The rostrocaudal gradient for somatosensory perception in the human postcentral gyrus

Anatomical organisation of the primate postcentral gyrus has been described in terms of several different cytoarchitectures.1,2 Powell and Mountcastle stated that the area 3 was a typical lamiocortex with granular cells, whereas in areas 1 and 2 the morphological characteristics changed gradually to the homotypical parietal association cortex in the monkey Macaca mulatta.3 Iwamura et al reported the physiological correlates on the anatomical rostrocaudal axis in monkeys.4 The ratio of skin neurons to total neurons was the largest in area 3b and decreased gradually toward the caudal part of the postcentral gyrus.5 Specific types of stimulation such as rubbing of the skin in certain directions were effective in activating some of the caudal part of the postcentral gyrus. The anatomical and physiological data in the primate lead to the reasonable hypothesis that there is a rostrocaudal functional gradient within the postcentral gyrus. This notion may explain why a lesion in the postcentral gyrus causes varied sensory disturbance in various people.

A 49-year-old right-handed man suddenly developed dysesthesia in the right hand. This recovered gradually, but 1 month later he still had an impaired tactile recognition for objects. His voluntary movements were skillful. Deep tendon reflex was slightly exaggerated in his right arm. Babinski’s sign was absent. His language was normal. Brain MRI on the 35th day after the onset showed a laminar necrosis on the caudal edge of the lateral portion of the left postcentral gyrus (figure).

Somaesthetic assessment was done during the 21–28th days of the illness. Elementary somatosensory functions were assessed, including light touch (long fibre cotton), pain (pinprick), thermal sensation (cold and hot water), joint position sense (tested by the ability of the patient to identify flexion or extension of fingers with closed eyes), and vibration sense (128-Hz tuning fork).

Intermediate somatosensory tasks were carried out. For two point discrimination, the examiner arranged the stimuli in a correct order of the stimuli were six metal plates of equal size,

shape, and texture weighing 50, 60, 70, 80, 90, and 100 g. For texture perception, we prepared six wooden plates of an identical size and shape, on which one of six different textures (sandpaper, felt, wool, wood, fine grain, synthetic rubber) were mounted. The patient palpated one texture by either hand with his eyes closed. Then he was asked to select tactually a correct one among the six textures. For shape perception (three dimensional figures) the patient palpated one of the five wooden objects (cylinder, cube, sphere, prism, and cone) with his eyes closed. Then he was asked to explain the shape verbally. For extinction, the examiner delivered light and brief tactile stimuli, using the tips of the index fingers, to the dorsum of left, right, or both hands of the patient.

For tactile object recognition, the 15 objects that are used in the naming list of the Western aphasia battery test were presented to either hand. For naming of objects, the patient was asked to name a single manipulated object. In matching of objects, the patient first grasps a single object among a selection of five objects, and then he was asked to select the correct object among the five.

In elementary sensory function, the test for light touch, pain, thermal sensation, joint position sense, and vibration sense demonstrated no abnormalities in both hands. The results of intermediate sensory tests showed that in all tests, except for shape perception, we could detect no disturbance in both hands. He could not discriminate the shape with his right hand. The correct responses were 5/5 with the left hand and 0/5 with his right hand. The correct responses in the tactile naming test were 2/15 for the right hand and 15/15 for the left hand. The correct responses of the tactile-tactile matching test was 4/15 with his right hand and 15/15 with his left hand. So the abilities of tactile recognition and tactile-tactile matching were disturbed with the right hand.

According to Delay, disturbances of the tactile process in the cortex are classified into at least three types.6 Ahylognosia is a disturbance in the ability to discriminate materials. Amorphognosia is a disturbance in the differentiation of forms. Tactile agnosia is the inability to recognise the identity of objects in the absence of ahylognosia and amorphognosia. In Delay’s terms, our patient showed amorphognosia but not tactile agnosia. Iwamura and Tanaka suggested that the hand region of area 2 in the rhesus monkey is concerned with the tactile perception of the discrimination of certain object forms.7 The lesion localised at the equivalent corticocortical connection may be a main route of inputs to area 2. This corticocortical connection may be a main route of inputs to area 2. This suggests that within the postcentral gyrus somatosensory information is processed from primary sense reception to integrating and more associating stages. The results from our patient are compatible with the notion that in the caudal portion of the human postcentral gyrus the more complex process such as shape perception is processed.

K TAKEDA
Department of Rehabilitation, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organisation for Medical Research, Tokyo, Japan

Brain MRI of the patient. Transaxial T1 weighted (above) and T2 weighted images (below) are shown. The T1 weighted image disclosed a high intensity lesion distributed laminaarily in the caudal edge of the left postcentral gyrus (Brodmann 1–2). Arrows indicate the left central sulcus.
Isolated spastic paraparesis leading to diagnosis of Friedreich's ataxia

Friedreich's ataxia is the most common hereditary ataxia. This neurological disorder was first only defined by the association of ataxia, cerebellar syndrome, and pyramidal signs. Atypical forms are increasingly recognised. The gene was mapped to 9q13-q21.1 in 1988, and identified in 1996. We report on a patient with a spastic paraparesis, of which molecular analysis confirmed the diagnosis of Friedreich's ataxia.

A 39 year old woman without any past condition presented with difficulty in walking since the age of 20. Neurological examination showed a spastic paraparesis, with tetrapyramidal signs, including generalised brisk reflexes, bilateral Babinski's signs, and clonus at the knees and ankles. Spasticity of the lower limbs and spared the arms. Spastic paraparesis resulted in impaired walking at the time of the examination. No other neurological abnormalities were found; notably, proprioception and vibration sense, and cerebellar function were normal. No sensory symptoms were noted. No skeletal deformities were found. All hematological investigations (including lactate and pyruvate concentrations, cholesterol and triglycerides, Vitamin E, very long chain fatty acid concentrations, arilsulfa-tase, and hexosaminidase activities) were normal. Electromyography, sensory and motor nerve conduction studies in the upper and lower limbs, including sural nerve action potentials (right sural nerve action potential 7 µV, normal>6 µV; left sural nerve action potential 8 µV, normal>6 µV) were normal. Cardiological tests (electrocardiography, transthoracic echocardiography) were normal. Cerebral and spinal resonance MRI were normal. No familial condition was found, except the sister who presented the same symptoms. No mutations involved in mitochondriopathies were found (2343nRRAuex, 8344nRNAlys, nt 8993). The molecular analysis of the gene coding for Friedreich's ataxia was performed by Southern blotting from DNA extracted from peripheral blood and showed two abnormal expansions of 2.5 kb and 3.1 kb on the chromosome 9q13-q21.1 (Dr M Schmitt, CHRU de Strasbourg, France). These expansions correspond to 830 and 1030 repeats. Diagnosis of Friedreich's ataxia identified by an isolated paraparesis was definitively retrained.

Friedreich's ataxia, an autosomal recessive disorder, is one of the most common hereditary ataxias. The frequency of the gene is close to 1/100 in the general population and the prevalence of the disease is estimated to be 1/50 000. Diagnosis is classically based on the association of recessive inheritance, onset before the age of 25, progressive ataxia of the four limbs, loss of deep tendon reflexes, pyramidal signs, cerebellar dysarthria, distal loss of position and vibration sense, and electrophysiological evidence of axonal neuropathy.1 Association of pes cavus, scoliosis, cardiomyopathy, hearing loss, diabetes, and retinal disease are inconstantly seen. By contrast, atypical clinical symptoms are increasingly encountered—for example, late onset, brisk reflexes, spasticity, and slow progression of the disease,1,2 and idiopathic ataxia. Friedreich's ataxia is a genetically homogenous condition. The frataxin gene was mapped to 9q13-q21.1 in 1988, and identified in 1996. The mutations are most often GAA expansions located in the first intron.3 Normal alleles range from 6 to 36 GAA repeats, whereas pathological alleles range from 90 to 1300 repeats. Ninety six per cent of patients are homozygous for GAA trinucleotide repeat expansions in the first intron of the frataxin gene. The remaining patients are compound heterozygotes for a GAA expansion and a point mutation (missense, nonsense, and splice site mutations).3,3 Frataxin, the protein encoded by the gene, is a protein associated with the inner mitochondrial membrane.1 It is thought to regulate the flow of iron in or out the mitochondria. Identification of the mutated gene allowed the correlation of certain phenotypes with genotypes. Larger expansions of the GAA repeats are correlated with an earlier age of onset and a faster progression of the disease, and additional clinical manifestations such as cardiomyopathy, pes cavus, scoliosis, and extensor plantar responses.3,3 The length of the expansion explains 50% of the variability of age at onset only. Other factors are certainly involved in the phenotypic variability. We note that the correlations were established from expansions measured in peripheral blood and showed two abnormal expansions of 2.5 kb and 3.1 kb on the chromosome 9q13-q21.1 (Dr M Schmitt, CHRU de Strasbourg, France). These expansions correspond to 830 and 1030 repeats. Diagnosis of Friedreich's ataxia identified by an isolated paraparesis was definitively retrained.

150 VAGNI

Concentrations of IL-6 were usually higher in normal nerve from five subjects at postmortem, all died by myocardial causes. Tissue extracts prepared as previously described were analysed for IL-6 using an enzyme immunoassay (Pelikine Compact™, Eurogenetics, UK Ltd, Middlesex, UK) with recombinant human IL-6 standard calibrated against the World Health Organisation (WHO) First International Standard 89/548. For immunohistochemistry, frozen sections (8 µm) were fixed in 4% paraformaldehyde in phosphate buffered saline for 30 minutes. Sections were incubated with monoclonal antibodies to IL-6 (CLB.IL-6/6-7 20 µg/ml, diluted 1:400; gift from K Nordling, Sweden, or ref No 1618–01, Genzyme, USA) and immunoreactivity to IL-6 visualised using a standard immunoperoxidase method (ABC; Vector Labs, UK) with nickel enhancement as described elsewhere. Specific immunoreactivity was extinguished by a concentration of non-immune rabbit serum (Hybond Super, Amersham) using a semidry transblotter. Strips were blocked in a solution of 5% non-fat milk in phosphate buffered saline (PBS) containing 0.05% Tween-20 for 1 hour and then incubated with CLB.IL-6/6-7 (with or without IL-6 peptide, 20 µl) at a final titre of 1:1000, for 2 hours. The strips were then incubated with anti-rabbit HRP (Sigma) at 1:10,000 dilution for a further 30 minutes. Bands were detected using a x-ray film after treatment with ECL reagents (Amersham).

Concentrations of IL-6 were increased in injured nerves (figure). The increase was greater in nerve segments distal to injury, but IL-6 concentrations in both proximal and distal segments were both significantly increased compared with controls (p<0.01, Mann-Whitney test). Concentrations of IL-6 were greatly raised in two avulsed dorsal root ganglia, obtained 3 and 4 days after injury (354 pg/mg and 128 pg/mg). At longer operative delays after injury, IL-6 concentrations in avulsed dorsal root ganglia approached the range of values obtained for postmortem controls (4.0 (SD 2.9) pg/mg for operative delays from 1 week to 15 months, and 0.2 (SD 0.06) pg/mg for controls). Western blotting showed the presence of an expected strong 29 kDa band in detergent extracts of injured nerve, which was abolished in the presence of excess synthetic IL-6. Immunohistochemical studies with both anti-body demonstrators IL-6 staining within the soma of avulsed dorsal root ganglion neurons of all sizes, particularly of small size. Immunostaining of postmortem ganglia seemed similar in pattern, but was generally weaker. Interleukin-6 immunoreactivity was also seen in nerve-like structures within the dorsal root ganglia and distal injured nerve segments.

The pattern of changes of IL-6 in injured nerves and dorsal root ganglia differs from that seen for other neurotrophic factors, such as nerve growth factor (NGF) and glial-derived neurotrophic factor (GDNF) 1–3. Concentrations of IL-6 were usually higher in distal nerve segments when compared with those proximal to the site of injury; this seems to result from IL-6 synthesis in Schwann cells in Wallerian degeneration, as shown by immunostaining, and previous animal model studies. Interleukin-6 and its receptor have been shown to be required for normal nerve regeneration in animal models, which may be enhanced with exogenous IL-6. The injured nerves presumably take up IL-6 synthesised in the Schwann cells, and transport it proximally, which accounts for the higher IL-6 concentrations in proximal segments of injured nerves in comparison with controls. Anterogradely transported IL-6, if released in the spinal cord, may play a part in processing, for which there is some evidence from animal models. In this study, the most remarkable finding was the very high concentration of IL-6 in extracts of the acutely injured nerve, which was abolished (Mann-Whitney test). Concentrations of IL-6 were greatly raised in two avulsed dorsal root ganglia, with much smaller increases at later times after injury. The acute increase of IL-6 could originate from sensory cell bodies themselves, as has been shown with IL-6 mRNA in situ hybridisation studies in rat sensory ganglia after peripheral nerve injury, or from inflammatory cells. This increase may have autocrine/paracrine effects, which may aid cell survival, or have a role in sensory or sympathetic sprouting.

We conclude that IL-6 is a significant factor in the events after nerve injury in humans, particularly in sensory neurons. The potential theories for the role of nerve repair for recombination of human IL-6, and agents that modulate its action, deserves further investigation.

G Saldanha K J Bar Y Yiangou P Anand
Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Areta A, Ground Floor, Hamersmith Hospital, Du Cane Road, London W12 0NN, UK
R Birch T Carlstedt Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, UK
J M Buirrin St Bartholomew and The Royal London School of Medicine and Dentistry, Queen Mary and Westfield College, Royal London Hospital, London, UK
Correspondence to: Professor P Anand

CROSSED FACE APRAXIA

Apraxia refers to the disorder of movement planning and execution that cannot be accounted for by motor or sensory deficits nor by other cognitive impairments. The term apraxia encompasses several different deficits, including “face apraxia”, which defines the impairment of movements performed within the district of the cranial nerves. Group studies have shown that the face apraxia results from lesions of the left hemisphere. However, a few cases can be gleaned from the literature of patients whose face apraxia followed lesions in their right hemisphere and was mentioned in fleeting comments. 1,2

Face apraxia has generally been equated to oral apraxia and tests aimed at assessing it only comprise items exploring skilled movements of the lips, cheeks, and tongue. However, several early authors reported on patients with face apraxia also showing movement deficits of the eyes and eyebrows. Some anecdotal evidence of upper face apraxia is also reported in recent investigations. 3 We report on a patient, who, 2 years after a right hemispheric lesion, showed severe face apraxia for movements of both the lower and the upper parts of the face. A 55 year old artist with 17 years of training had an ischaemic stroke in August 1997. A series of CT and MR scans showed a right frontoparietal insular hypodensity also encroaching on the anterior range. At the time of our assessment he did not show clear evidence of visuospatial neglect which was mentioned in the clinical notes at onset. He performed flawlessly tasks assessing the ability to search for particular targets, i.e. reading, or items of the test were performed first on imitated items. He also denied familiarity for left handedness. He then showed clear evidence of visuospatial neglect which was mentioned in the clinical notes at onset. He performed flawlessly tasks assessing the ability to search for particular targets, i.e. reading, or items of the test were performed first on imitated items. He also denied familiarity for left handedness. However, the patient could have some difficulties in copying complex geometrical drawings. During neurological examination the patient proved unable to close his eyes on verbal command. He failed even when the examiner showed him how to do it. He was therefore submitted to a battery of tests assessing apraxia including the upper and lower face apraxia test. The nine upper and 29 lower items of the test were performed first on imitated items, and then considering the possibility that the patient could have some difficulty in perception, on verbal command. On imitation, the patient scored 2/45 and 320/435 (adjusted scores) on the upper and lower face apraxia tests.
sections of the test respectively, both well below the inner tolerance limit cut off scores (38.43/45; 400.04/435). On command he failed all items of the upper face test and he failed the same items of the lower face test which he failed on imitation.

His errors were perseveration of the previous item or substitutions with another item or gestures: a quantitative approach to ideomotor apraxia. Arch Neurol 1980;37:9–10.

A case of Bickerstaff's brainstem encephalitis mimicking tetanus

Bickerstaff's brainstem encephalitis is characterised by acute ophalmoplegia and ataxia with progressive conscious disturbance.1 Although Bickerstaff’s rigidity in the recovery phase,2 rigidity in the clinical course of Bickerstaff’s brainstem encephalitis has rarely been reported.2 We encountered a case in which the initial diagnosis was tetanus, because of the progression of severe rigidity and risis sardonucus, but which turned out to be Bickerstaff's brainstem encephalitis owing to the presence of anti-GQ1b IgG antibody. A 23 year old man was transferred to another hospital for further treatment. There he required assistance in walking because of new severe rigidity in all his limbs. Oral haloperidol (maximum dose 20 mg/day) was given for 10 days to reduce his anxiety, but his symptoms did not lessen. Treatment with intravenous methylprednisolone (1 g/day from day 14 to 16, as well as acyclovir (1500 mg/day) given intravenously, failed to ameliorate his symptoms. On day 17, he was transferred to our hospital for further evaluations and treatment. Physical examination on day 17 showed a body temperature of 37.0°C, blood pressure 130/80 mm Hg, pulse rate 100 beats/min, respiratory rate 12 min, and severe hyperpyrosis. Neurological examination showed that he was alert and well oriented. The pupils were isoropic and round but mydriatic. Light reflexes were prompt. Bilateral blephaloptosis was present. Extraocular movement was completely inhibited in vertical and horizontally. Restriction of mouth opening and dysarthria similar to risis sardonucus were caused by increased tonus of the masseter muscles. Neither dysarthria nor fasciculation was present. Tests for muscle strength and coordination could not be made due to severe rigidity of the neck, trunk, and limbs. Deep tendon reflexes were absent, probably secondary to the rigidity. The Babinski response was negative bilaterally. Voluntary movements were markedly slow, and sitting balance was poor. Opiosthotonus was not present. No abnormality was found in the sensory examination. The patient was catheter placed due to the patient's severe general condition, we did not evaluate his bladder function.

White blood cell count was 13,200 /mm^3 (84% neutrophils), but the erythrocyte sedimentation rate and C reactive protein concentration were normal. Protein in CSF was 144 mg/dl with normal cellularity. No oligoclonal IgG bands were detected in the CSF. Magnetic resonance imaging detected no abnormalities in the brain stem. An EEG was normal. Motor nerve conduction velocities and compound muscle action potentials measured in the right median, ulnar, and posterior tibial nerves were normal, but no F waves were evoked. Antidromic sensory nerve velocity in the right median nerve was normal, but no sensory activation potentials were evoked in the right ulnar and posterior tibial nerves.

Based on his clinical course and the physical examination, the tetanus was considered to be general tetanus. On day 18, intravenous piperacillin sodium (4000 mg/day) and oral dantrolene sodium (25–50 mg/day) were started. On day 19, 4500 IU human anti-tetanus immunoglobulin (Tetanoliva, Yosihimo, Tokyo, Japan) was infused. On day 20, his bilateral blephaloptosis and rigidity of the limbs began to lessen. Subsequently his symptoms and signs improved dramatically. On day 24 he could turn his head and eyes. On day 25 ophalmoplegia was ameliorated with slight limitation of lateral gaze. On day 26 he could sit independently. On day 32 he could stand without assistance, and on day 37 he could walk independently. During the recovery phase, no ataxia was seen. He has not had a relapse for 2 years and 6 months.

After his recovery, we evaluated the anti-ganglioside antibodies and anti-tetanus antibody activity in his serum through the immunosorbent assay3 showed that serum IgG on day 19 had high (4000) anti-GQ1b antibody titre. The IgG antibodies did not react with GM1, GM2, GD1a, GalNAc-GD1b, or GT1b. An immunoblot with immunostaining confirmed that the patient’s IgG bound strongly to GQ1b, but not to GM1, GD1a, GD1b, or GT1b. No anti-GQ1b IgG antibody was detectable (titre<500) 2 years after the onset of neurological symptoms. By contrast, the neutralising anti-tetanus antibody activity in the serum on day 17 was 0.41–0.75 IU/ml, sufficient for protection against tetanus infection.3

Serum anti-GQ1b IgG antibodies have been found in patients with Miller Fisher syndrome, Guillain-Barré syndrome with ophalmopleisis, acute ophalmopleisis, and Bickerstaff's brainstem encephalitis.4 Alumimuno-cytological dissociation in CSF and poor F wave response of the examined nerve are compatible with Miller Fisher or Guillain-Barré syndrome. The clinical finding of the most characteristic of this patient, howecer, were severe rigidity of the face, neck, trunk, and limbs, which has not been described in Miller Fisher syndrome, Guillain-Barré syndrome, or acute ophalmopleisis. The extrapyramidal side effect of haloperidol was unlikely because rigidity was present before the drug was administered. Bickerstaff reported the development of parkinsionism, including rigidity, within 2–4 weeks of onset and during the recovery phase in Bickerstaff's brainstem encephalitis, with the exception of a fatal case in which parkinsonism developed before maximal disability.4 Our patient showed rigidity from the beginning. Although an overlap of Guillain-Barré syndrome could not be excluded,5 our diagnosis was Bickerstaff's brainstem encephalitis, because the patient's case was close to the exceptional one reported by Bickerstaff. Antitetas immunoglobulin is comprised of high dose polyclonal IgGs to tetanus toxin and other types of IgGs and IgMs, and it may have had an effect similar to that of intravenous immunoglobulin in our patient. His dramatic recovery immediately after antitetas immunoglobulin administration could not be explained as part of a natural course. Although the mechanism for the early appearance of rigidity in our

Correspondence to: Professor S Della Sala

C PAPAGNO
Department of Psychology, King's College, University of Aberdeen, AB24 2UB, Aberdeen, UK

reported case is not clear. Bickerstaff’s brainstem encephalitis should be considered the differential diagnosis when rigidity, such as tetanus, is present.

T SATO
I MIYAI
T MATSUMURA
S NOZAKI
J KANG
Department of Neurology, Toneyama National Hospital 5–1–1, Toneyama, Toyonaka, Osaka 560–8552, Japan
H FUJITA
Department of Pediatrics, Osaka University Medical School
N YUKI
Department of Neurology, Doikyo University School of Medicine
Correspondence to: Dr Toshio Saito
saitot@toneyama.hosp.go.jp

Lysozyme in ventriculitis: a marker for diagnosis and disease progression

The development of a hydrocephalus as a typical complication after subarachnoid haemorrhage often requires implantation of a catheter for drainage of ventricular fluid. Because this is an open system it carries a risk of development of bacterial ventriculitis by contamination. This potentially life threatening complication or neurologically disabling disease can be diagnosed by microbiological tests on the CSF. However, microbiological examination is often not possible or shows pathological results only after a delay, probably because of antibiotic prophylaxis. Standard CSF indices are difficult to interpret, because subarachnoid haemorrhage leads to an irritation syndrome in the CSF, which can imitate infection.

Lysozyme is a basic polypeptide of 129 amino acids weighing 15 kDa, which is found in neutrophilic granulocytes or monocytes, and is released from cytoplasmic and azurophilic granules. It is capable of degrading bacterial peptidoglycan. Lysozyme shows significantly higher concentrations in CSF in bacterial meningitis in comparison with abacterial meningitis, whereas in other diseases of the CNS much lower concentrations are found.1,4

We retrospectively documented the results from 146 patients who underwent external ventricular drainage after subarachnoid haemorrhage. As well as documenting the frequency and timing of infection, the medical notes were inspected for risk factors of infection. In 64 patients (15 with microbiologically confirmed ventriculitis, and 49 with no evidence of ventriculitis) the following measurements were compared: serial CSF cytology; total protein; albumin; IgM, IgA, IgG; plasma/CSF ratio of albumin, IgM, IgA, IgG; locally produced fraction of IgM, IgA, IgG and CSF oligoclonal IgG, lactate, and glucose.

For further analysis, 61 CSF samples were available from 14 patients with microbiologically confirmed ventriculitis. As a control, we used one sample from each of 31 patients in whom no evidence of ventriculitis was found. Immediately after these CSF samples had been collected for clinical tests, the remainder of the samples had been frozen at –80°C. These CSF samples were investigated to measure their lysozyme concentrations by radial immunodiffusion. The sample is transferred to circular wells in an agarose gel; the antigen then diffuses radially from the sample into the gel, which contains the corresponding antibody. After an incubation period (18 hours) the antigen concentration can be read from a reference table (“The binding site”, Birmingham, UK).

For statistical analysis we used the y2 test, the Wilcoxon matched pairs test, and a Kaplan-Meier survival analysis. A p value<0.05 was considered to be statistically significant.

Fifteen of 146 patients (10.3%) developed a microbiologically established ventriculitis, confirmed by detection of pseudomonas aeruginosa (one case), staphylococcus epidermidis (12 cases), gram negative rod cells (one case), and enterococci (two cases). The period of drainage was 3–39 days (mean 10 days). Infection rate was 3.5% (5/146) within the first week, 5.3% (4/77) within the second week, and 15.4% (6/39) after 2 weeks of drainage (p<0.02, df=2). Mean survival time (>no ventriculitis) was 26 days. The probability of drainage without ventriculitis decreased to 0.96 (SE 0.02) after 7 days, 0.86 (SE 0.045) after 14 days, 0.66 (SE 0.1) after 22 days, and 0.53 (SE 1.4) after 26 days. We identified potential risk factors for ventriculitis in eight of 15 patients with ventriculitis, and in nine of 131 patients without ventriculitis (p<0.001, df=1). The risk factors were: leakage in the drainage system (26% with ventriculitis; 4.4% without ventriculitis), disconnection (13.3%; 2.3%), blockage which was cleared (13.3%; 2.3%), blockage which was not cleared (13.3%; 4.4%), leakage which was cleared after 14 days (0.9%; 0.9%), and clinical signs which were noted (1.3%; 0.9%).

Comparison of the CSF results in 15 patients who had established ventriculitis with those in 49 patients without ventriculitis showed no significant difference for most of the mentioned indices except the following. Ten of 15 patients with ventriculitis and eight of 49 patients without ventriculitis showed oligoclonal IgG in the CSF (p<0.001, df=1). Thirteen of 15 patients with ventriculitis and 18 of 49 patients without ventriculitis showed increased CSF-IgM (>7 mg/l) concentrations (p=0.002, df=1). Thirteen of 15 patients with ventriculitis and 17 of 49 patients without ventriculitis showed increased CSF lactate (>2.1 mmol/l; p<0.001, df=1).

In all 14 of the 15 patients with microbiologically confirmed ventriculitis available for analysis, maximal lysozyme concentrations of above 2.5 mg/l were found (mean 11.29 (SD 8.1) mg/l, range 2.5–25.8 mg/l), in 61 samples at different times (figure). In only two of the 31 control patients could lysozyme concentrations just above 2.5 mg/l be detected, with all others lysozyme concentrations (mean 1.44 (SD 0.64) mg/l, range 0.2–2.6 mg/l, p<0.001, df=1). In 17 samples, the ventricular concentration of lysozyme was compared with the concentration in lumbar CSF samples taken synchronously. The mean ratio of lumbar to ventricular concentration was 2.24 (SD 0.525) (range 1.4–2.8, 2 tailed p=0.0003, Wilcoxon matched pairs test).

Our study shows a clear connection between the duration of drainage and the risk of ventriculitis. The indication for implanting or continuing ventricular drainage should therefore be checked daily, and alternatives such as catheter exchange should be considered at an early stage. The documented risk factors show that improving the standards of hygiene and nursing care are necessary for reduction of the risk of ventriculitis. We found the presence of oligoclonal IgG bands, CSF IgM, CSF lactate, and lysozyme in the CSF to be statistically relevant indices for diagnosis. The finding that lysozyme concentrations in lumbar CSF are more than twice as high as in ventricular CSF has not to our knowledge been described previously. Evidently lysozyme, as a relatively large protein molecule, is concentrated in the lumbar CSF. The interpretation and the definition of normal values must take account of these findings.

This study shows that a single, marginally pathological value has less diagnostic value than an increase in lysozyme detected in a series of CSF samples. A quantitative diagnostic approach to early diagnosis of ventriculitis, we recommend a CSF analysis within the first week, including measurement of lysozyme concentration. If drainage is to be continued longer than 1 week, we would advise daily CSF analysis, in particular of lysozyme. If there is a relative increase in lysozyme concentration, ventriculitis should be assumed, even when microbiological findings are still negative.

S SCHROEDER
H J STUERENBURG
F ESCHERICH
G PFEIFFER
Department of Neurology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
F SCHROEDER
Department of Neurosurgery
Correspondence to: Dr S Schroeder

Clinicanoanatomical correlates of a Fou rire prodromique in a pontine infarction

Pathological laughter heralding a neurological deficit was first described by Ferré in 1903 as ‘Fou rire prodromique’. We present a patient with prodromal pathological laughter and a right pontine infarction in the territory of the paramedian branch of the basilar artery. These are the first clinicanoanatomical correlates integrating MRI lesion mapping with immunohistochemical studies for a serotoninergic specific enzyme of human brain stems.

A right handed 61 year old woman was admitted to hospital for a left hemiplegia. She presented with a history of diabetes, high blood pressure, and an old myocardial infarct. She had experienced spells of uncontrolled and inappropriate laughter during the night and the subsequent morning. At noon, her left side became paralysed. On admission, she was alert, attentive, and had a right sixth nerve palsy and a left hemiparesis that included the face. There was a left Babinski’s sign. Neuropsychological testing disclosed a mild attentional deficit and a decreased photometric fluency. There was no lability of affect and no inappropriate crying. She recognised the laughter as abnormal. The spells were usually totally inappropriate and without any associated mirth. Sometimes they could be triggered by an unfamiliar situation, such as talking to the physical therapist. To measure pathological laughter with a validated scale, we used the pathological laughter and crying scale (PLCS) and her score was 15/27. A psychiatric evaluation was negative for manic disorder. Brain MRI disclosed an infarction in the right ventral pons without other focal lesion (figure, A). An EEG was normal. Spells of pathological laughter continued for a week then gradually resolved. After 2 weeks, the PLCS score was 2/27.

The limits of the lesion in the right ventral pons were overlayed on a section of a corresponding level taken from a series of immunohistochemical preparations used to map the entire human serotoninergic system. The main tracts and structures involved are shown in the figure (B, C).

Pathological laughter is an exaggerated, uncontrollable, and inappropriate laughter usually unrelated to a true emotion or a congruent mood. It is found in gelastic epilepsy (ictal pathological laughter), associated with lesions in the hypothalamus, anterior cingulate, or basal temporal lobe. Non-ictal pathological laughter is often associated with pathological crying and usually seen with bilateral, multiple cerebral lesions as a component of pseudobulbar palsy. However, non-ictal pathological laughter can occur in patients with unilateral lesion, and without pseudobulbar palsy. In these cases, imaging studies show lesions in the lenticulocapsular, thalamocapsular, and pontine base areas. Recognised causes include strokes or tumours. Non-ictal pathological laughter may also occur in the cortical and subcortical territory of large arteries, usually the middle cerebral artery, and, in these cases, it may be very difficult to distinguish from a gelastic seizure. In prodromal pathological laughter, the locations of the lesions and the pathologies are similar, and include mainly strokes and tumours. The pathophysiology of pathological laughter was discussed by Wilson in 1924, who suggested a motor release phenomenon. He pointed to an imbalance between voluntary motor pathways in the corticobulbar tract and involuntary pathways from limbic circuits to the facial nerve nucleus, the nucleus ambiguous, and anterior horn cells that subserve the phrenic nerve (faciorespiratory coordination of laughter). Another hypothesis involves serotoninergic neurotransmission, originating in the pontine serotoninergic raphe nuclei. Pharmacological evidence also shows that serotonin reuptake inhibitors may improve a patient’s laughter.

The raphe nuclei are divided in a rostral and a caudal group. Nuclei of the rostral group, in the midbrain and rostral pons, project rostrally to the forebrain. They are separated by a gap from the nuclei of the caudal group extending from the caudal pons to the end of the medulla. These nuclei project to the entire brainstem and spinal cord. Serotoninergic neurons of the caudal pons lying in the ventral tegmentum belong to the raphe nucleus magnus (RMg), and are at the origin of a widespread innervation of brainstem structures.

Our patient presented with prodromal pathological laughter heralding an infarction in the right ventral pons, in the territory of the paramedian branch of the basilar artery. She had no other signs of pseudobulbar palsy. It is unlikely that pathological laughter in our case was due to seizures (gelastic epilepsy) because of the long duration of the episodes, the absence of altered sensorium, automatisms, or EEG abnormalities, and the location of the stroke. The unique and circumscribed lesion of the corticospinal and corticobulbar tracts at the level of the ventral pons, saving the medial lemniscus, may seem to favour Wilson’s hypothesis; however, the posterior angle of the lesion along the midline also
Proximal median mononeuropathy associated with an anomalous deep course through the brachialis muscle

Proximal median mononeuropathies, unrelated to direct trauma or external compression, are unusual in neurophysiological practice; several syndromes have been more commonly described including the anterior interosseous syndrome, the pronator teres syndrome, and entrapments at the lacertus fibrosus or at the ligament of Struthers.¹

We report the case of a 29 year old woman with an upper median mononeuropathy at an unusual lesional site. She started a new job consisting of repeatedly lifting heavy crates full of apples from the ground, carrying them for a while, and then putting them on a shelf. Fifteen days later, at the end of a working day, she began to complain of right hand weakness with numbness and tingling limited to the first, second, and third fingers; 4 weeks after the onset of symptoms neurological examination showed marked weakness of thumb abduction and opposition, forearm pronation, and flexion of the wrist and of the distal phalanges of the thumb and index finger; she had paraesthesias on the palmar side of the right thumb, index, and middle fingers without spontaneous pain, which could otherwise be strongly evoked by deep palpation of the median nerve trunk at the lower third of the right upper arm. The patient denied any kind of trauma or prolonged direct compression on that limb.

Electromyography showed fibrillation potentials and neurogenic motor units recruitment in all forearm right median innervated muscles, including the pronator teres; in thenar median innervated muscles abundant fasciculations and severely reduced recruitment pattern were the major findings, with minimal denervation; on nerve conduction studies the distal right median CMAP had a latency of 4 ms and a positive to negative peak amplitude of 25 mV; antidromic SNAP recorded at the third finger had an onset latency of 3.6 ms and a positive to negative peak amplitude of 70 µV; forearm median motor and sensory conduction velocities were 54 m/s and 60 m/s respectively; stimulation of the median nerve at more proximal sites disclosed a partial motor (fig 1 (A)) and complete sensory (fig 1 (B)) conduction block in the distal third of the upper arm; an inching technique allowed better localisation of the site of conduction block about 9 cm proximal to the elbow along the median nerve course. The rest of the neurophysiological study, performed in four limbs, was normal. Routine blood chemistry was normal, including tests for diabetes, thyroid function, and vasculitis. A study of DNA excluded the presence of the deletion at chromosome 17p11.2-p12.

Radiography of the right humerus ruled out a supracondylar process; an MRI study of the right upper arm using T1 weighted axial images along the nerve course showed the median nerve to be normally recognisable within the arm neurovascular bundle above the lesonial site (fig 2 A), following the nerve course in more distal sections the nerve seemed to separate from the bundle as it approached the belly of the brachialis muscle (fig 2 B). In the subsequent more distal sections the nerve was no longer recognisable within the image of the brachial muscle belly (fig 2 C). At surgical exploration of the right median nerve, the proximal segment seemed to be located within the neurovascular bundle in a deep inferof lateral position. At the transition between the middle and the distal third of the arm, where the basilic vein joined the humeral vein, the nerve was found to turn deeply through the brachialis muscle belly from which it emerged about 5 cm more distal. Muscle fibres covering the nerve were sectioned allowing appraisal of a consistent reduction of the size of the nerve throughout its intramuscular course. No other abnormalities were detected along the nerve until it entered the antebrachial fossa (fig 2 C).

Neurology was followed by clinical and neurophysiological improvement. Fifteen days after surgery hand function improved; 2 years later there was no weakness and EMG was consistent with a good reinnervation process.

Our patient presented a subacute upper median mononeuropathy in the distal third of the upper arm associated with an anomalous intramuscular course through the brachialis muscle; this was documented by neurophysiological investigation, imaging studies, and surgical exploration. To our knowledge this is the first report of a median nerve lesion at that site associated with such anatomical findings.

Anatomical variations involving the course or the structure of muscles and nerves and their relations are reported as not uncommon in cadaveric dissection studies of the upper limbs,¹ as these anatomical variations are rarely associated with peripheral nerve lesions, their pathophysiological relation remains somehow unclear.

For the proximal upper arm Bellmann and Vollmer¹³ described an isolated case of median nerve compression at its origin by an anomalous muscle band originating from the interval between the subscapularis and latissimus dorsi muscles and crossing the neurovascular bundle to reach the anterior surface of the humerus. In the distal upper arm and elbow region the presence of a supracondylar ligament and the variable relation of the median nerve with the heads of the pronator teres muscle are indeed the most often reported situations predisposing to an entrapment.

A few authors have described even more uncommon anatomical variations at necropsy, discussing their potential role in causing a focal median nerve lesion. Dharap¹⁰ described a case showing an anomalous muscle arising from the humerus and crossing the median nerve and the brachial artery to blend with the common origin of the forearm flexor muscles. Nakatani et al¹⁰ reported a case in which a muscle slip from an anomalous four headed biceps brachii muscle joined the posterior fascia of the pronator teres forming a tunnel where the median nerve seemed to be compressed.

At the forearm level the median nerve may be compressed by an anomalous palmaris longus muscle or in the hand by anomalous...
lumbrical or thenar muscles; similar cases may involve the ulnar and the superficial radial nerves.

The pathophysiology of this type of lesion is mainly mechanical: a repeated and prolonged compression may develop either directly by the contracting muscle itself or by fixation against more rigid osteoligamentous tissues; the movements performed by our patient consisted in repeated and alternated elbow flexions and extensions under loading: in this setting the contracting muscle could also have reduced or blocked the longitudinal sliding of the nerve along its bed, with subsequent stretching and friction of the nerve trunk.\(^7\)

In conclusion, this case emphasises that rare anatomical variations should be considered in the differential diagnosis of proximal median mononeuropathies at uncommon lesional sites.

This work was presented in abstract form at the annual meeting of the Italian Society of Clinical Neurophysiology-Trieste, Italy, October 3–6 1998.

ALBERTO MORINI
LAURA VIOLA
DANIELE ORRICO
Department of Neurology, Santa Chiara Hospital,
Largo medaglie d’oro no1, 38100 Trento, Italy

GIORGIO BIANCHINI
Department of Orthopaedic Surgery

WALTER DELLA SALA
Department of Radiology

ALESSANDRO D GHOBERT
Department of Rehabilitation

Correspondence to: Dr Alberto Morini
morini@tn.aziendasanitaria.trentino.it

8 Documented growth of a temporal arachnoid cyst

Most arachnoid cysts are probably present at birth, or develop soon after. Once they are formed, they are thought to remain stable, apparently in some kind of equilibrium with the rest of the intracranial space. Not infrequently, cysts have been reported to disappear spontaneously (for references see Wester and Hugdahl\(^9\)) and a minority may grow with increasing age, although rather slowly.\(^7\) Occasionally, cysts in infants have been reported to grow to a substantial size. Kumagai et al.\(^1\) reported on a newborn boy who developed a temporal fossa cyst between the age of 2 and 4 months, which later increased considerably before it was removed when the patient was 8 months old.

Except for the very smallest, most arachnoid cysts display radiological signs indicating an increased intracystic or intracranial pressure. For example, during infancy and early childhood, cysts may influence the shaping of the adjacent skull bone, in the case of middle fossa cysts resulting in an enlarged fossa, often with a bulging of the overlying bone. Moreover, middle fossa cysts may also dislocate the temporal lobe posteriorly, and larger cysts regularly cause a midline shift, thus indicating expansive forces.

This notion of raised intracystic and intracranial pressures is supported by the common intraoperative finding of a cyst wall bulging out of the dural incision. However, the relative paucity of associated symptoms, the moderate radiological displacement, the absence of perifocal oedema in the adjacent brain parenchyma, and, finally, the total intraoperative impression, all indicate that the pressure is only moderately increased.

It is a common clinical experience that the symptoms caused by an arachnoid cyst may first present after many years, and that the symptoms also may vary over time. Why this is so is not known, but it is tempting to suggest variations in the intracystic pressure as one explanation.

The demonstration of a cyst enlargement over time may be of some importance, as it would provide additional evidence of an increased intracystic pressure, and that arachnoid cysts not merely represent passive accumulations of fluid as implied by the term “the temporal lobe agenesia syndrome”. With the exceptions mentioned above, results from very few patients have been published that show growth of an arachnoid cyst. We hereby report on one such patient.

An 18 year old man had CT at the age of 8 because of complaints thought to be caused by a sinusitis (a moderate transitory headache) and no other symptoms. It was then

Figure 2 Anatomical study. Top: T1 weighted MR axial images of the distal right upper arm across the lesional site; (A): proximal; (B): intermediate; (C): distal section. Left: surgical findings (D); brachialis muscle fibres covering the median nerve have been sectioned; note the anomalous deep course of the median nerve trunk (small white arrow) apart from the vascular bundle (large white arrow) and through the brachialis muscle belly (black arrow). See text for details.

discovered that he had a relatively small arachnoid cyst in the left temporal fossa. The cyst did not reach above the sphenoidal wing or the pyramid (figure A and B). As we at that time were not aware of the cognitive impairment caused by most temporal cysts, we refrained from surgical decompression.

Ten years later, he was referred to us again, now complaining of a strong, episodic, frontal headache that had developed over the past year. The strength of the headache varied with body position; it increased when he was leaning forward, and was relieved when he was resting on his back. New CT (figure C and D) showed that the cyst had grown considerably, now reaching well above the sphenoidal wing.

The cyst did not reach above the sphenoidal wing or the pyramid (figure A and B). As we at that time were not aware of the cognitive impairment caused by most temporal cysts, we refrained from surgical decompression.

Ten years later, he was referred to us again, now complaining of a strong, episodic, frontal headache that had developed over the past year. The strength of the headache varied with body position; it increased when he was leaning forward, and was relieved when he was resting on his back. New CT (figure C and D) showed that the cyst had grown considerably, now reaching well above the sphenoidal wing.

The patient presented here displayed a considerable growth of a temporal arachnoid cyst as seen on two scans 10 years apart. We do not know exactly when the growth took place, but it is tempting to correlate it with the increased symptoms (mainly headache) evolving over the past year before the second CT. In retrospect it is possible, or even probable, that the patient’s headache at the age of 8 also was caused by the cyst, and not a sinusitis. The increase in cystic volume must have occurred after the neurocranium had become relatively rigid, as the patient was already 8 years old before the documented growth started, and the total intracranial volume as well as the volume of the left middle fossa remained constant over the 10 years. Therefore, the cyst growth must have occurred at the expense of brain tissue or the CSF compartment, and cannot be ascribed to a soft, yielding skull allowing an unrestrained growth of the underlying cyst, as we may occasionally see in infants, and as was reported by Kumagai et al.1

Thus, the present finding may be taken as an indication that temporal arachnoid cysts are not merely passive accumulations of fluid, and that the cystic growth in this patient must have been caused by an increased intracystic pressure that was sufficient to widen the sylvian fissure, and to dislocate the temporal lobe. In previous studies, it has been shown that this effect on the temporal lobe is sufficient to cause cognitive dysfunction, with postoperative improvement when the cyst is surgically decompressed.1 In our opinion, such findings alone may constitute a sufficient indication for surgery, but only if the complication rate can be kept at a negligible level.

K WESTER
Department of Neurosurgery

G MOEN
Department of Radiology, Neuroradiological Section,
University of Bergen Medical School, Haukeland University Hospital, N-5021 Bergen, Norway

Correspondence to: Dr Knut Wester

Pituitary apoplexy presenting as massive subarachnoid haemorrhage

Pituitary apoplexy is an uncommon, but well recognised clinical syndrome, which usually results from ischaemic or haemorrhagic necrosis of a pituitary adenoma.1 It is characterized by the abrupt onset of severe headache, visual impairment, ophthalmoplegia and often, a deteriorating level of consciousness.2 Signs of meningeal irritation are frequent accompaniments, which may confound the clinical picture with that of a subarachnoid-haemorrhage (SAH). We report a case of massive SAH caused by pituitary apoplexy and present the CT and MRI findings.

A 72 year old woman, with nothing in her history to suggest pituitary dysfunction, presented with the abrupt onset of severe headache, vomiting, and gradually deteriorating level of consciousness. A CT examination of the brain without contrast enhancement
showed an extensive basal subarachnoid haemorrhage that had diffused into both sylvian fissures and into the sulci over the convexity of the cerebral hemispheres. In addition there was a rounded heterogeneous density mass in the suprasellar cisterns (fig 1 A). After the administration of contrast material the lesion displayed heterogeneous central enhancement (fig 1 B). A ruptured anterior communicating aneurysm was suspected but was excluded by normal cerebral angiography.

Brain MRI confirmed haemorrhage within a pituitary tumour (fig 2 A). It could also be seen that the haemorrhage had ruptured through a defect in the tumour capsule into the subarachnoid space (fig 2 B). Despite the administration of 100 mg hydrocortisone intravenously every 6 hours and cardiopulmonary support her condition progressively worsened and she died 3 days after admission.

The clinical syndrome of pituitary apoplexy evolves within hours to days. The symptoms vary from mild to severe and can progress rapidly to coma and death. Because many patients are unaware that they harbour a pituitary tumour, pituitary apoplexy is often unrecognised at presentation. In pituitary apoplexy, blood and necrotic tumour tissue are enclosed and compressed within the confined space of the sella turcica, a region that is in close anatomical proximity to the basal cisterns. When the pressure gradient within the sella exceeds the resistance of the surrounding structures, blood is expelled into the subarachnoid space producing a clinical picture that may be indistinguishable from aneurysmal SAH. Thus pituitary apoplexy must be included in the differential diagnosis of “angiographically negative” SAH. Brain CT is the modality of choice in the initial investigation of SAH. It will show the spread and severity of the haemorrhage within the subarachnoid space, as well as any extension into the brain. When pituitary apoplexy is the cause, CT will usually show the pituitary tumour as well as any recent haemorrhage. Brain MRI is superior to CT in identifying the tumour as well as the associated haemorrhage or infarction. In the case presented here, the enhanced MRI also displayed the defect in the tumour capsule which represented the site of rupture. The management of pituitary apoplexy includes the immediate administration of high dose corticosteroids to combat adrenal insufficiency. When there is rapid deterioration of vision or a progressively worsening level of consciousness, urgent surgery in the form of trans-sphenoidal decompression should be carried out.

MOHAMMED AL WOHAIBI
NEVILLE A RUSSELL
AHMED AL FERAYAN
Division of Neurosurgery, King Fahad National Guard Hospital, PO Box 22499, Riyadh 11426, Saudi Arabia
ADNAN AWADA
MOHAMMED AL JUMAH
Division of Neurology
MATTHEW OMOJOLA
Department of Diagnostic Imaging

Correspondence to: Dr Neville A Russell

Early detection of non-compliance in Wilson's disease by consecutive copper determination in cerebrospinal fluid

A 41 year old technical employee was diagnosed with Wilson’s disease in 1982, 2 years after onset of dysarthria, diplopia, visual deficits, ataxia, and concentration deficits. The patient improved rapidly with d-penicillamine and a copper free diet, and has since returned to normal neurological function. Penicillamine was stopped in 1989 and he changed his diet from copper free to a normal diet in 1987. In 1990 he was put on 800 mg zinc a day. During the past 17 years he underwent 20 determinations of copper concentration in CSF for follow up of treatment (figure) as copper concentrations in CSF can be used as an indicator of brain copper concentration in the cerebral manifestation of Wilson’s disease.

Copper was measured by flameless atomic absorption (Perkin Elmer, HGA 500, Überlingen, Germany). The main resonance line was 324.7 nm with deuterium background compensation and argon as a protective gas; the sample volume was 20 µl using an autosampling system. The CSF was measured undiluted. The patient was now again routinely admitted for monitoring of the efficiency of the treatment. He was free of complaints and the neurological examination as well as a neuropsychological test battery and visually evoked potentials were normal. He explicitly denied any change in diet or drug therapy (zinc, 800 mg a day). We found, however, an almost threefold increase of his CSF copper concentration compared with the previous values (figure). Serum
Correspondence to: Dr H J Stuerenburg

Between will and action

I read with great interest the recent paper by Bundick and Spinella, and the related commentary by Goldberg. These articles address the neurological substrates of volitional disturbance and in places they adopt the vocabulary of the philosophy of action—

Progressive dementia and gait disorder in a 78 year old woman

Although the provisional diagnosis of gliomasisis cerebri in the clinicopathological case conference by Tagliati et al was the one eventually validated at necropsy, the discussion should have also entertained the possibility that the occurrence of signal hyperintensity on MRI, in the context of dementia, ataxia, and Babinski’s sign could also be consistent with the diagnosis of cerebral amyloid angiopathy (with giant cell inflammatory reaction to B4-amyloid and vasculitis), exemplified by a 63 year old man presenting with some of these stigmata. In the classical triad, consisting of cognitive impairment, upper motor neuron signs, and lobar haemorrhage, the third might well be a criterion potentially interchangeable with, or amyloid related vasculitis and attendant stigmata such as focal non-specific hyperintensity on MRI.

HANS JOERG STUERENBURG

CHRISTIAN EGGERS

Neurological Department, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Correspondence to: Dr H J Stuerenburg

stuerenburg@uke.uni-hamburg.de

Guillain-Barré, Fisher, and Bickerstaff syndromes: nature versus well established ideas

As the author of the first ever report documenting central nervous system involvement in Miller Fisher syndrome,1 I beg permission to discuss certain aspects of the work of Yuki et al on Guillain-Barré syndrome and Bickerstaff’s brainstem encephalitides, an example of which was published in this Journal.2 Twenty three years ago, I perused the literature in search of a diagnosis for a child with acute polyneuropathy in Iran. Eyewitness to a few certain guide posts in the neurological heavens (Babinski’s response, internuclear opthalmoplegia, spasticity) I sailed the lore diligently, arriving at two inescapable conclusions: (a) that my patient with a midbrain lesion demonstrated by CT was an instance of Miller Fisher syndrome, hitherto a variant of Guillain-Barré syndrome; (b) that Bickerstaff’s brainstem encephalitis and Miller Fisher syndrome are one and the same entity. With that perusal behind me, I thought it entirely sufficient to include Bickerstaff’s work in my references and ended the article by the following statement: It is evident that our findings confirmed, raises questions regarding pathophysiology of Landry-Guillain-Barré syndrome, of which Fisher syndrome is a limited form. That pivotal work in my references and ended the article in 1956, Fisher’s “certain reluctance to upset well established ideas concerning the disease (Guillain-Barré syndrome)” and removed the stigma of “oddy” and “aberration” from the syndrome described by the two luminaries, Miller Fisher and Bickerstaff, who did not know of each other’s contributions; nor could they have known of the fact that they were describing the same clinical entity. And for two good reasons—that is, sharing the above mentioned reluctance to upset the well established ideas as pertained to Fisher-Barré syndrome (as admitted by Fisher himself) and preceding the wonderful age of computerised neuroimaging by a quarter of a century. It was left to the blindness of observation in a 7 year old Persian girl, and its aftermath, for the facts to be gleaned—as depicted here.

As the author of the first ever report documenting central nervous system involvement in Miller Fisher syndrome,1 I beg permission to discuss certain aspects of the work of Yuki et al on Guillain-Barré syndrome and Bickerstaff’s brainstem encephalitides, an example of which was published in this Journal.2 Twenty three years ago, I perused the literature in search of a diagnosis for a child with acute polyneuropathy in Iran. Eyewitness to a few certain guide posts in the neurological heavens (Babinski’s response, internuclear opthalmoplegia, spasticity) I sailed the lore diligently, arriving at two inescapable conclusions: (a) that my patient with a midbrain lesion demonstrated by CT was an instance of Miller Fisher syndrome, hitherto a variant of Guillain-Barré syndrome; (b) that Bickerstaff’s brainstem encephalitis and Miller Fisher syndrome are one and the same entity. With that perusal behind me, I thought it entirely sufficient to include Bickerstaff’s work in my references and ended the article by the following statement: It is evident that our findings confirmed, raises questions regarding pathophysiology of Landry-Guillain-Barré syndrome, of which Fisher syndrome is a limited form. That pivotal work in my references and ended the article in 1956, Fisher’s “certain reluctance to upset well established ideas concerning the disease (Guillain-Barré syndrome)” and removed the stigma of “oddy” and “aberration” from the syndrome described by the two luminaries, Miller Fisher and Bickerstaff, who did not know of each other’s contributions; nor could they have known of the fact that they were describing the same clinical entity. And for two good reasons—that is, sharing the above mentioned reluctance to upset the well established ideas as pertained to Fisher-Barré syndrome (as admitted by Fisher himself) and preceding the wonderful age of computerised neuroimaging by a quarter of a century. It was left to the blindness of observation in a 7 year old Persian girl, and its aftermath, for the facts to be gleaned—as depicted here.

The role of MRI in the ensuing events which sometimes resembled an epomymous war deserves a comment. Whereas Ropper and others mistakenly relied on the absence of a lesion in conventional MRI to refute the role of a central nervous system lesion in Miller Fisher syndrome,3 many instances are more cogently explained as follows: (a) the existence of a pathological difference between a signal producing inflammation and mere presence of a lesion in the central nervous system; for example, in a recent report 30% of clinically proved enterovirus 71 related rhombencephalitis had negative conventional MRI; (b) the subject of “normal appearing lesions” remains in fact not normal may one day loom large here as it has in the case of multiple sclerosis.

Thus our novel observation of 1979 alleviated Fisher’s “certain reluctance to upset well established ideas concerning the disease (Guillain-Barré syndrome)” and removed the stigma of “oddy” and “aberration” from the syndrome described by the two luminaries, Miller Fisher and Bickerstaff, who did not know of each other’s contributions; nor could they have known of the fact that they were describing the same clinical entity. And for two good reasons—that is, sharing the above mentioned reluctance to upset the well established ideas as pertained to Fisher-Barré syndrome (as admitted by Fisher himself) and preceding the wonderful age of computerised neuroimaging by a quarter of a century. It was left to the blindness of observation in a 7 year old Persian girl, and its aftermath, for the facts to be gleaned—as depicted here.

IDERAKHSHAN
415 Morris Street, Suite 401, Charleston, West Virginia 25301, USA

Yuki replies:

Deraikhshan wrote “when Yuki et al draw any distinction between Fisher and Bickerstaff syndromes they are displaying a lack of historical perspective and paucity of clinical perspicuity which I am rectifying here, as this is an important area of neurology where the stakes are high and simple logic must be applied”. This blurring of traditional border between certain maladies affecting the peripheral and central nervous system that is the thrust of what has followed our ground breaking observation, including the work of Yuki et al, whatever its eventual immunological import may be.
and Guillain-Barré syndrome had been diagnosed clinically. Effective therapy for Bickerstaff's brainstem encephalitis has yet to be established. As shown, Bickerstaff's brainstem encephalitis and Guillain-Barré syndrome are closely related; therefore, steroids should not be used to treat these disorders. Instead, the established treatments—plasmapheresis and intravenous immunoglobulins (IVIg)—should be used. We provide theoretical evidence that the removal of anti-GQ1b antibodies is reasonable and beneficial. Some patients with Bickerstaff's brainstem encephalitis respond favourably to plasmapheresis and IVIg. We recommend that no steroids, rather IVIg (or plasmapheresis), be used to treat Bickerstaff's brainstem encephalitis. Controlled clinical trials are needed to establish the efficacy of these procedures as therapy for this disease.

NOBUHIRO YUKI
Department of Neurology, Dokkyo University School of Medicine, Koshigaya-shi, Saitama, Japan

Correspondence to: Dr N Yuki
yuki@dokkyoumed.ac.jp

Intravenous immunoglobulin causing reversible posterior leukoencephalopathy syndrome?

Turner and Wills describe a patient with the Miller Fisher syndrome treated with intravenous immunoglobulin (IVIg), who developed transient confusion and reversible blindness. The authors state that the bilateral occipital lobe changes seen on brain MRI were secondary to cerebral infarction. They postulate that this may have occurred as a result of hyperviscosity, although at the time of the event the plasma viscosity was only marginally raised at 1.85 cp (normal range 1.5–1.72 cp). The images seem to show relative sparing of the cortex, which would be rather unusual if the cause was indeed an arterial infarct as would be expected if the mechanism was hyperviscosity induced thromboembolism. The authors do not specifically mention that they excluded a cerebral venous sinus thrombosis with appropriate imaging. The pattern and clinical history would be slightly unusual, this is a possibility that needs to be considered. We suspect, however, that this patient actually experienced the reversible posterior leukoencephalopathy syndrome (rPLES). This is a syndrome of reversible symptoms comprising any of altered mental function; headaches; visual loss; seizures; and weakness which has been described with many underlying conditions and has previously been reported with IVIg use. The patient reported on has many of the clinical and radiological features of rPLES, in particular the MRI changes are predominantly subcortical and the vision recovered well. A repeat MRI in this case would be useful and should show resolution of the abnormalities seen on T2 weighted imaging with or without any corresponding T1 weighted abnormality, showing that the brain had been oedematous rather than infarcted. Reversible posterior leukoencephalopathy is an important syndromic diagnosis to make as it obviates the need for extensive stroke investigations and although the pattern and related observations on a grave syndrome with benign prognosis.

MARK LEWIS
PAUL MADDISON
Department of Neurology, Leeds General Infirmary, Great George Street, Leeds LS1 1EX, UK

Correspondence to: Dr M B Lewis
m-l-lewis@email.msn.com

Charles Bonnet syndrome: an example of cortical dissociation syndrome affecting vision?

Although Cole's article was published some time ago, it was brought to our attention only recently during the weekly journal review by one of our senior house officers. Myself and my other neurological colleagues are left with little doubt that the symptoms of visual hallucinations experienced by Cole is due to the Charles Bonnet syndrome (CBS). This syndrome comprises the triad of visual hallucinations, visual sensory deprivation, and preserved cognitive status. The visual hallucinations in CBS may persist on eye closure (unlike the visual hallucinations of hemianopia) and are often complex, vivid, and elaborate consisting of moving and colourful images. In epidemiological studies, two common factors for CBS were visual...
sensory deprivation typically affecting the anterior visual pathway (due to cataract or senile macular degeneration) and advanced age (older than 60 years). As the hallucinatory symptoms in CBS occur with preserved insight, these are not true but pseudohallucinations.

The syndrome occurs as a result of the disassociation between visual perception and visual sensory input in psychologically normal people. Functional magnetic resonance imaging (fMRI) has shown that the hallucinations of colour, faces, textures, and objects in CBS correlate with the cerebral activity in the ventral extrastriate visual cortex whereas the contents of the hallucinations reflect the functional specialisation of this region. In our experience, carbamazepine has been partially effective in suppressing the visual pseudohallucinations of CBS, presumably because it might reflect the nature of neural plasticity in the visual cortex as opposed to the cortical dissociation syndromes well known to the cortical dissociation syndromes well known.

In Cole’s case, the occipital infarct in the left hemisphere led to the disassociation between the visual sensory input (now limited to the right striate cortex) and the visual perception sense of the dominant extrastriate and the visual association cortex spared by the ischaemic event. Collicular vision (“blindsight”) plays no part in the symptoms of visual hallucination. In the light of the recent fMRI data, CBS may be considered as a visual dissociation syndrome similar to the cortical dissociation syndromes well recognised in the Geschwind model of language function. Cole gives one of the finest clinical examples to illustrate this phenomenon. Whether CBS should occur with visual sensory deprivation exclusively in elderly people and not in young people is unknown but it might reflect the nature of neural plasticity in the visual cortex as opposed to the cortical dissociation syndromes well known.

We were, however, a little surprised that CBS did not feature even once in the otherwise erudite discussion of the case report. Was it Cole’s and the reviewers of the Journal not consider this common diagnostic possibility?

Corticobasal ganglionic degeneration and/or frontotemporal dementia?

I read with interest the recent paper by Mathuranath et al describing two patients with the pathology of corticobasal ganglionic degeneration (CBD), the first presenting with the syndrome of frontotemporal dementia and the second with a mixed picture dominated by progressive aphasia. The concept that CBD may present with clinical features distinct from the “perceptuomotor” syndrome widely recognised as “classic” of the disorder is not new. However, until recently it had generally been thought that these cases represented the minority and thus could be considered “atypical”. However, knowledge about this disorder has evolved since our group and others reported the first large series. I think that in 2000 it is not appropriate to quote our 1994 book chapter stating that “Fractank dementia or language dysfunctions are said to be rare and, if present, are mild, and typically occur late in the course of the disease”, as current wisdom. Within 2 years of the book chapter, ourselves and others were reporting alternative presentations for this pathology and most recently we have published the clinical-pathological correlation in the Canadian Brain Tissue Bank in a paper that was presumably in press at the time that the paper of Mathuranath et al was being reviewed.

In this study we found that of 13 patients studied pathologically to have corticobasal degeneration (CBD), 4 were presented with cognitive or language disturbances, only one failed to show dementia during the course of the illness and only four were diagnosed as having CBD in life. Since that time, a 14th patient has come to necropsy whose clinical presentation was that of primary progressive aphasia. There have also been patients reported in the literature by ourselves and others with alternative manifestations of the disorder presenting with clinical features that were mistaken for the “classic” (but now it seems not the commonest) phenotype of CBD including progressive supranuclear palsy, Pick’s disease, corticobasal inclusion body dementia, Alzheimer’s disease, and familial frontotemporal dementia due to chromosome 17 mutations.

In summary, the clinical and pathological experience at the turn of the century strongly supports the conclusions of Mathuranath et al. Clinical phenotypes have not proved to be restricted to specific pathological substrata and several clinical syndromes may be caused by the same underlying pathology, probably largely dependent on the anatomical distribution of greatest involvement. Where I mainly take issue with the authors is in their belief in the distinction which largely justifies their report, that a clear distinction between CBD and FTD is “currently accepted”. The cumulative literature since our 1994 review, most recently culminated in a monograph on a topic, indicates that CBD is no longer thought of as predominantly extrapyramidal disorder that is distinct and unrelated to frontotemporal dementia.

Diagnostic criteria for corticobasal degeneration

The study of Mathuranath et al of corticobasal ganglionic degeneration (CBD) and overlap with frontotemporal degeneration (FTD) contributes interesting information to a controversial area of neurodegeneration. Unfortunately it also introduces a potentially confusing histopathological diagnostic error. The authors found oligodendroglial lesions which they considered to be glial cytoplasmic inclusions and claimed that these, diagnostic hallmark of multiple system atrophy, “have been described in other neurodegenerative diseases, including CBD”. This is clearly not the case.

To support their view the authors refer to two papers reporting, among other corticobasal ganglionic abnormalities, tau positive inclusions in oligodendroglial cells. A letter, published earlier in this journal, has also quoted in the current paper, has also claimed that TDP-43 cytoplasmic inclusions are not exclusive to multiple system atrophy. The evidence is now overwhelming that they are. What the authors of this paper have described are indeed tau positive oligodendroglial inclusions, but they are not the same as glial cytoplasmic inclusions. Oligodendroglial inclusions, chiefly coiled bodies, undoubtedly occur in various neurodegenerative diseases, including CBD, but their morphology and molecular pathology are different from those of glial cytoplasmic inclusions. Whereas glial cytoplasmic inclusions immunostain with glial fibrillary acidic protein only with unphosphorylated tau antibodies, the oligodendroglial inclusions seen in CBD and other neurodegenerative diseases are γ-synuclein negative and give positive reaction only with both phosphorylated and unphosphorylated tau antibodies. This basic difference has been recognised by a new classification of neurodegenerative disorders: CBD is one of the tauopathies, whereas multiple system atrophy is an α-synucleinopathy. Thus glial cytoplasmic inclusions remain the most consistent and reliable diagnostic hallmark of multiple system atrophy and do not occur in other neurodegenerative disorders.

www.jnnp.com

4 Daniel SE, Geddes JF, Revesz T. Glial cytoplasmic inclusions are not exclusive to multiple system atrophy. J Neurol Neurosurg Psychiatry 1995;58:262.

inclusions in subcortical oligodendrocytes. Giall inclusions were initially described in multiple system atrophy by Papp et al in 1989; their paper brought giall cellular pathology in neurodegenerative disease to the attention of neuropathologists. Cytoplasmic inclusions in giall cells have since been reported in various neurodegenerative diseases. The label “giall cytoplasmic inclusions” and the initials “GCLs” used in the giall literature cannot, therefore, properly be regarded as pathognomonic of any single disease entity. Indeed, a neuroscientist without neuropathological training could conceivably misdiagnose tissue as coming from a case of multiple system atrophy if that tissue contained gialdoloidgial cytoplasmic inclusions (in silver preparations or ubiquitin immunohistochemistry). Our paper does not, we would argue, contain a “histopathological diagnostic error” as suggested by Lantos.

On the other hand, Lantos’ criticism that we made no mention of recent discoveries of α-synuclein involvement in the biology of MSA is justified. In the discussion, we should have pointed out the fact that glial cytoplasmic inclusions in multiple systems atrophy, and so far only in multiple systems atrophy, are indeed α-synuclein-positive and phospho-rlated tau negative, whereas the opposite is true for cytoplasmic inclusions in multiple systems atrophy identified in some other diseases. The label “glial cytoplasmic inclusions in multiple systems atrophy, and so far only in multiple systems atrophy, are indeed α-synuclein-positive and phosphorylated tau negative, whereas the opposite is true for cytoplasmic inclusions in multiple systems atrophy identified in some other diseases.”

MSA is justified. In the discussion, we should emphasise the fact that glial cytoplasmic inclusions identified in some other diseases. The label “glial cytoplasmic inclusions in multiple systems atrophy, and so far only in multiple systems atrophy, are indeed α-synuclein-positive and phosphorylated tau negative, whereas the opposite is true for cytoplasmic inclusions in multiple systems atrophy identified in some other diseases.”

In the discussion, we should emphasise the fact that glial cytoplasmic inclusions identified in some other diseases. The label “glial cytoplasmic inclusions in multiple systems atrophy, and so far only in multiple systems atrophy, are indeed α-synuclein-positive and phosphorylated tau negative, whereas the opposite is true for cytoplasmic inclusions in multiple systems atrophy identified in some other diseases.”

in Menière’s disease. The neurologists of Leeds should know how lucky they are to have one. The neurologists of Leeds should know how lucky they are to have one. The neurologists of Leeds should know how lucky they are to have one.

The committee on Hearing and Equilibrium of the American Academy of Otolaryngology-Head and Neck Surgery have set out guidelines for the diagnosis and evaluation of therapy in Menière’s disease.

Audiovestibular testing can be useful in Menière’s disease. Caloric testing has poor sensitivity and specificity in diagnosing the disease. Electrocochleography and glyceral dehydration testing can be useful in the earlier stages of the disease, because the hearing function is irreversibly and severely lost. In Menière’s disease, the most common findings on electrocochleography are an increased summating potential to action potential ratio, a widened summing potential to action potential complex, and a disturbed cochlear microphonic potential. For medical treatment, dietary advice with strict sodium restriction is useful. However, betahistine probably helps more patients with Menière’s disease than any other drugs. Labyrinthine sedatives are also helpful in patients who have severe attacks of vertigo. Surgical treatment of Menière’s disease treats only the vertigo. The method of operations have been described, from grommet insertion to vestibular nerve section, all of which have had a similar degree of success. These are particularly difficult to compare due to the huge variations in the natural history of the disease.

Assessment and treatment of patients with balance disturbance covers many specialties, who all approach the problem from slightly different angles with different perspectives. It is important to liaise closely with colleagues in associated specialties to optimise the diagnosis and treatment of these patients.

A P COATESWORTH
Department of Otorhinolaryngology, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK

Halmagyi and Cremer reply: One cannot help but feel a certain sense of nostalgia reading Coatesworth’s textbook description of Menière’s disease: if only the real world was like that. We deal with his case presentations in order. Menière’s disease is a diagnosis of exclusion—it is difficult to conceive what needs to be excluded in a patient who has repeated devas-tating attacks of acute spontaneous vertigo lasting several hours as well as unilateral tinnitus, aural fullness, and fluctuating hearing loss. When the audiogram shows a unilateral low frequency sensorineural hearing loss, the caloric test shows a canal paresis and the electrocochleogram shows a pathologically large summing potential to action potential ratio in the patient’s affected ear. Menière’s disease is a clinical diagnosis supported by laboratory testing. It is no more a diagnosis of exclusion than is multiple sclerosis.

The vestibular schwannoma story—This is a difficult one. Maybe the answer is that someone else is paying, and the lawyers are watching anyone with any unilateral balance or hearing problem should have a gadolinium enhanced MRI in case they are harbouring what might eventually become a symptomatic intracranial vestibular schwannoma (“acoustic neuroma”). If the hearing loss actually does have one, then the problem becomes not so much the dizziness but what to do about the “tumour”. Vestibular schwannomas can, very rarely, present with one, at the most two attacks of acute spontaneous vertigo, and they can, rarely, present as sudden hearing loss. We have seen over 2500 new patients each year in our balance disorders clinic and in the past 15 years we have seen three patients with acute spontaneous vertigo who had small vestibular schwannomas.

Caloric testing has poor sensitivity and specificity in diagnosing Menière’s disease—in part it depends who does it. Technical standards for caloric testing are in general not as rigorously enforced as those for audiometric testing. Some factors that can have a profound influence on the quality of the results include: (a) method of recording—DC electrocochleography versus infrared and video methods; (b) method of removing the forehead pressure versus darkness; (c) method or irrigation—water versus air. Caloric testing (or “ENG”) is no more specific for any disease than is EMG. It shows the site of lesion not the nature of the lesion. When one is confident in the technical standards of the caloric testing the most helpful finding in the diagnosis of Menière’s disease is a fluctuating unilateral vestibular loss—the vestibular equivalent of the classic fluctuating hearing loss.

Electrocochleography (ECOG)—Again, it depends on who does it. An EECG with extratympanic recording of the responses to clicks alone is generally useless or worse, misleading. A trans tympanic recording of the responses to tone bursts can disclose, unequivocally, the presence of endolymphatic hydrops, the pathophysiological basis of Menière’s disease. The test is, as Coatesworth notes, “one of the most useful in the early stages before a severe fixed hearing loss due to loss of hair cells.

Surgery for Menière’s disease—Vestibular nerve section stops the vertigo attacks without worsening the hearing loss. It cause chronic vestibular insufficiency. Intra tympanic gentamicin is a lot simpler and safer and might be just as good at stopping the vertigo but can worsen the hearing. Endolymphatic sac surgery? The controversy still rages. We certainly agree on the need for cooperation between specialties in the management of patients with dizziness. Neurologists need to work with neurotologists, otolaryngologists, and oto-rhino-laryngologists who have expertise in interest in otology. The neurologists of Leeds should know how lucky they are to have one.

3 Committee on Hearing and Equilibrium. Menière’s disease. The neurologists of Leeds should know how lucky they are to have one.
BOOK REVIEWS

The chapters on surgical pathology would have benefited from having standard subheadings which would have simplified access to specific information such as that relating to outcome data. The chapter by Jennetta and Resnick on microneurosurgical decompression in the chapter on the microsurgical management of trigeminal neurolgia demonstrates what might have been achieved in the other chapters where such quality photographs were absent. The management algorithms at the end of each chapter of surgical pathology provide a useful adjunct although I note no mention of stereotactic radiosurgery was made in relation to the treatment of trigeminal neurolgia.

Much work and no little suffering has characterised the evolution of the surgical approaches to the skull base. There can be no doubt that on occasion these formidable surgical procedures may have led to the authors state “unnecessary significant morbidity.” It is the responsibility of the consultant surgeon to embrace advances which might in the future make our surgical approaches redundant. It is to be hoped that over the next 10-20 years results of carefully undertaken studies comparing outcome and morbidity between surgery and adjuvant therapies will allow us to make definitive decisions as to how best manage patients with skull base tumours. It is to be hoped that future medical text (either as a paper text or CD Rom) will reflect these results.

The last chapter is about primary bone disease of the skull base. It is not clear why it is included in a surgical pathology text but perhaps this is the trainee clinical neurophysiologist. Some references do not make an appearance at all. I would certainly recommend this book to those in training with an interest in skull base surgery and to those already established who wish to have a definitive textbook to delve into occasionally.

NIGEL MENDOZA

This is a well constructed video with plenty of examples of EMG phenomena of interest to the trainee clinical neurophysiologist. Some common and unusual examples are included which provide an opportunity to recognise them, particularly when they can sometimes be difficult to capture and demonstrate in the clinic.

There are only a few minor areas of concern. It would be helpful to know some of the clinical background behind the various cases presented, which would probably help in the understanding and interpretation of the various abnormalities. On occasion, the EMG pictures seem to be slightly out of focus and future availability in a digital format might be more convenient. The accompanying booklet is the essential component of the authors’ textbook, reviewed in an earlier edition of this Journal, and is required reading throughout the video. An auditory commentary has been easier to follow. For future editions, a quiz type session at the end of the video might also be a useful training exercise.

Despite these reservations, this is a good training video and I recommend it.

SIMON BONIFACE

This book by Bill Freed summarises the field of neural transplantation and as might be expected from this author the approach is somewhat different. Bill Freed was one of the original scientists involved with the early pioneering work on neural transplants especially in the experimental exploration of adrenal medullary transplants in Parkinson’s disease. He is not to be confused with the controversial neurosurgeon Curt Freed, the principal investigator of the recent double blinded embryonic nigral grafts trial in Parkinson’s disease. This book is written by one who saw the world develop out of the time line discussed in the original book. The attempt to think that the ultimate goal of neural transplantation is brain replacement rather than cell replacement is an exercise.

The book begins with a preface that sets the tone of the rest of the book, concluding with a rather odd quotation from The playboy of the Western world. I recommend it.

www.jnnp.com
diversion, but is deeply irritating in parts and creates a sense of confusion as to where Bill Freed thinks the field is going—a situation at variance with those actively involved in the field.

ROGER BARKER

This large single volume textbook has almost 30 contributors. Many chapters are written by more than one person, but one of the editors has personally contributed almost a third of the text, including the first 11 chapters on “physical principles”: computed tomography (60 pages) and magnetic resonance imaging (350 pages). The remainder of the book is divided into four sections. “Clinical principles: normal anatomy and variants” consists of one chapter on “normal variations of the skull and its contents”, with 95 figures, but not a single skull radiograph or any reference to anomalies of the cerebral vasculature. There are 15 on “brain and skull”, rather heavily weighted towards children, which is perhaps not surprising given that the first editor is one of America’s foremost paediatric neuroradiologists. The five chapters making up the “orbits, parasellar sinuses, and skull base” are distinctly disappointing, at least two probably best skipped over. The second of the seven chapters on “spine” is a rather superficial review of myelography, which to a European also seems anachronistic (although I am assured that many myelograms are still carried out in the United States for medico-legal reasons, which seems perverse!). The author claims that “in older patients, who generally have considerable cervical spondylosis and thoracic kyphosis, the C1–2 injection technique is preferred”. Leaving aside the agist slur on elderly Americans, many experienced neuroradiologists would firmly reject this.

Curiously, there are no corresponding chapters on sonography or cerebral or spinal angiography, although chapter 23, “Interventional neuroradiology”, is written so as to suggest that the authors thought the latter topics would be covered elsewhere. Bizarrily, however, the chapter on “haemorrhage” in the principles of MRI section, offers “tips” on angiographic diagnosis of intracranial haemorrhage! Chapter division is rather idiosyncratic throughout, so that, for example, inflammatory disease of the spinal cord is dealt with under “brain and skull”, whereas inflammatory spinal column disease is dealt with under “orbits, paranasal sinuses, and skull base”. This may be fine, but it seems to suggest that the authors thought the topics would be covered elsewhere.

Although most of the chapters are of high calibre, those addressing mechanisms of secondary mitochondrial failure, molecular signals for glial activation, gene expression, and recovery from cerebral ischaemia and modelling of the ischaemic penumbra I found particularly informative. PJ KIRKPATRICK

The editors of this short book have drawn together the Proceedings of the 6th International Symposium on Mechanisms of Secondary Brain Injury: Current Novel Developments, which was held in Moals/Sterzing, Italy in February 1998. It takes the form of a supplement for Acta Neurochirurgica, which traditionally contributed significantly to the subject.

Proceedings covered are variable, written by multiple authors from different nations. They address both the experimental and clinical aspects of brain injury in ischaemia, touching on modern concepts. They are organised under the headings of molecular and cellular mechanisms, cerebral ischaemia, and remaining problems in severe head injury. Each chapter provides comprehensive up to date references.

Although critical issues are touched on, the general theme of the book is promoting novel ideas in experimental brain ischaemia and their potential extrapolation into the clinical field. As such, it is of great interest to those involved in the experimentation of cerebral trauma and ischaemia, and to those clinicians with a very high subspeciality interest in this arena. Although most of the chapters are of high calibre, those addressing mechanisms of secondary mitochondrial failure, molecular signals for glial activation, gene expression, and recovery from cerebral ischaemia and modelling of the ischaemic penumbra I found particularly informative.

PETER RICHARDS

People with multiple sclerosis feel deprived of information about their condition, and the knowledge which is most acute just after formal diagnosis and early in the course of the disease. This new edition of the American question and answer book is published within weeks of a similar, but shorter, publication from Robinson et al in the United Kingdom.

The book, edited by a clinical psychologist, contains chapters written by specialists, including neurologists, physiotherapists and occupational therapists, speech pathologists, psychologists, nursing, financial advisors, employment experts, and lawyers, some of whom are themselves people with multiple sclerosis. It uses team work to formulate and answer hundreds of potential questions, some of which are answered. It is in an information oriented society in which it is often hard to know which information to trust it promises to be trustworthy, factual and honest.

The problem with such texts is that the individual questions never seem precisely correct for the individual patient and, despite the chapter headings, it is difficult to find any specific question; questions on treatment, for example, appear in the chapters on neurology, treatment, physical therapy, and...
and sexuality. None the less, it provides reasonable, comprehensive, and factual answers and does not show the bias of many current internet information services. It is North American in style and content and the useful appendix on resources has little relevance outside the continental United States. It provides information for people with multiple sclerosis and would be useful in a multiple sclerosis resource centre in the United Kingdom provided that the people with multiple sclerosis who use it remember the advice from Dr Schapiro in the forward that “it is no substitute for talking with your health professional”.

DAVID BATES

The role of sex steroids in neurological disease is a topic of importance in our aging population and very worthy of discussion. This book is set out in chapters focusing on different individual subspecialties, including dementia, vascular disease, and epilepsy, with an initial backdrop of basic science followed by a discussion of clinical studies and observations. The chapters are concise and well illustrated with pathological material, photographs, and bright flow diagrams. They provide an informative introduction to the field, but lack depth of discussion in clinical applications.

Study findings are often summarised in histogram format, but lack confidence intervals, thus limiting the visual interpretation of data. Studies summarised in figures and tables are numerically referenced and thus do not instantly draw the reader to named research groups whose material would be of further interest.

As a clinician the discussion of dementia caught my interest and the argument for detailed controlled trials of oestrogen in Alzheimer’s disease seemed most compelling, perhaps reflecting the author’s clear interest in this field.

Overall, this is a relatively light read which serves as an excellent introduction to the field, easily accessible to medical students and junior neuroscientists. I think that it would be a worthy addition to the university library, but the text lacks sufficient meatiness to inspire purchase by the individual neurologist.

KIRSTY HARKNESS

There exists a wide discrepancy between the excitement of recent advances in the pathophysiology of headache, including the neurovascular hypothesis of migraine, serotonergic receptor pharmacology, and knowledge of the involvement of brainstem structures in head pain, and the often low level of enthusiasm for headache management in the United Kingdom. In this volume Mongini presents a personal view of headache and facial pain aetiology and management which complements other researchers in the field.

The first section concentrates on the importance of facial, cervical, and masticatory muscles in the aetiology of headache with some excellent anatomical illustrations. Reference is also made to serotonergic mechanisms in migraine but this could have been expanded to include a more current view of the neurovascular hypothesis of migraine and also a discussion of calcium channelopathies in the pathogenesis of migraine.

The second clinical section describes in detail the examination of the muscles of mastication including palpation of trigger points and recognition of bite abnormalities. This section would have benefited from more discussion of the features of secondary headaches, altered intracranial pressure syndromes, the importance of vascular risk factors in migraine assessment, and unusual variants of migraine such as familial hemiplegic migraine. Mongini includes many clear photographs of patients with abnormalities of masticatory muscles and tension related symptoms to illustrate his points.

The chapters on management of headache are based around case discussions, with an emphasis on physical therapy for the cervical and masticatory muscles and on treatment of comorbidity of depression as being paramount to successful therapy. Whereas the recognition of concurrent depression cannot be over emphasised in its importance it would have been useful to include a comments on the stepwise approach to migraine therapy and a guide to the use of triptans. Perhaps the most obvious omission in this section is a discussion of chronic daily headaches with analgesic misuse, probably the most common problem seen in headache clinics.

This book should be used as an adjunct to other headache texts on the market to give the reader an insight into a management strategy for those patients with challenging and unusual headache problems.

N J GIFFIN
The rostrocaudal gradient for somatosensory perception in the human postcentral gyrus

K TAKEDA, K TAKEDA, Y SHOZAWA, M SONOO, T SHIMIZU and T KAMINAGA

J Neurol Neurosurg Psychiatry 2000 69: 692-693
doi: 10.1136/jnnp.69.5.692

Updated information and services can be found at:
http://jnnp.bmj.com/content/69/5/692

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://jnnp.bmj.com/content/69/5/692#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/