We report a 70 year old German man presenting with a three year history of progressive numbness and painful tingling and burning paraesthesiae in his hands, feet, and lower legs, which had worsened during recent months. He also reported unsteadiness of gait, fatigue, night sweats, loss of appetite, and a weight loss of 12 kg within one year. He denied bowel or bladder problems and alcohol ingestion, but admitted smoking (110 pack-years). His family history was negative for neurological diseases.

The family was originally from Gdansk (now Northern Poland). The patient’s father and his four siblings all reached their 80s without developing neurological symptoms. The patient’s mother died at the age of 64 of blood cancer, and her half brother died at the age of 78. Three of the patient’s siblings died at the ages of 1, 17, and 33 (starvation, killed in the war, stomach cancer). Two further sisters, aged 64 and 69, their descendants, and the patient’s own five sons and their children were healthy. Both of the patient’s grandmothers died in their 80s, whereas the paternal grandfather died early of unknown cause, and the maternal grandfather drowned in his 30s.

Neurological examination revealed severe ataxia of gait and stance, atrophy of the small hand and foot muscles, and bilateral distal pareses (3–4/5 on the MRC scale), diminished tendon jerks, a glove and stocking distribution of hypoaesthesia for all sensory qualities up to the mid-thighs and elbows, and severe trophic skin disturbances of the lower legs and hands with oedema and ulcers, suggestive of autonomic neuropathy. No orthostatic hypotension was observed.

Quantitative sensory testing showed markedly increased or undetectable thermal thresholds for heat and cold sensation in both hands and feet. Dynamic (brush) and static (von Frey hair) mechanical stimuli were not detected. Electrodiagnostic studies revealed absent sensory nerve potentials in the right sural nerve, absent compound muscle action potentials (CMAP) of the right tibial nerve, and markedly reduced CMAP, moderately slowed conduction velocity, and no F waves in the right median nerve. An ECG showed atrial fibrillation. On transthoracic echocardiography there was concentric hypertrophy of the left ventricle, dilatation (51 mm) of the left atrium, no stenoses of the cardiac valves, and normal left ventricular function. The patient had no history of hypertension. Abdominal and thoracic computed tomography detected no tumour mass or lymph node enlargement.

Figure 1 (A) Semithin section of sural nerve stained with methylene blue azure-two, showing massive loss of myelinated fibres and an amyloid plaque (arrow). (B) Paraffin section with Congo red staining showing birefringence in polarised light. (C) Cryosection reacted with antibodies to transthyretin (prealbumin Dako, 1:20 000), showing dense immunoreactivity of the plaque for transthyretin. (D) Cryosection reacted with polyclonal antibodies to human IgG (Dako, 1:1000) showing no immunoreaction on the amyloid plaque (arrows). (E) Protein analysis by hybrid isoelectric focusing under half denaturing conditions (left), and restriction fragment analysis after amplification of exon 2 of the transthyretin (TTR) gene and digestion with Nsi I for the identification of the ATTR(Val30Met) mutation (right). Lane 1 represents the patterns of the patient, lane 2 the patterns of a normal control individual, and lane 3 the patterns of a known FAP patient with normal TTR and the ATTR(Val30Met) mutation.
lymphoid B cells of low proliferative activity and no clear birefringence in Congo red staining. A diagnosis of smouldering B cell lymphocytic leukaemia (B-CLL) was made.

Sural nerve biopsy disclosed a dramatic loss of myelinated and unmyelinated fibres without signs of regeneration (fig 1A). Surprisingly, several amyloid plaques were seen on Congo red staining (fig 1B). Immunohistochemistry showed unequivocal immunoreactivity for transthyretin (TTR) (fig 1C), while polyclonal antibodies to human IgG (fig 1D) stained negative. On skin biopsy of the left lower leg, there was total loss of epidermal nerve fibres. Protein and DNA analysis showed heterozygosity for normal TTR and the amyloidigenic mutation ATTR(Val30Met) (fig 1E) leading to the diagnosis of familial amyloidotic polyneuropathy (FAP).

This patient presents a chance association of B-CLL with “sporadic” FAP. Several cases of a B-CLL associated chronic sensorimotor neuropathy, either caused by neoplastic nerve infiltration or as a paraneoplastic condition, have been described. The initial tentative diagnosis of CLL associated neuropathy was revised when amyloid plaques immunoreactive for TTR were found in the sural nerve biopsy and the ATTR(Val30Met) mutation was demonstrated. In most cases FAP is caused by a point mutation in the TTR gene. About 80 different mutations of the TTR gene have been identified, the Val30Met mutation being by far the most common. In Europe, this mutation clusters in distinct areas of Portugal and Sweden. Smaller foci or single families/cases have been described in most other European countries. In Germany about half the known FAP patients are carriers of the ATTR(Val30Met) mutation. Age of onset and penetrance of ATTR(Val30Met) amyloidosis vary considerably. While Portuguese patients from the focus Povoais do Varzim/Vila do Conde develop the disease at a mean age of 31 years, the age of onset among Swedish patients is approximately 57 years. Penetration is high and progression is rapid in Portugal, but penetration is low and progression slow in Sweden. Additional genetic and environmental factors probably influence the wide range of both age at onset and severity of FAP. Most FAP patients present with fibre length dependent sensorimotor and autonomic neuropathy. Cardiac involvement, as observed in our patient, is less common and seen in cases of severe polyneuropathy only. Renal involvement is much less prevalent in FAP than in AL amyloidosis, and macroalbuminuria does not occur in FAP. Differentiation of amyloid in tissues by immunohistochemistry is essential for identifying the major amyloidogenic protein. Finally, the diagnosis of FAP must be based on molecular protein/DNA analysis. Although FAP is a disease of autosomal dominant inheritance, a negative family history of polyneuropathy or amyloidosis does not rule out the disease, owing to incomplete penetrance or a new mutation. FAP should be considered in all cases of sporadic neuropathy with prominent autonomic symptoms, trophic ulcers, or weight loss, even in countries with a low incidence like Germany. Possibly the prevalence of FAP is underestimated in such countries because of incomplete diagnostic workup.

The recognition of FAP is important for two main reasons. First, treatment is possible by liver transplantation when performed early in the course of disease. Second, diagnosis of FAP in the propositus is essential for identifying relatives at risk for the disease and for providing adequate genetic counselling.

M Buttmann, M Marzinink, K V Toyka, C Sommer
Neurologische Klinik und Poliklinik, Julius-Maximilians-Universität, D-97080 Würzburg, Germany
K Altland
Institut für Humangenetik, Justus-Liebig-Universität, Schulzengasse 11, 35392 Giessen, Germany

Correspondence to: Dr Claudia Sommer; sommer@mail.uni-wuerzburg.de

References

Aneurysm of the extracranial internal carotid artery presenting as the syndrome of glossopharyngeal pain and syncope

The syndrome of glossopharyngeal pain and/or syncope mimicking idiopathic glossopharyngeal neuralgia has been reported to be associated with a variety of intracranial or extracranial conditions, including mass lesions in the parapharyngeal space, the elongated styloid process, and multiple sclerosis. However, aneurysm of the cervical portion of the internal carotid artery (ICA) presenting as episodic glossopharyngeal pain and syncope has not been reported previously to the best of our knowledge. We report here the first such case that was successfully treated by surgical resection of the aneurysm.

A 66 year old woman with a two year history of paroxysmal attacks of pharyngeal pain with occasional syncope episodes was admitted to our hospital. She had been in good health until two years previously, when she first noticed pain in the region of the left
pharynx, sometimes with radiation to the ipsilateral ear and submandibular area. The pain was neither stabbing nor triggered by swallowing and eating. The attacks recurred about 10 times a day and lasted from several seconds to five minutes. During the year before admission, the attacks had become more frequent, and the duration of pain increased to 30 minutes. She had also felt foreign body sensations in her throat regardless of painful episodes. During the four months before admission, the painful episodes were occasionally accompanied by abdominal pain, diarrhoea, and syncpe. The episodes of syncpe occurred about twice a month. She had no history of trauma or diabetes. There was no past history of infection or trauma. Neurological examination was normal. In particular, there were no definite abnormalities in deglutition, movement of the soft palate, and the gag reflex; there was no palpable mass or bruit in the neck, and no trigger zone was noted. Complete blood cell count and serum chemistry were normal. Antinuclear antibody and a serological test for syphilis were negative. Brain magnetic resonance imaging and cerebral computed tomography showed a round mass in the upper portion of the left carotid space, compressing the parapharyngeal space forward (fig 1). Four vessel angiography showed a large aneurysm (3.9 x 3.0 cm) of the distal cervical portion of the left ICA (fig 2), which was located near the skull base above the sphenoid ridge. There were no aneurysms elsewhere. A computed tomography scan of the neck showed no evidence of the elongated stylohyoid process.

Treatment with phenytoin (300 mg a day) caused the paroxysmal pain to disappear completely within three days. Under general anaesthesia, the aneurysm was approached by a presternocleidomastoid cervicotomy with transection of the digastric muscle. The cutaneous incision was extended along the posterior border of the mastoid process. The aneurysm was found 5 cm above the carotid bifurcation. The anatomical relation between the aneurysm and the glossopharyngeal nerve was not identified in the surgical field. The aneurysm was resected, with replacement with a saphenous vein graft. Surgical and pathological findings indicated a true aneurysm. After surgery, there were no neurological deficits except incomplete Horner's syndrome on the left side. Postoperative angiography showed satisfactory reconstruction (fig 2). Phenytoin was not given after surgery. No episodes of pain or syncpe recurred during the follow up period of six months after surgery.

Our case was characterised by episodic pain in the distribution of the glossopharyngeal nerve, sometimes associated with syncope, and a dramatic response to phenytoin. A huge aneurysm of the extracranial ICA was found to be the source of glossopharyngeal pain and syncope syndrome, which was confirmed by successful surgical resection. The syndrome of glossopharyngeal pain and/or syncope may be caused by a variety of conditions. In our case, the parapharyngeal space was considered to be unlikely because of the absence of a stabbing feeling, precipitating factors, or trigger zones. Also, there was no radiological evidence of mass lesions in the parapharyngeal space or the elongated stylohyoid process.

The pathogenetic mechanism in our patient was considered to be similar to that involved in glossopharyngeal neuralgia and syncope. Sobol et al. reported two cases of glossopharyngeal neuralgia-asystole syndrome associated with ipsilateral lesions of the parapharyngeal space, and postulated that parapharyngeal space lesions may induce neural irritation to the afferent pain fibres of the glossopharyngeal nerve and reflex within the nerve to produce the syndrome. The causes of aneurysm of the ICA are multiple and include atherosclerosis, dysplasia, trauma, and infectious lesions. The cause in our patient was not known despite the historical examination. Welling et al. reported that 41 of 118 aneurysms of the peripheral cervical arteries arose from the extracranial carotid system. Only four of them were saccular aneurysms. Of the aneurysms of the extracranial ICA, we do not usually produce neurological symptoms, they may result in potentially serious problems, such as cerebral events, as a consequence of thromboembolic phenomena or impairment of flow in the proximal carotid artery. Isolated cranial neurofibriathes may also occur as the result of direct nerve compression. In this case, the aneurysmal parapharyngeal mass produced episodic glossopharyngeal pain and syncope.

Y-M Lim, S-A Lee
Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

D-K Kim, G-E Kim
Division of Vascular Surgery, Asan Medical Center
Correspondence to: Dr Lee, Department of Neurology, Asan Medical Center, 388-1, Pumnap-dong, Songpa-gu, Seoul, 138-736, Korea; tollee@www.amc.seoul.kr

References

Acute hyperperfusion syndrome complicating EC-IC bypass

The extracranial-intracranial (EC-IC) arterial bypass study has been criticised for failing to select for patients with chronic haemodynamic insufficiency and for revascularisation with low flow grafts, which may augment perfusion inadequately. We report a case of EC-IC bypass in a patient with severe intracranial carotid stenosis and compromised cerebrovascular reserve, which was complicated by intraoperative hyperperfusion syndrome. Hyperperfusion syndrome as a result of EC-IC bypass is not well documented and its occurrence directly after bypass has not been reported before. We discuss the pathophysiology and prophylactic measures of this complication, with special attention to the nature of the bypass performed.

A 48 year old right handed woman presented with a four month history of recurrent transient ischaemic attacks characterised by left sided symptoms of perioral paraesthesia, hand numbness, and upper extremity weakness (grade 4/5). The attacks were refractory to treatment with ticlid, a platelet aggregation inhibitor, and at the time of admission to hospital she was having several episodes daily, each lasting up to 15 minutes. She was therapeutically heparinised, her blood pressure was augmented to 150–180 mm Hg with intra-venous vasopressors, and florinef treatment was begun to expand her vascular volume. The transient ischaemic attacks persisted unabated despite three weeks of this regimen in the intensive care unit.

Preoperative T2 weighted and magnetic resonance imaging revealed a few small scattered subcortical signal changes, but no evidence of a previous cerebrovascular event. Cerebral angiography showed severe right supraclinoid internal carotid artery and proximal right M1 stenosis with contribution of the middle cerebral artery from pial collaterals. The cervical carotid arteries were normal. Transtranial Doppler studies with carbon dioxide vasodilatation challenge showed flow limiting stenoses with compromised cerebrovascular reserve.

On the basis of these data and the refractory nature of the symptoms, we decided to proceed with a high flow revascularisation procedure. An autologous saphenous vein graft was inserted into a proximal M2 branch and the external cervical carotid artery in end to side fashion. During this time the patient's systemic blood pressure was maintained between 160 and 180 mm Hg, and she had been cooled to 34°C and treated with 20% mannitol (100 g). An intraoperative angiogram, performed immediately after completion of the anastomosis, confirmed patency of the bypass graft and normal filling of the middle cerebral tree.

As we were preparing to close the craniotomy, approximately 45 minutes after flow was established through the bypass graft, the brain became massively swollen. A temporary clip was placed across the graft, and the brain relaxed, becoming soft with return of pulsatility. A second intraoperative angiogram showed evidence of hyperperfusion syndrome with the presence of a dense vascular blush throughout the middle cerebral tree (fig 1). Attempts to limit flow through the graft failed and a permanent clip was placed across the graft. Postoperative computed tomography showed intracranial haemorrhage and cerebral oedema with progressive mass effect, commensurate with a worsening neurological state. After discussions with the family, aggressive surgical measures were withdrawn and the patient died.

Symptoms of intracranial stenotic lesions are usually haemodynamic in etiology and develop after the collateral blood supply fails.
to support metabolic demands despite maximal oxygen extraction. Management of patients refractory to treatment with antipaleto or anticoagulant agents, blood pressure augmentation, and blood volume expansion is difficult. There is a high risk of stroke, and several studies have argued strongly in favour of EC-IC bypass in these patients. Consequently, a decision was made in this case to carry out a high flow bypass from the external carotid artery to an M2 branch of the middle cerebral artery. The long nature of the lesion in the supracarotid carotid, extending into the proximal M1 segment, was judged not amenable to angioplasty. We failed to consider seriously the use of a low flow bypass graft.

Hyperperfusion following cerebral revascularisation is well recognised, particularly in the context of carotid endarterectomy. Its occurrence secondary to EC-IC bypass is not surprising. Intracerebral haemorrhages can complicate both superficial temporal artery to middle cerebral artery (STA-MCA) and saphenous vein EC-IC bypasses for carotid occlusive disease, but evidence for hyperperfusion as the underlying cause of these haemorrhages is not established. A dense perfusion blush on the intraoperative angio gram documented hyperperfusion following connection of the EC-IC bypass in this case (fig 1). In chronic ischaemic brain, hyperperfusion syndrome is thought to arise as a result of disturbed cerebral autoregulation. The vasculature is maximally dilated and following restoration of flow vascular reactivity is impaired and unable to vasoconstrict appropriately, to protect the capillary bed against the increased perfusion pressure. Low signal oedematous changes and cerebral haemorrhage result, as was evidenced on postoperative computed tomography in this case.

Several factors led to the development of hyperperfusion syndrome in our case. Preoperatively we failed to recognise that altered microvascular permeability of the chronically hypoperfused brain may lower the safe threshold for ischaemia and hyperperfusion. Despite neuroprotective measures, temporary occlusion of the M2 branch for the bypass pass may have resulted in a serious degree of ischaemia, and our routine practice of modestly raising the patient’s blood pressure during temporary clamping may have been detrimental in this setting. Given the increased susceptibility of the chronically ischaemic blood brain barrier to injury, the choice of a high flow bypass was in retrospect an error. Depending on the diameter of the graft, saphenous vein bypass grafts provide flows to 110 ml/min. By comparison, STA-MCA bypasses generate flows through the graft in the range of 10 to 20 ml/100 g/min.

Revascularisation is instituted to rescue tissue with blood flows of 20–25 ml/100 g/min from dropping to 10–15 ml/100 g/min leading to cell death. Therefore augmentation of blood flow can be achieved by a low flow STA-MCA bypass with a lower risk of complications. Over time, adaptation will occur, allowing increased flow through the bypass graft to be tolerated. Thus, if the ischaemic brain is subjected acutely to these high flows, patients with intracranial stenosis and compromised cerebrovascular reserve—highlighted as a group most likely to benefit from EC-IC bypass—are at high risk for hyperperfusion syndrome. Strict attention to judicious choice of bypass conduit, minimising ischaemic time for the anastomosis, optimal neuroprotection, and meticulous control of blood pressure and intravenous fluids is mandatory to minimise complications of hyperperfusion syndrome and optimise the potential benefit of EC-IC bypass in these patients.

A Japanese case of steroid responsive myopathy with deficient chondroitin sulphate

In 1998, Al-Loozi et al described a case of steroid responsive myopathy with deficient chondroitin sulphate C that had not been reported before. The patient developed diffuse bulbar and systemic weakness with respiratory failure. While muscle biopsy showed only a moderate degree of type 2 atrophy with one small perimysial, perivascular mononuclear cell infiltration, immunocytochemistry showed an absence of chondroitin sulphate C in the

dermosymphy. Prednisone treatment resulted in a marked increase in muscle strength. Here we report another case of this interesting and treatable muscle disorder.

Case history

A Japanese woman first developed neck muscle weakness, dysphagia, and weight loss at the age of 42 years. She was diagnosed as having anorexia nervosa in 1986 and was placed on antidepressive drug treatment. Her symptoms worsened and after a few months she developed weakness in all of her limbs, slurred speech, and diplopia, and began having difficulty with breathing. She presented in our outpatient clinic in 1993 at the age of 43.

Her personal and family histories were negative for neuromuscular disorders. On physical examination, she was very thin (height 162 cm, weight 32 kg), and her temperature was 38.1°C. Coarse crackles were heard in the right lower lung. Neurological examination revealed dysarthria, dysphagia, bilateral facial weakness, ptosis, and spheres. The muscle tone, sensory perception, and autonomic system were normal, as was her cognitive function.

Laboratory tests showed signs of inflammation (white blood count 9000/μl, C reactive protein 3.2 mg/dl), considered to be the result of mild aspiration pneumonia in the right lower lung on chest x ray. There was also hypoproteinaemia. Blood gas analysis revealed hypoxia, with a PaO2 of 8.05 kPa, a PaCO2 of 9.27 kPa, and a blood pH of 7.392. Other blood constituents were normal, including creatinine kinase, aldolase, anticholinesterase receptor antibody, antinuclear antibody, lactate acid, and pyruvic acid. Urinalysis, ECG, and cerebrospinal fluid examination were also normal, as was brain magnetic resonance imaging.

Electromyography (EMG) showed myogenic discharges in both biceps brachii, the left rectus femoris, and in both sternocleidomastoid muscles. Motor and sensory nerve velocities were normal in the median, ulnar, tibial, peroneal, and sural nerves. Repetitive stimulation tests of the facial and deltoid muscles gave normal results. A tension test was negative.

Because she was clinically diagnosed as having atypical oclophyryal myopathy with respiratory failure, a biopsy was performed on the right rectus femoris muscle. On histochemical examination, a moderate degree of type 2 atrophy was identified (fig 1A). Immunohistochemical investigation using antibodies to CD3, CD4, CD8, CD68, and CD22 (Dako Denmark; catalogue Nos 054, 105, 036, 5) failed to show the presence of infiltrating inflammatory cells (data not shown). At this time, the origin of the patient’s disorder remained undetermined.

The patient was given prednisone orally in a dose of 60 mg/day and her symptoms markedly improved. By day 7, the diplopia, dysphagia, and dysphonia had resolved. After four months, she was discharged with no remaining neurological deficit. Her prednisone dosage was gradually reduced and eight years later, at the time of writing, she was taking a maintenance dose of 20 mg every other day and showed no neurological deterioration.

Because the clinical features of steroid responsive myopathy with deficient chondroitin sulphate C—first reported in 1998—were similar to those in our case, we carried out an immunohistochemical study using a monoclonal antibody to chondroitin sulphate

Figure 1 Intraoperative right carotid artery angiogram showing hyperperfusion, as evidenced by a dense vascular blush in the middle cerebral artery distribution.
The other patient with steroid responsive myopathy was similarly reported to have been malnourished, for a period of 18 months. Thus it is likely that the type 2 fibre atrophy shown in both these patients was caused by malnutrition.

Chondroitin sulphates are major constituents of the extracellular matrix of skeletal muscle and play an important role in binding cytokines as well as in cellular adhesion, differentiation, and signal transduction. Thus their disruption in muscle is thought to be involved in the pathogenesis of disease. Al-Lozi et al suggested that myopathy might be caused by a deficit in chondroitin sulphate C developing as a result of immune mediated mechanisms. In our case, there was dramatic improvement with steroid treatment, further supporting a role of the immune system in the disease pathogenesis.

In conclusion, we presented a case of steroid responsive myopathy with deficient chondroitin sulphate C. This condition should be considered in cases of atypical ucleophrangyal myopathy of unknown origin.

References

Fulminant progression of hyperammonaemic encephalopathy with valproate in a patient with ureterosigmoidostomy

In the absence of liver disease, hyperammonaemia is often not considered in the differential diagnosis of encephalopathy and, therefore, the diagnosis of hyperacetic acidemia may be delayed. We report a case of fulminant progression of hyperammonaemic encephalopathy after valproate treatment in a patient with ureterosigmoidostomy.

A 31 year old patient was admitted because of confusion and agitation. Ureterosigmoidostomy was performed for congenital bladder extrophy when he was 9 years old. Over the past year he was repeatedly hospitalised with episodes of abnormal behaviour, which were blamed on his abuse of various illegal drugs. At this admission, he was disoriented, with lapses into somnolence as well as agitation. Apart from that, his general and neurological status was unremarkable. The reactive ammonia concentration was 80.5 µmol/l, leucocytes 16160x10⁶/l, and blood urea 12.6 mmol/l. Venous ammonia concentration was mildly increased (63 µmol/l). Arterial blood gas analysis showed respiratory alkalosis. All other laboratory analyses including toxicological screening, microbiological tests, and hospitalization analysis, and cranial computed tomography were unremarkable. Plasma amino acids, organic acids, and uric acid in urine were normal. After treatment with fluids and amoxicillin with clavulanate for urinary infection, C reactive protein, leucocytes, blood urea, and sodium concentrations normalised. Soon after admission, he developed generalised tonic–clonic seizures. Antiepileptic treatment was initiated with 900 mg valproate intravenously followed by continuous infusion (2000 mg/day). Because of repeated seizures, phenytoin was added two days later (1000 mg bolus followed by 1000 mg/day). Despite the antiepileptic treatment, the patient developed a status epilepticus and had to be intubated. The seizures finally stopped after barbiturate coma with thiopentol (2 × 50 mg, then 10 000 mg/day) was induced. Arterial blood ammonia concentration was now massively increased (2875 µmol/l). Emergency dialysis was started, and paromomycin and lactulose were administered. Under dialysis, the blood ammonia concentration decreased to 812 µmol/l. However, the patient developed dilatation, areative pupils. Computed tomography showed diffuse brain oedema. The patient died a few hours later, five days after admission. Total plasma carnitine (6 µmol/l, normal range 33–77 µmol/l) and free carnitine (3 µmol/l, normal range 25–54 µmol/l) concentrations were decreased. Acylcarnitine profile also showed decreased but no abnormal individual acylcarnitine species. Repeated analyses of amino acids in plasma and urine, urinary organic acids, and orotic acid showed no significant abnormalities. On postmortem examination, the liver was normal. In both kidneys, multiple abscesses were found. There was massive cerebral oedema and cerebellar herniation.

Ureterosigmoidostomy has been repeatedly associated with episodic hyperammonaemic encephalopathy. In this condition, the urine is excreted directly into the sigmoid colon and then excreted during defecation. Frequent complications include recurrent pyelonephritis, faecal incontinence, intestinal malabsorption, and hyperchloremic acidosis. Hyperammonaemia develops as a result of the increased production of ammonia in the colon from bacterial ureolysis and subsequent absorption of ammonia in the colon. The bowel wall is much more permeable to ammonia than the bladder mucosa, allowing rapid absorption of the ammonia produced within the sigmoid colon. This exceeds the liver's capacity to detoxify ammonia by the urea cycle. In addition, a proportion of the reabsorbed ammonia ammumidises through oesophageal and haemorrhoidal veins. Thus, hyperammonaemic encephalopathy can develop even if liver function is normal.

In the present patient, the diagnosis of hyperammonaemic encephalopathy was not established until the ammonia concentration had risen greatly and the patient was already in critical condition. Urea cycle disorders and organic acidurias were excluded. The laboratory analysis and postmortem examination did not find any signs of hepatic dysfunction. There were no signs of inborn systemic carnitine deficiency. The ammonia concentration increased massively after the introduction of valproate. This can hardly be explained as a...
censure of ureterosigmoidostomy: hyperammonaemia in patients with ureterosigmoidostomy. The patient had been treated a few weeks before for urosepsis following constipation, which theoretically can lead to very high ammonia concentrations. However, during the final episode, he was not constipated. Therefore, in our patient, pre-existent episodic headache and encephalopathy with seizures was obviously severely aggravated by valproate induced hyperammonaemia and depletion of carnitine. Patients with valproate induced encephalopathy have been repeatedly described, the pathophysiology of which seems to be heterogeneous. In some patients, previously subclinical urological symptoms could be ruled out in our patient. Hyperammonaemia is a frequent side effect of valproate treatment and is often asymptomatic. It seems to occur more frequently in children but is also common in adults, particularly in the presence of other antiepileptic drugs, as was the case in our patient. The exact mechanism of valproate induced hyperammonaemia is unknown but it may appear independently of hepatotoxicity. Valproate has repeatedly been shown to decrease serum and liver carnitine concentrations, both with and without being associated with hyperammonaemia. While most of these patients were children, some cases in adults have been described. Valproate may reduce carnitine concentrations by forming an ester with carnitine, which is co-excreted with organic acids into the urine, or by altering renal reabsorption of acylcarnitine and free carnitine.

In conclusion, our case shows that valproate may greatly aggravate pre-existing, mild hyperammonaemia. We suggest that valproate should be avoided in patients with even slight hyperammonaemia and normal liver function. Equally, we advise the close monitoring of ammonia and carnitine concentrations in patients with ureterosigmoidostomy, such as the one described here, if valproate cannot be avoided.

S Schwarz, D Georgiadis, S Schwab
Department of Nephrology, University of Heidelberg, INF 400, Heidelberg, Germany
F Gehlen
Department of Nephrology
E Mayatepek
Department of General Paediatrics, Division of Metabolic and Endocrine Diseases
S Zoubaa
Department of Pathology, Division of Neuropathology
Competing interests: none declared
Correspondence to: Dr Stefan Schwarz, Department of Neurology, Klinikum Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; schwarz@neuro.uni-heidelberg.de

References

Figure 1 Magnetic resonance imaging of the brain showing hyperintensity with surrounding hypointensity on T2 weighting affecting the putamen, pallidum, and thalamus.

Palatal tremor and cognitive decline in neuroferritinopathy

Neuroferritinopathy is a recently described autosomal dominant condition, degenerative disorder associated with iron accumulation, particularly in the basal ganglia. All patients found to date have a single adenine insertion between nucleotides 460 and 461 in exon 4 of the ferritin light chain gene. This results in a frame shift and is predicted to cause structural alteration of the polypeptide carboxy terminus. Magnetic resonance imaging of the brain shows iron accumulation, and this has been confirmed pathologically with the detection of numerous iron positive inclusions particularly in the globus pallidus. In spite of this, serum ferritin levels are found to be normally low or at the low end of the normal range. Patients tend to present in mid-life with a movement disorder, characterised by chorea, dystonia, and rigidity. In contrast with Hallervorden-Spatz syndrome, which is also associated with accumulation of brain iron, visual and cognitive function is preserved.

Here, we report a patient with genetically proven neuroferritinopathy in which the clinical features included cognitive decline, dystonia, and palatal tremor. These features extend the phenotype of this condition from those previously reported.

The patient was a 49 year old man who developed lingual and oral dyskinetic movements and a slurring dysarthria at the age of 37. Initially, the movement disorder was partially controlled with high dose anticholinergic drugs but then progressed to involve his limbs. Over the next 10 years, he developed dysphagia, unsteadiness, and cognitive decline. His father, paternal uncle, and paternal grandmother had all developed a movement disorder in middle age. A diagnosis of Huntington’s disease was made at that time and was assumed in the patient until disproved by a negative genetic test result. The family continued to seek diagnostic clarification to enable life planning for the patient’s children.

On examination, he was alert and oriented. He scored 7/10 on a mini mental state examination. Detailed cognitive testing showed particular impairment of non-verbal abstract reasoning, with some word retrieval difficulties. He tended to perseverate, and his cognitive estimates were poor. He exhibited pout, palmonmental, and grasp reflexes. He manifested appreciable oral, lingual, and facial dyskinesias. Eye movements were abnormal, with saccadic intrusion into pursuit and use of head thrust to initiate saccades. He had apraxia of eyelid opening. There was no evidence of a pigmentary retinopathy or Kayser-Fleischer rings, and the optic discs were normal. There was a palatal tremor at a frequency of 1 Hz. Examination of the limbs showed pronounced choreiform movements and dystonic posturing. There was no evidence of a peripheral neuropathy or myoclonus.

The following blood tests were normal or negative: full blood count and film, copper studies, creatine kinase levels, ferritin levels (60 μg/l, normal range 25–350 μg/l), liver function tests, and genetic tests for Huntington’s disease (HD), dentatorubral pallidolysian atrophy, and spinocerebellar ataxia 1–3, 6, and 7. Nerve conduction studies were normal. A muscle biopsy was normal. Cerebrospinal fluid analysis was normal, with no evidence of xanthochromia. Magnetic resonance imaging of the brain (fig 1) showed considerable hypertensity, with a band of surrounding hypointensity on T2 weighting involving the putamen, pallidum, thalamus, substantia nigra, and dentate nucleus. The cerebral cortex was atrophic. A computed tomography scan showed no evidence of cerebral calcification.

Mindful of the clinical features, ferritin deposits, dominant inheritance, and family origin reported in neuroferritinopathy, further genetic testing confirmed the presence of the same A insertion at position 460-461 of the ferritin light chain gene. Investigation of genotypes at six polymorphic microsatellite markers close to the gene location on chromosome 19 showed sharing of one allele at each marker. Thus, it is likely that the patient potentially shares the disease associated haplotype with all affected individuals of the originally described families and is another example of inheritance of an initial founder event. Additional evidence comes from the north-west geographical origin of his family.

The differential diagnosis in this case initially included HD, neuroacanthocytosis, and Wilson’s disease, but these conditions were excluded by appropriate investigations. Atypical Hallervorden-Spatz syndrome was also considered, particularly in the light of the appearances on brain imaging, but this condition is recessively inherited and associated with a defective pantothenate kinase gene

www.jnnp.com
Development of palatal tremor in our patient deserves further explanation. Palatal tremor (previously known as palatal myoclonus) may be classified as essential or symptomatic. It is thought that palatal tremor arises because of functional disruption in “Mollaret’s triangle”, which consists of the inferior olivary nucleus, red and dentate nuclei. The symptomatic form is associated with hypotrophy of the inferior olivary nucleus and may arise from vascular lesions, particularly in the cerebellum. Further evidence for this hypothesis comes from a positron emission tomography study, which showed hypermetabolism in the inferior olivary nucleus. Most patients also have cerebellar ataxia. However, palatal tremor may also occur in other conditions including multiple system atrophy, progressive supranuclear palsy, and Alexander’s disease. As in our case, symptomatic palatal tremor is not usually associated with ear clicking. Presumably, in our patient, iron deposition in the dentate nuclei was responsible for disruption of rubral and olivary pathways.

Ferritin is an iron storage protein and alteration in structure of the carboxy terminus could lead to the release of free iron and excessive oxidative stress. In other conditions, such as haemosiderosis, the use of iron chelators has been advocated as a potentially useful treatment. Results in the main, have been disappointing. Whether free radicals scavengers, such as idebenone, have useful therapeutic value in neuroferritinopathy remains to be seen.

Neuroferritinopathy should be considered in all patients with a hyperkinetic movement disorder, imaging evidence of iron deposition within the brain, and an autosomal dominant family history.

The development of palatal tremor in our patient deserves further explanation. Palatal tremor (previously known as palatal myoclonus) may be classified as essential or symptomatic. It is thought that palatal tremor arises because of functional disruption in “Mollaret’s triangle”, which consists of the inferior olivary nucleus, red and dentate nuclei. The symptomatic form is associated with hypotrophy of the inferior olivary nucleus and may arise from vascular lesions, particularly in the cerebellum. Further evidence for this hypothesis comes from a positron emission tomography study, which showed hypermetabolism in the inferior olivary nucleus. Most patients also have cerebellar ataxia. However, palatal tremor may also occur in other conditions including multiple system atrophy, progressive supranuclear palsy, and Alexander’s disease. As in our case, symptomatic palatal tremor is not usually associated with ear clicking. Presumably, in our patient, iron deposition in the dentate nuclei was responsible for disruption of rubral and olivary pathways.

Ferritin is an iron storage protein and alteration in structure of the carboxy terminus could lead to the release of free iron and excessive oxidative stress. In other conditions, such as haemosiderosis, the use of iron chelators has been advocated as a potentially useful treatment. Results in the main, have been disappointing. Whether free radicals scavengers, such as idebenone, have useful therapeutic value in neuroferritinopathy remains to be seen.

Neuroferritinopathy should be considered in all patients with a hyperkinetic movement disorder, imaging evidence of iron deposition within the brain, and an autosomal dominant family history.

A J Wills, G V Sawle
Department of Neurology, Queen’s Medical Centre, Nottingham, UK

P R Guilbert
Department of Clinical Genetics, Nottingham City Hospital

A R J Curtis
Institute of Human Genetics, The International Centre for Life, Central Parkway, Newcastle upon Tyne, UK

Correspondence to: Dr Wills; ade@wills99.swineternet.co.uk

References

Cocaine induced hypokalemic periodic paralysis

The use of cocaine has been associated with a number of psychiatric, medical, and neurological complications. This is the second reported case of a patient who suffered three distinct episodes of paralysis after engaging in a cocaine binge.

Case report
A 33 year old male horse breeder with no significant medical history was evaluated at the Texas Tech Health Sciences Center after the abrupt onset of ascending generalised weakness. He reported not being able to walk or lift his arms or legs, much less climb up or get down the stairs of his home. He reported no bowel or bladder dysfunction, loss of sensation, headache, nausea, or vomiting. The patient did report mild chest pain at the time. Ten days before his initial evaluation he had suffered a very similar episode but had not sought medical attention. At the time of his evaluation the patient stated that he would be better in 24–48 hours. A very similar event had occurred five years earlier, for which he was seen in an urgent care facility and discharged home; symptoms resolved after 2–3 days. Records of this first episode were not available, although he reported that potassium was normal at admission and subsequently shown to be in the normal range. Two laboratory investigations were of particular interest. The patient's potassium concentration was 1.9 mmol/l and urine toxicology screen found the presence of cocaine, cannabimoids, and benzdiazepines.

The patient had initially denied any illicit drug use but later admitted to having engaged in a cocaine binge the previous night and before the previous two episodes of weakness. There was no family history of periodic paralysis or other neuromuscular disorders. Suplemental potassium was provided and the patient's strength gradually improved with rising concentrations of serum potassium. Nerve conduction studies and electromyography were normal at 48 hours after the onset of symptoms. He was discharged home to an outpatient substance abuse program three days later with almost complete resolution of symptoms. At the time of discharge, the serum potassium concentration was 4.5 mmol/l and the CK concentration declined to 131 IU/l.

It is not clear why the use of cocaine led to such severe generalised weakness and hypokalemia in this patient. Nalluri et al reported a similar case and suggested that the hypokalemia was caused by an intracellular shift of potassium secondary to the adrenergic effects of cocaine; a hyperactivity of periodic paralysis in patients suffering from thyrotoxicosis has also been postulated. In their report, as in this case, the patient responded quickly to potassium supplementation. An alternative mechanism may have been cocaine's potential effects on potassium channels. The increased CK and serum glucose concentrations were felt to be the result of cocaine's effects.

A W Lajara-Nanson
Texas Tech University, HSC, Department of Neuropsychiatry and Behavioral Science, 3601 4th Street #4A126, Lubbock, TX 79430, USA

Correspondence to: Dr A W Lajara-Nanson; walter.lajara-nanson@ttuhsc.edu

References

Sulcal abnormalities on brain magnetic resonance imaging in the Guillain–Barré syndrome

The Guillain–Barré syndrome is an immunologically mediated condition affecting the peripheral nervous system. There is evidence that Guillain–Barré syndrome, Miller–Fisher syndrome, and Bickerstaff brain stem encephalitis form a closely related spectrum of disorders. Magnetic resonance imaging (MRI) abnormalities in these conditions have been well described, but intracranial findings are infrequent. We report resolution of sulcal changes on serial MRI of the brain concomitant with clinical recovery in a typical case of Guillain–Barré syndrome.
An 81 year old man had a one week history of progressive lower limb weakness and numbness associated with pain radiating down his right leg. There was no preceding history of infection or trauma. He had no significant past medical history.

On examination, he was alert and rational.

There was no slurring of speech or paresis of the extraocular muscles. Cranial nerve and visual field examination was unremarkable and the neck was supple. He had mild proximal symmetrical upper limb weakness (MRC grade 4/5) and bilateral lower limb weakness (MRC grade 3/5). He had difficulty in walking unaided and in tandem walking. Sensory loss to touch was elicited in the distal lower extremities in stocking distribution. Reflexes in all four limbs were absent. The clinical features were consistent with the Guillain–Barre syndrome.

The patient was initially referred to an orthopaedic surgeon for possible lumbosacral spondylitic disease. Unenhanced MRI scans of the lumbar and thoracic spine showed mild degenerative changes and excluded intrinsic cord abnormalities or external compression. Subsequent enhanced cervical spine MRI scans were also negative. He was then referred for a neurologist.

Nerve conduction studies revealed significantly prolonged distal motor latency (median motor distal latency 6.7 to 9.8 ms; posterior tibial distal latency 7.7 to 9.4 ms) and reduced conduction velocities in the median (40.3 m/s), ulnar (39.6 m/s), and tibial nerves (35.7 m/s). F responses were prolonged (> 37 ms) or absent in all four limbs. Cerebrospinal fluid examination showed absent cells with raised protein of 0.8 g/l, normal glucose concentration, and positive globulin. Bacterial infection was considered and an increased number of leucocytes was noted. CSF protein levels but an absence of cells.

MRI changes resolved with immunoglobulin treatment and clinical recovery. While MRI changes have not been reported in the subcortical regions in demyelinating neuropathies, most probably from focal demyelination, sulcal changes have not been described. Serial MRI studies are a sensitive technique for documenting cortical abnormalities in this condition, even in the asymptomatic setting as demonstrated here.

In the related Miller–Fisher syndrome, MRI changes have been documented in the cranial nerves, spinocebellar tracts, and pons. We postulate that our MRI findings represent a focal manifestation of a wider immunologically mediated reaction within the subarachnoid cerebrospinal fluid bathed space. This focal subcortical reaction probably represents a focal concentration of proteinaceous fluid and correlates well with the CSF findings of high protein levels but an absence of cells.

Muscle fibre regeneration and an increased number of capillaries have been shown in demyelinating neuropathies after intravenous immune globulin treatment, but corticosteroids are still considered to be the first line of therapy. In the clinical setting, the effect of treatment can be assessed by muscle strength and creatine kinase (CK) levels. Direct measurement of capillary and muscle fibre status can only be done by repeated muscle biopsies. However, apart from the fact that more myonecrosis is invasive, they are also a static representation of muscle tissue at a fixed time point and at a particular location (selection bias).

To this end the first time that NIRS, a non-invasive optical method for the measurement of oxygenation and haemodynamics in muscle tissue, has been used to study the effect of treatment in a patient fulfilling the clinical and histological criteria of definite dermatomyositis. A young woman from Aruba, aged 24 years, presented with subacute erythema of the facial skin and severe proximal muscle weakness (arm muscles: mean Medical Research Council score (MRC grade 2); leg muscles: MRC grade 2). Serum CK levels were slightly increased (220 IU/l). Five weeks after the onset of symptoms, treatment with corticosteroids was started in our department. Serum CK levels decreased and muscle strength increased during this period. Serum CK levels were normal at week 12.

References

Muscle tissue oxygenation as a functional tool in the follow up of dermatomyositis

Near-infrared spectroscopy (NIRS) is a direct, non-invasive optical method for measuring local oxygenation and haemodynamics in muscle tissue. Although measurement of local oxygenation by NIRS has been used for the diagnosis of metabolic myopathies, the technique has not previously been applied to inflammatory myopathies. Dermatomyositis is a muscle disorder characterised by complement mediated capillary necrosis, resulting in ischaemia and hypoperfusion. We have now employed NIRS to study the effect of corticosteroid treatment on haemodynamics in muscle tissue in dermatomyositis.

The pathological features of dermatomyositis are characterised by a depressed number of capillaries per muscle fibre and necrosis of single muscle fibres or clusters of fibres at the periphery of the fasciculus. Muscle fibre regeneration and an increased number of capillaries may be seen in the post-treatment phase. NIRS was applied to one patient who had previously been treated with corticosteroids but showed a recurrence of muscle atrophy and weakness immediately before treatment was begun and again after three and seven weeks of treatment. NIRS is based on the relative tissue transparency to light in the near-infrared region, and on the oxygen dependent absorption changes of haemoglobin and myoglobin. Using a modification of the Lambert–Beer law, in which physical path length is incorporated and account for light scattering, it is possible to calculate quantitative values for oxygen consumption and blood flow in skeletal muscle. NIRS is non-invasive and measures oxygenation directly in the muscle. Moreover, it is relatively inexpensive, easy to apply, and applicable at the bedside.

In this study, NIRS measurements were obtained using a continuous wave near-infrared spectrophotometer (Oxymon, Bioengineering Department, University of Connecticut Health Center, Farmington, CT). The NIRS equipment consists of a light source (emitter) and a detector. The emitter emits light that penetrate the skin, muscle and other tissues without being absorbed. The detector measures the transmitted light, and the ratio of the intensity of the transmitted light is used to calculate oxygenated and deoxygenated haemoglobin concentrations.
of Nijmegen, Netherlands). Using this spectrophotometer, which generates light at 890, 850, and 770 nm, it is possible to differentiate between oxyhaemoglobin/myoglobin (O₂Hb/O₂Mb) and deoxyhaemoglobin/myoglobin (HHb/HMb). The optical fibres were placed on top of the flexor digitorum superficialis muscle in the same location for all the measurements. Data were sampled at 10 Hz.

Quantitative NIRS values for oxygen consumption (mV̇O₂) were calculated by evaluating the rate of decrease in [O₂Hb] during arterial occlusion, as previously described.1 Reoxygenation rate ([ΔO₂Hb]/Δt) was determined as the rate of initial increase in O₂Hb measured over three seconds immediately after cessation of arterial occlusion. Both mV̇O₂ and [ΔO₂Hb]/Δt were calculated at rest and following rhythmic isometric handgrip exercise at various work intensities. Each exercise session consisted of one minute of exercise at a contraction rate of 30/min (80% duty cycle), immediately followed by 45 seconds of arterial occlusion for the calculation of mV̇O₂ and [ΔO₂Hb]/Δt. Whereas mV̇O₂ is a measure of mitochondrial function at a certain work intensity and is dependent on the vascular capacity of oxygen delivery, [ΔO₂Hb]/Δt reflects the initial recovery rate at which deoxygenated haemoglobin/myoglobin are resaturated.1 It is therefore directly related to microvascular function. All measurements were performed at the same absolute work intensities.

Figure 1 shows the effect of corticosteroid treatment, measured non-invasively and with relative ease by NIRS, in the patient with severe dermatomyositis. Before treatment was begun, resting mV̇O₂ was slightly higher than in healthy controls (0.19 ± 0.14 ml O₂/min/100 g, respectively). However, mV̇O₂ during exercise was about 60% lower than in the controls over the whole range of exercise intensities (fig 1A). After three weeks of treatment, mV̇O₂ had already markedly increased. After seven weeks, mV̇O₂ had increased even further and was now only 25% below that of the controls, and within the normal range at several work intensities. Serum CK levels were normalised, while muscle strength had increased. [ΔO₂Hb] (fig 1B) showed similar results, with slow recovery rates before treatment was begun and an increase over all work intensities at the three week and seven week examinations. [ΔO₂Hb] after seven weeks of treatment exceeded the normal mean value.

As NIRS measures local oxygenation and haemodynamics within the muscle, it can give direct insight into the working microvascular system. [ΔO₂Hb] increased during treatment, indicating an increase in capillary function. As a result of the increased capillary function and a possible regeneration of muscle fibres, muscular oxygen availability increased, enhancing oxidative capacity—as reflected by the increase in local muscle oxygen consumption.

Although a muscle biopsy will remain indispensable for the diagnosis of dermatomyositis, NIRS is an interesting and non-invasive tool for monitoring the effect of treatment non-invasively and with relative ease. While both serum CK levels and muscle strength are indirect measures, and muscle biopsies provide only a static fingerprint of the muscle, NIRS measures local microvascular and mitochondrial function directly in the intact and working physiological setting.

M C P van Beekvelt, R A Wevers, B G M van Engelen
Neuromuscular Centre, Institute of Neurology, University Medical Centre Nijmegen, PO Box 9101, 6500 HB Nijmegen, Netherlands

W N J M Collier
Department of Physiology, University Medical Centre, Nijmegen

Correspondence to: Dr B G M van Engelen;
vanEngelen@cczonne.aon.nl

References
4. Van Beekvelt MCP, Collier WNMJ, Wevers RA, et al. Performance of near-infrared spectroscopy at rest and after exercise at different levels of maximum voluntary contraction force (MVC). Mean values ± SD are shown for the controls.

Figure 1 Effect of treatment in a patient with severe dermatomyositis. (A) Muscle oxygen consumption (mV̇O₂), and (B) reoxygenation rate ([ΔO₂Hb]/Δt) measured non-invasively by near-infrared spectroscopy at rest and after exercise at different levels of maximum voluntary contraction force (MVC). Mean values ± SD are shown for the controls.

Propofol in myoclonus status epilepticus in comatose patients following cardiac resuscitation

Myoclonus status epilepticus has been identified as a poor prognosticating sign in comatose patients following cardiopulmonary resuscitation.1 These vigorous generalised jerks are considered to be the penultimate phenomenon in a severely damaged brain that is difficult to manage and that may cause difficulty in ventilating the patient. Antiepileptic drugs such as phenytoin or benzodiazepines have not been very successful. When the jerks are particularly severe, neuromuscular junction blockers have been recommended.1 The report on two comatose patients with myoclonus status epilepticus. Propofol in a subanesthetic dose muted these movements considerably.

A 77 year old patient with a prior history of rheumatoid arthritis was resuscitated at home after sudden collapse. The emergency medical service found no pulse. He was defibrillated, and after resuscitation of approximately 70 minutes, pulse and blood pressure returned. In the coronary care unit, he had generalised myoclonus in the face, limbs, and abdomen muscles and the movements were particularly sensitive to touch. His Glasgow coma score was 3 and brainstem reflexes were intact. These rhythmic jerks interfered with mechanical ventilation and caused repetitive bucking of the ventilator. He was treated with fosphenytoin (phenytoin equivalents 20 mg/kg), which subsequently reduced his blood pressure to 80 mm Hg but which quickly returned to a normal level. He was placed on a propofol infusion titrated to a maximal dose of 65 g/kg/min, and myoclonus disappeared. After treatment for three hours, propofol was discontinued. An electroencephalogram showed a burst suppression pattern. Myoclonic jerks returned and, in addition, constant blinking was noted. The patient did not awaken after discontinuation of propofol on the second day.

A 19 year old boy was found hypothermic (core temperature of 31°C) in the field after a car rollover. He was resuscitated for 30 minutes before heart rate returned. On admission, his Glasgow coma score was 3. Notable signs were constant facial jerking, biting on the endotracheal tube, and sound sensitive myoclonus jerks in all limbs. Propofol in a dose of 35 g/kg/min significantly muted myoclonus, although occasional myoclonic jerk was noted in both legs. An electroencephalogram showed a burst suppression pattern. Computed tomography showed poor white-grey matter differentiation, indicating early brain oedema. Care was withdrawn after the patient did not recover from coma after discontinuation of propofol.

Control of generalised myoclonus status epilepticus has been difficult and frustrating.1 I noted that the use of propofol in a fairly low dose muted myoclonus considerably. The typical dose in the intensive care unit is 5–10 g/kg/min, which can then be titrated to 50–
100 µg/kg/min. Propofol has been suggested as a possible treatment for refractory status epilepticus, although hard data of its therapeutic effect are not yet available. Propofol has not been used in this condition before but has been effective in two earlier case reports of severe myoclonus. One patient had chloralose poisoning and one had “encephalopathy.” In this condition a catastrophic anoxic-ischaemic injury may have damaged the cortex, basal ganglia, brain stem, and spinal cord and thus the origin of myoclonus remains undetermined. Propofol may terminate myoclonus through enhancement of γ amino butyric acid type A receptor. Further experimental and clinical research is needed, but these case reports indicate that good control can be achieved. Propofol's additional benefit is that intermittent neurological assessment remains reliable after discontinuation of propofol.

E F M Wijdicks
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
Competing interests: none declared

Correspondence to: Dr E F M Wijdicks, Department of Neurology, Mayo Clinic–WBB, 200 First Street SW, Rochester, MN 55905, USA; wijde@mayo.edu

References

Chronic asymmetric progressive external ophthalmoplegia with right facial weakness: a unique presentation of mitochondrial myopathy

Because of genetic heteroplasmy, the clinical manifestations of mitochondrialopathies are quite varied. We report an unusual presentation in a patient with asymmetric ophthalmoplegia and unilateral myopathic facial weakness caused by a deletion in mitochondrial DNA.

Case history
The patient, a 42 year old white women, was evaluated in our neurology clinic for double vision and right sided facial weakness in early 2000. She first noticed these symptoms in 1994. At that time, she had isolated weakness of adduction of the right eye and she was felt to have a right internuclear ophthalmoplegia. A demyelinating process was considered initially, but magnetic resonance imaging of the brain on four subsequent occasions (annual scans) did not show any structural lesions to support such a diagnosis. The diplopia remained unchanged and an insidious facial weakness developed.

During the course of her illness she had extensive investigations, including normal cerebrospinal fluid, antinuclear antibodies, erythrocyte sedimentation rate, serum protein electrophoresis, and thyroid profile. Rapid plasma reagin and Lyme's titre were negative. She received several courses of high dose steroids without any improvement.

There had been no substantial change in her general physical condition since 1994. Her past medical history was otherwise unremarkable. She is a computer operator and is quite active in sports. She has smoked moderately for 30 years. She has no family history of any neurological disorders. There was no diurnal variation of her symptoms and no complaint of dysphagia, dysarthria, or limb weakness.

Neurological examination revealed a pupillary sparing ophthalmoplegia without ptosis. Specifically she had bilateral exotropia in primary gaze, with total paralysis of adduction of the right eye and mild weakness of abduction of the left eye. She also had mild paresis of infraduction of the right eye. Nystagmus was absent in both horizontal and vertical gaze. She had an infranuclear right facial weakness involving both the orbicularis oculi and the orbicularis oris, without lid synkinesis. The strength in the left facial muscles was normal. Ophthalmaloscopy and corneal reflexes were normal. The remainder of her neurological examination was unremarkable. In summary, this patient had a chronic asymmetrical pupil and lid sparing ophthalmoplegia with binocular diplopia and right facial weakness (fig 1).

The patient had several normal MRI scans. Previous attempts at treatment with high dose steroids were unsuccessful and the diagnosis was uncertain. With no structural lesion to explain her clinical condition, we suspected muscular or neuromuscular pathology. An unusual presentation of oculopharyngeal dystrophy, ocular myopathies, myasthenia gravis, and mitochondrial myopathies were in the differential diagnoses for this progressive ophthalmoplegia. However, we did not have an explanation for her right facial weakness, which we suspected represented a neuropathic process. Further investigations showed normal serum lactic acid and thyroid profile. The blink reflex was normal, excluding the possibility of a cranial neuropathy. Electromyography of the right orbicularis oculi and orbicularis oris showed myopathic features; on the left side it was normal. This suggested an asymmetric facial myopathy. There was no decremental response of the compound muscle action potential, excluding a possible neuromuscular transmission defect. Muscle biopsy from the right quadriceps muscle showed ragged red fibres. Cytochrome C oxidase stains revealed an absence of staining in many fibres, which showed hyperreactivity on succinic dehydrogenase staining. Electron-microscopic examination of muscle tissue showed an increase in the number and size of the mitochondria, especially in subsarcolemmal locations—many showed abnormal cristae structure and paracrystalline inclusions. These findings were diagnostic of mitochondrial myopathy. Genetic testing of muscle was positive for a deletion in mitochondrial DNA of about 3.5 kilobases, spanning the ATPase 6 gene to the NDS gene.

Discussion
Our patient represents a variant of sporadic progressive external ophthalmoplegia with the m-DNA mutation typical of Kearns–Sayre–Daroff syndrome. We were able to find one previous report of this syndrome with a similar clinical presentation. It was a unique problem because of its atypical clinical features, which presented a challenging diagnosis. This case shows the heterogeneity of the clinical manifestations, course, and tissue involvement in mitochondrial disorders.

The blink reflex was normal and symmetrical, thus suggesting a non-neuropathic facial weakness, which was confirmed by electromyography. The presentation of this disorder in our patient shows how supranuclear, brain stem, neuromuscular, or myopathic abnormalities may be encountered in patients with mitochondrial disorders, either in isolation or in combination. Mitochondriopathies should be included in the differential diagnosis of progressive asymmetric facial palsy, while asymmetrical myopathic facial weakness should be included in the differential diagnosis of infranuclear facial palsy. Our patient's genetic study identified a deletion of mitochondrial DNA in a region that encodes different subunits of the respiratory chain complex. Given the clinical manifestations observed, it is clear that the patient has a significant degree of tissue heteroplasmacy.

We would like to emphasise the diagnostic value of the muscle biopsy in cases with atypical clinical presentation and normal serum lactate levels. Genetic testing in blood may become the initial test of choice, with muscle biopsy as an alternative diagnostic aid.

Acknowledgements
Mitochondrial DNA testing was performed at the Emory Molecular Laboratory.

N K Sharma, M Gjirati, J Kumar, J C Kaith
Department of Neurology, University of Illinois College of Medicine at Peoria, One Illini Drive, Box 1649, Peoria, Illinois 61656-1649, USA
Correspondence to: Dr J C Kaith; linnet@uiuc.edu

References
Palatal tremor and cognitive decline in neuroferritinopathy

A J Wills, G V Sawle, P R Guilbert and A R J Curtis

J Neurol Neurosurg Psychiatry 2002 73: 91-92
doi: 10.1136/jnnp.73.1.91

Updated information and services can be found at:
http://jnnp.bmj.com/content/73/1/91

References
This article cites 9 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/73/1/91#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/