SHORT REPORT

Symptomatic unruptured capillary telangiectasia of the brain stem: report of three cases and review of the literature

C Scaglione, F Salvi, P Riguzzi, M Vergelli, C A Tassinari, M Mascalchi

Abstract

Three young patients with transient or intermittent focal neurological signs suggesting brain stem involvement are described, in whom high field MRI showed focal areas of hyperintensity in T2 weighted spin echo images, hypointensity in T2* weighted gradient echo images, and enhancement in postcontrast T1 weighted images consistent with unruptured capillary telangiectasia of the brain stem. The first patient was a 28 year old woman who complained of recurrent left ear tinnitus, exacerbated during the menstrual period; MRI demonstrated that the vascular anomaly involved the left acoustic pathway. The second patient was a 30 year old woman who had three episodes of paroxysmal left lip movement 4 weeks after child delivery; MRI showed capillary telangiectasia in the right corticospinal tract and medial longitudinal fasciculus.

Awareness of the MRI features of capillary telangiectasia may help in defining the real incidence, clinical correlation, and the risk of haemorrhagic complications of these vascular malformations.

Keywords: telangiectasia; vascular anomalies; brain stem; magnetic resonance imaging

Capillary telangiectasia consist of irregular clusters of dilated capillaries intermixed with normal brain parenchyma and are most often located in the pons. Based on their relatively common incidental discovery at necropsy in people without overt neurological manifestations, brain stem capillary telangiectasia were traditionally considered benign asymptomatic vascular anomalies. Due to the extremely slow flow, their demonstration in vivo is not possible with arteriography, but can be obtained with MRI. We report on three patients with symptomatic brain stem capillary telangiectasia unrelated to vascular rupture.

Case reports

CASE 1

A 28 year old woman presented with a left ear tinnitus which awoke her one night. The tinnitus, which she described as a roaring of a van, recurred during the next months with catamnial exacerbation. Neurological examination showed a mild weakness of the right arm and leg with diffusely increased deep tendon reflexes. Her hearing was normal. Routine blood laboratory tests, search for anti-DNA, anti-ANA, and anti-ENA antibodies, and results of coagulation studies were unremarkable. Somatosensory evoked potentials showed prolonged latencies and reduced amplitude of N20 and P39 waves on the right side. Brain stem auditory evoked potentials showed prolonged interwave I-V latency on the left. Brain MRI at 0.5 T showed an oval shaped mottled hyperintensity in proton density and T2 weighted images in the left paramedian region at the pontomesencephalic junction (fig 1). No other brain abnormalities were seen. The area of signal change enhanced after intravenous contrast administration (fig 1). She was examined 2 weeks later on a 1.5 T system using a gradient echo T2* which showed hypointensity in the brain stem lesion (fig 1). Tinnitus and neurological and MRI findings were unchanged 5 years later.

CASE 2

A 30 year old woman without relevant history complained of paroxysmal left lip movements, which suddenly appeared 4 weeks after the delivery of her first child. The involuntary movements spontaneously subsided 5 hours later but recurred twice in the next week. Neurological examination and EEG were normal. Routine blood laboratory tests, search for anti-DNA, anti-ANA, and anti-ENA antibodies, and results of coagulation studies were unremarkable. Motor, somatosensory, and brain stem auditory evoked potentials were normal. MRI at 1.5 Tesla showed a focal mottled area of hyperintensity in T2 weighted spin echo images consistent with unruptured capillary telangiectasia. The MRI at 1.5 Tesla showed a focal mottled area of hyperintensity in T2 weighted spin echo images consistent with unruptured capillary telangiectasia. The MRI at 1.5 Tesla showed a focal mottled area of hyperintensity in T2 weighted spin echo images consistent with unruptured capillary telangiectasia.
images in the lower right side of the pons which enhanced after intravenous contrast administration. No other brain abnormalities were found. Six months later symptoms had not recurred, neurological examination was negative, and MRI findings were unchanged; gradient echo T2* weighted sequence at 1.5 T showed hypointensity of the pontine lesion.

CASE 3

A 36 year old man presented with right Bell’s palsy. Neurological examination showed complete right facial palsy. Routine blood and CSF laboratory analysis were unremarkable. He was treated with prednisone and the facial nerve palsy almost recovered in a few days. Cranial MRI at 0.5 T showed two small dots hyperintense in proton density weighted images which enhanced after intravenous contrast administration in the left paramedian central portion of the basis pontis. No other brain abnormalities were found. Brain MRI at 1.5 T 1 month later showed hypointensity of the dots in gradient echo T2* weighted sequences.

Discussion

Capillary telangiectasia have characteristic MRI features which enable their in vivo detection and differentiation from other brain stem diseases including multiple sclerosis, infarction, and neoplasm. These features reflect the extremely slow flow in the vessels and the normality of the intermixed brain parenchyma. Accordingly, the vessels appear as isointense or hypointense areas compared with the normal brain parenchyma in T1 weighted unenhanced spin echo images and as isointense or hyperintense areas in proton density and T2 weighted spin echo and fast spin echo images. Above all, they exhibit hypointensity in T2* weighted gradient echo images, especially if obtained on high field (≥1.0 T) MRI systems. This appearance reflects the higher sensitivity of gradient echo sequences to the high deoxyhaemoglobin content of the stagnant blood in the abnormal vessels, which determines a shortening of T2 relaxation time of blood and a decrease in signal. Typically, the vessels enhance after contrast administration creating a mesh of enhanced structures on a...
Table 1 Patients presenting with symptoms due to unruptured capillary telangiectasia of the brain stem

<table>
<thead>
<tr>
<th>Patient (ref)</th>
<th>Age (y)</th>
<th>Clinical presentation</th>
<th>Neuroradiological examination</th>
<th>Location of the lesion</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>Right hearing loss, headache, vertigo</td>
<td>MRI</td>
<td>Right midpons</td>
<td>Unchanged 6 months</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>Intermittent ataxia</td>
<td>MRI</td>
<td>Right rostral pons</td>
<td>Unchanged 3 months</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>Vertigo, tinnitus</td>
<td>MRI</td>
<td>Left rostral pons</td>
<td>Unchanged 3 months</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>Hearing loss</td>
<td>MRI</td>
<td>Left midpons</td>
<td>Unchanged 2 weeks</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>Recurrent vertigo, unsteadiness</td>
<td>MRI</td>
<td>Right midpons</td>
<td>Unchanged 6 months</td>
</tr>
<tr>
<td>6</td>
<td>77</td>
<td>Left tinnitus</td>
<td>MRI</td>
<td>Left parasagittal part of pons</td>
<td>Unchanged 4 years 9 months</td>
</tr>
<tr>
<td>7</td>
<td>61</td>
<td>Diplopia, right ptosis</td>
<td>MRI</td>
<td>Left parasagittal part of pons</td>
<td>Unchanged 2 years 1 month</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>Paraesthesia in all four limbs, numb tongue</td>
<td>MRI</td>
<td>Left parasagittal part of pons</td>
<td>Unchanged 3 years 9 months</td>
</tr>
<tr>
<td>9</td>
<td>67</td>
<td>Left sided weakness, hyperreflexia</td>
<td>MRI</td>
<td>Right side of the pons, dorsal left side of pons</td>
<td>10 months</td>
</tr>
<tr>
<td>10</td>
<td>31</td>
<td>Dizziness, vertigo, nausea, vomiting, right sided facial weakness</td>
<td>MRI</td>
<td>Left middle part of pons</td>
<td>Normal 8 months</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>Dizziness, dysequilibrium</td>
<td>MRI</td>
<td>Left middle part of pons</td>
<td>1 year 2 months</td>
</tr>
<tr>
<td>12</td>
<td>71</td>
<td>Diplopia and vertigo</td>
<td>MRI</td>
<td>Left middle part of pons</td>
<td>Normal 1 year 2 months</td>
</tr>
<tr>
<td>13</td>
<td>55</td>
<td>Decreased pinprick sensation in all four limbs</td>
<td>MRI</td>
<td>Central pons</td>
<td>Normal 1 year 2 months</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>Diplopia, complete facial palsy of the right side</td>
<td>MRI</td>
<td>Central paramedian pons on the left</td>
<td>Normal 5 years</td>
</tr>
<tr>
<td>15</td>
<td>36</td>
<td>Left lip movements</td>
<td>MRI</td>
<td>Lower paramedian pons on the right</td>
<td>Normal 6 months</td>
</tr>
<tr>
<td>16</td>
<td>58</td>
<td>Right Bell’s palsy and gaze palsy</td>
<td>MRI</td>
<td>Lower midpons</td>
<td>Normal 6 months</td>
</tr>
</tbody>
</table>

NA = not available.

The frequency of brain stem capillary telangiectasia is unknown. In 1968 McCormick et al reported 27 pathologically verified cases of pontine telangiectasia in a series of 164 vascular malformations of the posterior cranial fossa. More recently Barr et al and Lee et al described the clinical and MRI features of 12 and 15 cases of pontine telangiectasia. Over a period of 5 years we found, in addition to the three symptomatic patients reported herein, two more cases of brain stem capillary telangiectasia demonstrated by MRI in which no clinical counterpart was found. One patient was examined for a pituitary amenorrhoea and the other for headache.

In a review of the English literature we found 20 cases of unruptured brain stem capillary telangiectasia presenting with transient or permanent symptoms. In our series the lesion location demonstrated by pathology, CT, or MRI was the involvement of the left corticonuclear tract. The involvement of the right corticonuclear fasciculus might explain the abnormal lip movement in our case 2. In case 3 the involvement of the left corticonuclear tract explains the Bell’s palsy.

In our findings and in previously reported cases, symptoms related to brain stem capillary telangiectasia had a transient or intermittent course resembling transient ischaemic attacks or inflammatory diseases.

The pathophysiology underlying transient or intermittent symptoms in patients with capillary telangiectasia is not established. It is noteworthy that in two of our patients, symptoms developed or were exacerbated during the menstrual period or after pregnancy. Some vascular malformations, such as orbital angioma, present steroid receptors in both muscular and endothelial cells.10 11 We submit that stimulation of steroids receptors expressed by endothelial cells in telangiectasia could be the triggering event of neurological symptoms through a vasomotor or a haemodynamic mechanism.
A difficult problem related to frequency and natural history of brain stem capillary tel-
angiectasia concerns the possibility that these vascular anomalies present dramatically with
vascular rupture without any possibility of documenting the native vascular malformation
that is cancelled out by the haemorrhage. The frequency of haemorrhagic complication of
capillary telangiectasia is unknown. Although instances of intraparenchymal or subarachnoid
haemorrhages due to ruptured capillary telangiectasias are reported in the literature, haemorrhagic complications did not occur, neither in 27 patients of MRI documented
brain stem capillary telangiectasia followed up for a period ranging from 1 month to 4 years,
nor in our patients. Furthermore, none of the 27 cases of pontine capillary telangiectasia
reported by McCormick et al were associated with significant haemorrhage.

Awareness of the MRI features of capillary telangiectasia may help in defining the real
incidence and clinical correlates of this vascular malformation. In addition, longitudinal studies
might help to assess the risk of vascular rupture.

Symptomatic unruptured capillary telangiectasia of the brain stem: report of three cases and review of the literature
C Scaglione, F Salvi, P Riguzzi, M Vergelli, C A Tassinari and M Mascalchi

J Neurol Neurosurg Psychiatry 2001 71: 390-393
doi: 10.1136/jnnp.71.3.390

Updated information and services can be found at: http://jnnp.bmj.com/content/71/3/390

These include:

References
This article cites 14 articles, 5 of which you can access for free at: http://jnnp.bmj.com/content/71/3/390#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Brain stem / cerebellum (670)
- Cranial nerves (529)
- Ear, nose and throat/otolaryngology (208)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/