Late presentation of Nipah virus encephalitis and kinetics of the humoral immune response

S C Wong, M H Ooi, M N L Wong, P H Tio, T Solomon, M J Cardosa

Abstract
Nipah virus is a newly discovered paramyxovirus transmitted directly from pigs to humans. During a large encephalitis outbreak in Malaysia and Singapore in 1998–9, most patients presented acutely. A 12 year old child is described who developed encephalitis 4 months after exposure to the virus. She was diagnosed by a new indirect IgG enzyme linked immunosorbent assay (ELISA), which is also described. The late presentation and IgG subclass responses had similarities to subacute sclerosing panencephalitis. Nipah virus should be considered in patients with encephalitis even months after their possible exposure.

Keywords: Nipah virus; encephalitis; diagnosis

Between September 1998 and June 1999, an outbreak of severe viral encephalitis occurred in peninsular Malaysia and Singapore, caused by the newly discovered Nipah virus. This paramyxovirus, closely related to Hendra virus, caused illness in pigs, and humans in close contact with pigs or their secretions, such as farmers and abattoir workers. During the outbreak, the diagnosis was made by virus isolation from CSF, or by serological tests against Hendra virus, because serological tests for Nipah virus had not yet been developed. Most patients infected with Nipah virus presented with acute encephalitis, but three patients had a neurological relapse up to 39 days after an initial mild illness. We report here a patient who presented with mild Nipah encephalitis 4 months after exposure to the virus; in addition we describe the development of an indirect IgG enzyme linked immunosorbent assay (ELISA) for diagnosing Nipah virus infection, and the IgG subclass responses.

Case report
A 12 year old girl presented to Sibu hospital, Sarawak in April 1999, after her father's death, she returned to Sarawak with her family. In February she had another brief episode of fever and chills which resolved with paracetamol. Her mother and sisters had remained well throughout. As a child the patient had been immunised with BCG, hepatitis B, oral polio vaccine, measles, diphtheria, pertussis, and tetanus. During the encephalitis outbreak she, along with many others, was vaccinated against Japanese encephalitis virus (JEV).

On examination at Sibu hospital, the patient was afebrile, and looked well. General medical examination was normal. She was fully conscious, but during the examination developed a further 4 minute episode of rhythmic jerking of the left leg. This limb was weak (power grade 4/5 in all groups), reflexes were normal, but tone was increased in both the left leg and left arm. She had no sensory loss, although she continued to report paraesthesia of the left leg. Over the next few hours her residual weakness and paraesthesia resolved.

Initial investigations including full blood count, urea, electrolytes, and liver function tests, were normal, except for a slightly low sodium concentration at 132 mmol/l. Examination of CSF showed a pleocytosis with 170 cells/mm³ (100% lymphocytes), a protein concentration of 82 mg/dl, and a glucose concentration of 48 mg/dl. No organisms were seen and bacterial culture was negative. Brain CT was normal.

Over the next 2 days, the patient had an intermittent mild pyrexia, and two brief episodes of generalised tonic-clonic seizures, which resolved without treatment. After loading with intravenous phenytoin (10 mg/kg) she had no further convulsions. Because of the CSF pleocytosis she was treated with penicillin and chloramphenicol, but she made an uneventful recovery and was discharged well, 10 days after admission. At 1 week, 1 month, 6
months, and 1 year follow up she remained well, and was working as a waitress.

VIROLOGICAL INVESTIGATIONS
The patient’s CSF and serum were negative for IgM against JEV and dengue viruses. Serum IgG was strongly positive for JEV at 1:500 dilution, which was consistent with her recent vaccination. Polymerase chain reaction (PCR) of CSF and serum was negative for enteroviruses and adenoviruses. No virus was isolated. RNA extracted from 50 µl CSF was subjected to RT PCR using primers for a portion of the N gene of Nipah virus, but was negative. The patient’s acute and convalescent samples were investigated using an indirect IgG ELISA for antibodies against Nipah virus, which we developed as follows.

DEVELOPMENT OF INDIRECT IgG ELISA
Vero E6 cells were infected with a Nipah virus strain isolated from the pons of a fatal human case in 1998. Nipah virus infected and uninfected Vero cells were lysed using a hypotonic buffer containing 1% TritonX100, then heat inactivated for 30 minutes at 56°C before coating microtitre plates (Maxisorp C bottom, Nalge Nunc International, Rochester, NY, USA) at 1:500 dilution. Lysates were also subjected to RNA extraction and the identity of the virus was confirmed using RT PCR and nucleic acid sequencing. Serum dilutions were loaded into duplicate wells coated with infected cell and control lysates and incubated for 1 hour at room temperature before washing and the addition of conjugated rabbit antihuman IgG (Dako, Glostrup, Denmark). Nipah virus specific IgG1 was detected as follows.

www.jnnp.com

Table 1 Immunoglobulin G subclass determination in a patient with Nipah encephalitis

<table>
<thead>
<tr>
<th>IgG subclass</th>
<th>CSF April 1999</th>
<th>Serum April 1999</th>
<th>Serum May 1999</th>
<th>Serum October 1999</th>
<th>Serum August 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IgG2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IgG3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IgG4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Figure 1 Kinetics of the serum IgG response (dilution 1 in 1000) in a patient with Nipah encephalitis. She was exposed to the virus in December 1998, but developed encephalitis in April 1999.
Health, Government of Malaysia). Many had direct contact with pigs in the 2 weeks before the onset of illness. Most patients with Nipah encephalitis presented with acute neurological features, which included a reduced level of consciousness, myoclonus, areflexia, hypotonia, and cerebellar signs. A delay of up to 11 weeks has been reported between initial exposure and neurological disease, although a second exposure was possible.

We think that our patient, one of the youngest recorded with Nipah encephalitis, became exposed to the virus in December 1998, around the same time as her father. Because she left peninsular Malaysia for Sarawak, which was free of Nipah virus, we can be certain that the interval of 4 months represents a true late presentation between rather than a re-exposure. Similarly, one of the three human cases of Hendra encephalitis occurred 13 months after the initial exposure, and measles virus, another paramyxovirus, causes subacute sclerosing panencephalitis many years after initial exposure. The IgM capture ELISA and indirect IgG ELISA against Hendra virus used during the Nipah outbreak in 1998 were positive in serum samples of about 70% of patients, and CSF of about 30%. The indirect IgG ELISA against Nipah antigen that we developed was positive in both serum and CSF. Interestingly although our patient's IgG was high when she first presented in April 1999, titres rose even higher during the next 2 weeks. The detection of IgG3 as well as IgG1 in Nipah virus infection is similar to the IgG subclass responses seen in measles and subacute sclerosing panencephalitis. Unfortunately no specimens were taken during her original febrile illness in December 1998, but by comparison with other Nipah patients we expect her IgM would have been positive then. The reason for the late presentation of Nipah virus is not known. For subacute sclerosing panencephalitis there is some evidence that defective measles virus particles which replicate poorly within the CNS provide a chronic stimulus to the immune system, resulting in inflammation and tissue destruction.

In summary, Nipah virus encephalitis may present late, and should be considered in people with encephalitis, even months after their possible exposure. An indirect IgG ELISA can be used to confirm the diagnosis.

We thank the Director General of Health, Ministry of Health of Malaysia for granting us permission to publish this paper. We are also grateful to Dr. Flora Ong, Dr. K. Krishnan, Sister Margaret Wong and her team at the Sibu Health Department, and the Hospital Director for supporting the work. Dr. Noraini Karim, pathologist of Ipoh Hospital, provided the clinical material from which MJC isolated the strain of Nipah virus used in this work. TS is a Wellcome Trust Career Development Fellow.

Late presentation of Nipah virus encephalitis and kinetics of the humoral immune response

S C Wong, M H Ooi, M N L Wong, P H Tio, T Solomon and M J Cardosa

J Neurol Neurosurg Psychiatry 2001 71: 552-554
doi: 10.1136/jnnp.71.4.552

Updated information and services can be found at:
http://jnnp.bmj.com/content/71/4/552

These include:

References
This article cites 14 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/71/4/552#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Immunology (including allergy) (1943)
Infection (neurology) (494)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/