappearing lesions” is a term which was introduced from India and the authors go into the aetiology, clinical manifestations, and medical and surgical treatment as well as antiepileptic drug therapy of patients with a single solitary granuloma. The illustrations are excellent and both CT and MRI are well explained and quite clear.

The book is divided into 13 chapters, all the chapters except one are written by authors from the same institute in India. The lack of detailed immunological background to cysticercosis and the possible biological features that can lead to its chronicity, activation, and eventual destruction is a little disappointing. There is one chapter on immunology but it concentrates on the value or lack thereof of immunological tests in the diagnosis of solitary granulomas due to cysticercosis. The chapter on pathology is much more oriented to histopathology rather than the molecular basis of the disease.

The book would have benefited much from including authors from other institutions world wide. Having said that, this book remains valuable as a monogram on a common and in many cases perplexing clinical presentation.

With modern travel, patients with cysticercosis are seen throughout the world; neurologists and neurosurgeons should be familiar with this condition to avoid unnecessary surgery.

This book is not only valuable for those working in endemic areas of the world where patients present with single enhancing CT lesions and those treating them have little experience of the disease.

RAAD A SHAKIR
Fear can interrupt the continuum of memory

PETER HARVEY

J Neurol Neurosurg Psychiatry 2000 69: 562
doi: 10.1136/jnnp.69.4.562

Updated information and services can be found at:
http://jnnp.bmj.com/content/69/4/562.1

These include:

References
This article cites 2 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/69/4/562.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/