Effect of brain tumour laterality on patients’ perceived quality of life

J Salo, A Niemelä, M Joukamaa, J Koivukangas

Objectives: There is little reliable quantitative information on preoperative quality of life of patients with brain tumours. The aim of this study was to clarify the effect of the volume, location, and histological grade of brain tumour on the preoperative quality of life of patients.

Methods: The study population consisted of 101 successive patients with brain tumour at Oulu Clinic for Neurosurgery studied with CT or MRI for preoperative determination of tumour location and size. The Nottingham health profile (NHP) and Sintonen’s 15D scale were used at that time to measure quality of life.

Results: Tumour size did not correlate linearly with impairment of quality of life. Large tumours (>25 ml) were associated with poorer quality of life than small tumours (≤25 ml). The patients with a tumour located on the right side or in the anterior region reported a poorer quality of life than those with a tumour on the left side. Tumours in the right hemisphere seemed to be related to poorer quality of life. This effect was especially clear in the patients’ subjective evaluation of their quality of life. As the location of the brain tumour thus affects perceived quality of life, any measurements of the quality of life of patients with brain tumours should take into account the location and laterality of the tumour.

Conclusions: Large tumours apparently damage several parts of the brain and/or raise intracranial pressure to a level that exceeds the brain’s compensatory capacity. Contrary to earlier understanding, tumours in the right hemisphere seemed to be related to poorer quality of life. This effect was especially clear in the patients’ subjective evaluation of their quality of life. As the location of the brain tumour thus affects perceived quality of life, any measurements of the quality of life of patients with brain tumours should take into account the location and laterality of the tumour.
time. Magnetic resonance imaging was carried out on 16 (16%) patients. Matsui's anatomical classification of the brain was used to define the location of various brain structures. The tumours were divided into ones located in the left or right hemisphere and anteriorly or posteriorly, if they reached the supratentorial space. The distance of the tumour from the apex of the frontal lobe was determined by calculating from each CT or MRI slice the ratio of the distance between the anterior part of the tumour and the apex of the frontal lobe to the anterior-posterior diameter of the whole brain. The mean of the percentages was used to describe the distance from the apex of the frontal lobe to the tumour images.

Moreover, each hemisphere was divided, in accordance with the model of Levine and Grek, into 12 areas: central gyr, superior frontal gyr, frontotemporal region, superior parietal lobule, basal temporo-occipital region, occipital convexity, lenticular nucleus, caudate nucleus, thalamus, posterior limb of internal capsule, anterior limb of internal capsule, and temporoparietal region. The volume of each brain tumour was determined manually from the CT or MRI.

The patients' quality of life was measured preoperatively with Sintonen's 15D scale and the Nottingham health profile (NHP). Both of these are general quality of life instruments, not specifically designed or standardised for patients with brain tumours. The 15D scale is a self report questionnaire that measures quality of life on 15 different dimensions (breathing, mental functions, speech, vision, mobility, working capacity, subjective health, hearing, eating, continence, sleep, anxiety, pain and ache, social participation, and depression). The dimensions are ranked relative to each other, and by summing up their scores, it is possible to obtain a value of 0–1, which represents the patient's overall quality of life. A completely healthy person in good condition thus scores 1 on the 15D scale.

The NHP is also a self report questionnaire, which consists of two parts. The first part includes 38 weighted yes/no questions, which yield quality of life scores of 0–100 on six dimensions (energy, pain, sleep, social isolation, emotional reactions, and mobility). The second part consists of seven statements pertaining to problems caused by health status, to which the patient replies yes or no. The NHP hence does not yield a single score but rather a profile of the patient's quality of life. The NHP version standardised in Finland was used.

The patient's condition was also evaluated on the KPS scale, which is an ordinal scale of functional status. The KPS categorises the patients from 0 (dead) to 100 (healthy) at 10 unit intervals and is rated by the physician. The scale emphasises the presence of symptoms, ability to work, physical activity, and self care.

Statistical analysis was done with the SPSS software, using as independent variables the location of the brain tumour (right or left hemisphere, anterior or posterior region), its distance from the apex of the frontal lobe, tumour size, and histological diagnosis of the tumours. The tumours were divided into ones located in the left or right hemisphere and anteriorly or posteriorly.

RESULTS

Tumour volume and quality of life did not correlate linearly. Small (≤25 ml) tumours were associated with better quality of life in measurements with both 15D and NHP (table 2) than large (>25 ml) ones. However, no differences in quality of life were seen between the groups with tumour volumes of less than 25 ml and those with volumes of 25 to 55 ml, which means that the statistical difference was due to the poor quality of life in the subset of the patients with very large tumours.

Large tumours (>25 ml) located in the left hemisphere did not impair quality of life any more than did the small tumours (≤25 ml), whereas in the right hemisphere the large tumours were associated with a statistically significantly poorer quality of life on all the other dimensions of NHP except sleep and emotional reactions.

The patients with a tumour in the right hemisphere had poorer quality of life on both 15D and NHP than did those with a tumour on the left side (table 2). On the 15D scale, the means of all dimensions except speech were poorer for the patients with a tumour in the right hemisphere. When this difference was analysed by dividing the brain into smaller areas, it turned out that in nine of the 12 areas, a tumour located in the right hemisphere impaired quality of life more than in the corresponding location in the left hemisphere. The only areas where the effect of the tumour on the 15D index was not bigger in the right hemisphere were the occipital convexity, the basal temporo-occipital region, and the superior parietal region. The volume of each brain tumour was determined manually from the CT or MRI.

The patients' quality of life was measured preoperatively with Sintonen's 15D scale and the Nottingham health profile (NHP). Both of these are general quality of life instruments, not specifically designed or standardised for patients with brain tumours. The 15D scale is a self report questionnaire that measures quality of life on 15 different dimensions (breathing, mental functions, speech, vision, mobility, working capacity, subjective health, hearing, eating, continence, sleep, anxiety, pain and ache, social participation, and depression). The dimensions are ranked relative to each other, and by summing up their scores, it is possible to obtain a value of 0–1, which represents the patient's overall quality of life. A completely healthy person in good condition thus scores 1 on the 15D scale.

The NHP is also a self report questionnaire, which consists of two parts. The first part includes 38 weighted yes/no questions, which yield quality of life scores of 0–100 on six dimensions (energy, pain, sleep, social isolation, emotional reactions, and mobility). The second part consists of seven statements pertaining to problems caused by health status, to which the patient replies yes or no. The NHP hence does not yield a single score but rather a profile of the patient's quality of life. The NHP version standardised in Finland was used.

The patient's condition was also evaluated on the KPS scale, which is an ordinal scale of functional status. The KPS categorises the patients from 0 (dead) to 100 (healthy) at 10 unit intervals and is rated by the physician. The scale emphasises the presence of symptoms, ability to work, physical activity, and self care.

Statistical analysis was done with the SPSS software, using as independent variables the location of the brain tumour (right or left hemisphere, anterior or posterior region), its distance from the apex of the frontal lobe, tumour size, and histological diagnosis of the tumours. The tumours were divided into ones located in the left or right hemisphere and anteriorly or posteriorly.

RESULTS

Tumour volume and quality of life did not correlate linearly. Small (≤25 ml) tumours were associated with better quality of life in measurements with both 15D and NHP (table 2) than large (>25 ml) ones. However, no differences in quality of life were seen between the groups with tumour volumes of less than 25 ml and those with volumes of 25 to 55 ml, which means that the statistical difference was due to the poor quality of life in the subset of the patients with very large tumours.

Large tumours (>25 ml) located in the left hemisphere did not impair quality of life any more than did the small tumours (≤25 ml), whereas in the right hemisphere the large tumours were associated with a statistically significantly poorer quality of life on all the other dimensions of NHP except sleep and emotional reactions.

The patients with a tumour in the right hemisphere had poorer quality of life on both 15D and NHP than did those with a tumour on the left side (table 2). On the 15D scale, the means of all dimensions except speech were poorer for the patients with a tumour in the right hemisphere. When this difference was analysed by dividing the brain into smaller areas, it turned out that in nine of the 12 areas, a tumour located in the right hemisphere impaired quality of life more than in the corresponding location in the left hemisphere. The only areas where the effect of the tumour on the 15D index was not bigger in the right hemisphere were the occipital convexity, the basal temporo-occipital region, and the superior parietal region. In all the lateral diagnostic categories, the mean of the 15D indexes was poorer for those patients with a tumour in the right hemisphere. Average tumour size did not differ between the hemispheres, nor did the patients' age or sex.

The location of the tumour on the anterior-posterior axis also affected quality of life. Anterior tumours had a lower than average 15D index (table 2). The NHP also yielded a poorer quality of life for anterior tumours, and the difference was significant on the NHP dimensions of sleep and social relations. The patients with an anterior tumour in the right hemisphere had the poorest quality of life, whereas those with an anterior tumour in the left hemisphere had the best quality of life. The distance between the brain tumour and the apex of the frontal lobe, on the other hand, did not correlate linearly (r<0.3) with either the patient's quality of life or the KPS. The KPS value was about the same, regardless of which hemisphere the tumour was located in (80 on the left vs 76 on the right, p=0.28).
The patients with glioma grades III – IV had the poorest quality of life on both 15D and all dimensions of NHP except sleep, whereas the patients with acoustic neurinoma had the best average quality of life (table 3). Using Kruskal-Wallis analysis, the differences were significant only on the NHP dimensions of pain and social functions. When the tumour was located in the left hemisphere, none of the NHP dimensions were significantly related to the diagnosis, whereas the patients with a tumour in the right hemisphere had significant differences on the dimensions of social functions ($p=0.021$) and energy ($p=0.009$). The patients with glioma grades III-IV were in the poorest condition. The differences between the 15D medians of the histological groups among the patients with a tumour on the left side were much smaller than the corresponding differences among those with a tumour on the right side. However, none of these differences were significant.

DISCUSSION

As far as we know, there are no previous quantitative studies on the effects of brain tumours on the patients’ preoperative quality of life. According to the main findings of this study, the patients with a tumour on the right side had poorer quality of life than those with a tumour on the left side. The patients with an anterior tumour similarly had poorer quality of life than those with a posterior tumour. Parallel differences were from them on the other.

Our aim was thus to obtain results comparable with the previous findings.

The effect of tumour location in this study was opposite to that reported by Giovagnoli et al,’ which may be, at least partly, explained by the different instrument used and the different timing of the examinations (their’s were made postoperatively). The effect of the affected hemisphere on the 15D and NHP scores can be explained by one of the following postulations: (a) injury to the right hemisphere truly impairs

<table>
<thead>
<tr>
<th>Tumour size</th>
<th>Affected hemisphere</th>
<th>Location on the anterior-posterior axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 25 ml (n=47)</td>
<td>>25 ml (n=45)</td>
<td>p Value</td>
</tr>
<tr>
<td>Sintonen’s 15D</td>
<td>0.90</td>
<td>0.84</td>
</tr>
<tr>
<td>NHP: pain</td>
<td>0.0</td>
<td>9.1</td>
</tr>
<tr>
<td>NHP: mobility</td>
<td>0.0</td>
<td>9.0</td>
</tr>
<tr>
<td>NHP: social isolation</td>
<td>0.0</td>
<td>16.4</td>
</tr>
<tr>
<td>NHP: energy</td>
<td>0.0</td>
<td>24.8</td>
</tr>
<tr>
<td>NHP: emotion</td>
<td>0.0</td>
<td>6.2</td>
</tr>
<tr>
<td>NHP: sleep</td>
<td>18.1</td>
<td>27.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Affected hemisphere</th>
<th>Location on the anterior-posterior axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right (n=33)</td>
<td>p Value</td>
</tr>
<tr>
<td>Sintonen’s 15D</td>
<td>0.91</td>
</tr>
<tr>
<td>NHP: pain</td>
<td>0.0</td>
</tr>
<tr>
<td>NHP: mobility</td>
<td>0.0</td>
</tr>
<tr>
<td>NHP: social isolation</td>
<td>0.0</td>
</tr>
<tr>
<td>NHP: energy</td>
<td>0.0</td>
</tr>
<tr>
<td>NHP: emotion</td>
<td>0.0</td>
</tr>
<tr>
<td>NHP: sleep</td>
<td>28.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location on the anterior-posterior axis</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior (n=47)</td>
<td>0.86 (n=48)</td>
</tr>
<tr>
<td>Posterior (n=32)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

* $p<0.05$, ** $p<0.01$. [Kruskal-Wallis H]
quality of life more than corresponding injury on the left side. (b) people with a brain tumour in the right hemisphere perceive their quality of life to be poorer than those with a tumour on the left, (c) patients with a brain tumour on the left side perceive their quality of life to be better than an outsider’s assessment, or (d) an interfering variable confounds the findings.

It is probable that item (c) is right. As many important functions, such as speech and the right hand motor area, are located on the left side, it is difficult to assume that patients with a left sided brain tumour would truly have better quality of life than even a sample of general patients visiting a health centre (15D index 0.88). Moreover, the patients with a tumour in the left hemisphere reported more or less the same quality of life regardless of tumour size, whereas the patients with a tumour on the right side had clearly poorer quality of life when the tumour was large. The correlation with the histological diagnoses was parallel: in the case of left hemisphere tumours, quality of life showed weak, if any, correlation with the malignancy of the tumour, whereas increasing malignancy of tumours on the right side resulted in clearly poorer quality of life. It is also noteworthy that tumours in the left hemisphere were associated with better scores on all the 15D and NHP dimensions except speech on 15D, which suggests that these tumours result in profound cerebral disorder instead of merely affecting certain functions located in particular areas of the brain. The degree of invasion/volume of the tumour could be assumed to be a confounding factor, as injury to the left hemisphere causes earlier and more distinct damage, but there was no significant difference in tumour volume between the hemispheres, nor was there difference in histological grade on pain could be explained by the rapid growth of the most malignant tumours and their infiltration into pain sensitive tissues. As was already pointed out above, large tumours and those located in the left hemisphere cause generalised brain malfunction.

We can hence answer our first question by saying that very large tumours impair all dimensions of quality of life, and that location in the anterior region or in the right hemisphere and malignant grade are also related to poor quality of life. Specific tumour locations on the anterior-posterior axis give rise to different dysfunctions. The most important qualities of malignant tumours from the viewpoint of subjective quality of life seem to be their mode and rate of growth. Our second and third questions can be answered by saying that the most important single factor that affects the patient’s quality of life seems to be the hemisphere afflicted by the tumour. Thus, a tumour in the left hemisphere often makes it difficult to measure reliably the patient’s preoperative quality of life, as it may distort the patient’s subjective assessment of him/herself.

The present results are, in many respects, unexpected and contradictory to previous findings. We intend to further elucidate the mechanisms whereby brain tumours impair the patient’s quality of life by comparing the postoperative recovery of patients to the results obtained by measuring health status with various instruments (neurological, mental, neuropsychological). This will help us to find out if the situation is different postoperatively, as suggested by our preliminary results. At any rate, we are faced by an interesting problem, which should be solved to gain better insight into both brain function and the development of quality of life measurements.

Authors’ affiliations
J Salo, A Niemelä, M Joukamaa, J Koivukangas, Department of Neurosurgery, Oulu University Hospital, PL 22, 90220 Oulu, Finland

REFERENCES

Effect of brain tumour laterality on patients' perceived quality of life

J Salo, A Niemelä, M Joukamaa and J Koivukangas

J Neurol Neurosurg Psychiatry 2002 72: 373-377
doi: 10.1136/jnnp.72.3.373

Updated information and services can be found at:
http://jnnp.bmj.com/content/72/3/373

These include:

References
This article cites 16 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/72/3/373#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Stroke (1449)
CNS cancer (184)
Neurooncology (237)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/