An unusual case of Behçet’s disease presenting with bilateral internal carotid artery occlusion

Behçet’s disease (BD) is a multisystemic recurrent inflammatory disorder, which is originally described as a triad of oral and genital ulcerations with uveitis. As vasculitis of the vasa vasorum is the main pathological hallmark of BD, it is generally seen in the form of superficial thrombophlebitis or occlusion of major veins; however arterial obstruction and aneurysms may also be seen to a lesser extent. We present a patient with BD who developed bilateral internal carotid artery (ICA) occlusions.

Case report

A 43 year old, right handed male patient was referred to Ege University Neurology Department for evaluation of an acute onset right sided weakness, fever, headache, and difficulty with gait and speech in August 2001. On admission, he was alert and fully oriented. His temperature was 38°C, pulse was regular (90/min), blood pressure was 150/80 mm Hg. His speech was severely dysarthric but he could name, repeat, read, and follow instructions. His cranial nerves and fundoscopic examination were normal. His gait was wide based and unsteady. He had four sided mild weakness, which was prominent on the right. Muscle stretch reflexes were normal but plantar reflexes were extensor bilaterally. His coordination was impaired in proportion to weakness in all four extremities. He had mild nuchal rigidity of the neck with positive Brudzinski’s sign. On physical examination, erythema nodosum like dark red, painful lesions were noticed on both anterior aspects of the legs. His ophthalmological examination did not reveal any signs of uveitis. He complained of pain and fever in his scrotum, and urological examination showed swelling, induration, and marked tenderness of epididymis on both sides as the clinical findings of epididymitis.

His medical history showed that he had complained about recurrent oral aphthous lesions and aforementioned skin lesions for 8 to 10 years without medical consultation. He had no other medical history associated with BD. He was a moderate cigarette smoker for 20 years.

Laboratory tests were consistent with an inflammatory condition with a high erythrocyte sedimentation rate (100 mm 1st h) and C reactive protein (12.27 mg/dl; normal range 0–5 mg/dl) levels. CSF examination, serum immunoglobulin levels, platelet count, protein C, protein S, antithrombin III, C3 and C4 complement, rheumatoid factor, and lipid levels were within the normal range. Serum anti-neutrophil cytoplasmic and antikeratin antibodies were negative. ECG, 2D echo, chest radiograph, abdominal ultrasoundography, and colour Doppler ultrasonography of the lower extremity vessels were normal. Cranial magnetic resonance imaging showed diffuse cerebral atrophy and chronic ischaemic lesions in both cerebral hemispheres as well as the absence of the flow void in both ICAs on T2 weighted axial images. Digital subtraction angiography (DSA) showed complete occlusion of the bilateral internal carotid arteries just rostral to the bifurcation (fig 1).

After consultation with the rheumatology clinic, a pathergy test was performed to confirm the diagnosis of BD and found to be positive. The patient was then transferred to the rheumatology clinic. He was treated with aspirin 300 mg/day, prednisolon 1 mg/kg/day, pentoxifylline 1200 mg/ day, 750 mg pulse cyclophosphamide monthly for BD. He was also treated with oral antibiotics and analgesics for the epididymitis. Two months later, he had almost completely recovered.

Comment

Our patient had presented with unusual neurological findings for a classic stroke syndrome. DSA and MRI showed bihemispheric ischaemic lesions and bilateral ICA occlusion, which was also shown by DSA. It is known that cardiovascular risk factors, smoking, fibromuscular dysplasia, or moyamoya disease are frequently found as an aetiological factor in patients with bilateral ICA occlusion, whereas essential thrombocythaemia, giant cell arteritis, and BD are among the very rare causes.

Although our patient did not have cardiovascular risk factors except for smoking, he had been suffering from BD for about 10 years, which was not diagnosed before neurological presentation. His medical history, skin lesions, and urogenital findings supported with a positive pathergy test verified the diagnosis of BD according to latest diagnostic criteria for BD.

Neurological involvement in BD has been reported to occur in 2.2% to 43% of cases in large series, either in the form of neuro-Behçet disease (perehymal CNS involvement) or vascular-Behçet disease (secondary or non-perehymal CNS involvement) or both. Neuro-Behçet’s disease has a characteristic clinical picture with male predominance and typical cranial MRI findings of reversible inflammatory parenchymal lesions, attributable to small vessel disease, which may rarely be confused with those of MS. On the other hand, vascular-Behçet’s disease is attributable to large vessel disease generally in the form of cerebral venous thrombosis and has limited symptoms with a better prognosis. Our patient’s neurological signs and symptoms were highly suggestive of neuro-Behçet; however CSF findings with acellularity and normal protein level and neuro-imaging studies showing ischaemic lesions and bilateral ICA occlusions supported a very unusual type of vascular-Behçet.

Diffuse cerebral atrophy and survival with minimal or no neurological symptoms in our patient is not infrequent in patients with bilateral ICA occlusion. This is explained by the adequate collateral flow provided by vertebrobasilar system and slow, gradual occlusion.

Occlusive lesions in the bilateral ICAs, as seen in our patient, are extremely rare in BD and we suggest that this is a very unusual case of vasculo-neuro-Behçet’s disease. We also conclude that BD should always be remembered as an aetiological factor for bilateral ICA occlusions, especially in countries where the disease is highly prevalent.

A Sagduyu, H Sirin
Neurology Department, Ege University, Turkey
F Oksel, T Turk
Rheumatology Department, Ege University
D Ozenc
Neurosurgery Department, Ege University

Correspondence to: Dr A Sagduyu, Ege University Medical School Hospital, Neurology Department, Bomova-IZMIR, Turkey; sagduyu@med.ege.edu.tr

References

1 Siva A. Vasculitis of the nervous system. J Neurol 2001; 248:451–68
Miller-Fisher syndrome and Hodgkin's disease

Miller-Fisher syndrome (MFS) is a rare clinical entity classically regarded as a variant of Guillain-Barré syndrome (GBS) and characterized by the clinical triad of ophthalmoplegia, ataxia and areflexia.1 In GMS, paralysis is restricted to extraocular and occasionally other cranial bulbar muscles. We report on a patient with a relapsing Hodgkin's disease who developed MFS. Conventional immuno-suppressive and intravenous immunoglobulin treatments improved the neurological deficits.

A 58 year old man of Portuguese descent had a 10 year history of Hodgkin's disease (type mixed cellularity, pathological stage IVB) who had been receiving a salvage ESHAP regimen (etoposide VP-16 68 mg/day, methylprednisolone 500 mg/day, and cisplatin 42.5 mg/day for four days and cytotoxicarabine 3.4 g/day on the fifth day) since the first disease relapse four months before admission. He was admitted to the hospital for constitutional symptoms: fever, night sweats, fatigue, malaise, and weakness. There was no history of infection. General examination was unremarkable except for bilateral inguinal adenopathy (1.5 cm). Haemoglobin concentration was 63 g/l, packed cell volume 17.8%, platelet count 89 × 10^9/l, white cell count 3.34 × 10^9/l (neutrophils 2.42 × 10^9/l), and lactate dehydrogenase (LDH) 208 IU/l. The results of the following investigations were normal: glucose, cholesterol, triglycerides, and ions; renal, liver, and thyroid function tests; vitamin B12 and folic acid; and tests for Campylobacter jejuni, herpes simplex virus, herpes zoster virus, cytomegalovirus, Epstein-Barr virus, Streptococcus pyogenes, Borrelia sp, syphilis, and cerebrospinal fluid parameters.

During evaluation included negative computed tomography of the chest. Computed tomography of the abdomen showed para-aortic nodal enlargement and normal sized spleen. Bone marrow examination found histological evidence of Hodgkin's disease. Therefore, a diagnosis of relapsing Hodgkin's disease was considered. Before starting a cycle of ESHAP chemotherapy, the patient complained of bilateral hand edema, dysesthesia, photosensitivity, dysarthria, and gait instability. Neurological function was assessed at that time, eight days after admission. Examination of the cranial nerves found a left sided ptosis with a total bilateral external ophthalmoplegia and fixed dilated pupils. The patient's pupillary response to a 0.05% solution of pilocarpine showed increased sensitivity consistent with a postganglionic parasympathetic lesion. (Oculomotor nerves are among the few myelinated fibres of the postganglionic nervous system and this patient likely had dysfunction in these fibers similar to that observed in the other peripheral nerves). Abnormalities were encountered in about half of patients with MFS.2 There was dysphonia, mild dysphagia, and peripheral seventh nerve palsy. Examination of the peripheral nervous system showed loss of tendon reflexes. His muscle strength was normal, and pinprick, touch, position, and vibratory sensation were not impaired. There was obvious ataxia in all four limbs. He could walk with assistance and tandem gait was impossible. His cerebrospinal fluid protein concentration was 0.79 g/l with 2 lymphocytes/mm^3. Cerebrospinal fluid culture and cytological studies showed only normal lymphocytes. Subsequent investigations found increased IgG ganglioside antibodies to GQ1b glycolipid (titre of 4900). Standard delayed hypersensitive skin tests were performed to purified protein derivative of tuberculin (intermediate strength), Candida albicans, mumps, trichophyton, and streptokinase/streptodornase, showing failure to elicit a response to any skin test antigens. Serum immunoglobulin concentrations were increased (IgG: 19 g/l, normal 10.5 ± 2.9; IgA: 4.8 g/l, normal 1.65 ± 0.8).

Gadolinium enhanced magnetic resonance imaging of the head showed no abnormalities. There was neurophysiological evidence of an axonal sensory neuropathy (sensory conduction in the right sural and median nerves was absent; and the median motor compound muscle action potential was 7.1 mV with a conduction velocity of 41.5 m/s). F wave latencies from the right posterior tibial, right common peroneal, right median, and ulnar nerves were minimally prolonged two days after onset but were within normal limits by three months. The patient presented moderate reduction of facial muscle action potential amplitudes (right: 1.5 mV, left: 1.3 mV). Blink reflex response was greatly reduced (upper extremity latency: 1.5 ms, right latency: 3 ms; left latency: 3.2 ms). Blink reflex saw R1 latencies were mildly prolonged (right: 13.9 ms, left: 14.2 ms). Blink R2 response latencies were normal (right: 30 ms, left: 29 ms). Masseter reflex was normal. The amplitude of the distal sensory evoked response was greatly reduced (upper extremity somatosensory evoked potential amplitude latencies to median nerve stimulation at the wrist). Braintest auditory evoked potentials were normal. Intravenous immunoglobulin was given for five days at a dosage of 0.4 g/kg/day, starting 24 hours after any skin test or delayed cutaneous hypersensitivity symptoms. He gradually improved over the next two weeks. A follow up examination by the time of discharge four weeks after the onset found no clinical recovery from the ataxia and occasional diplopia but the tendon reflexes were still hypotonic. Three months later, neurological examination and lumbar puncture results were normal, all electrophysiological parameters were normalized, and IgG antibody titres to GQ1b were not detectable.

In Hodgkin's disease, the incidence of polyneuropathy is about the same as for the reticuloses in general—that is, approximately 1% or 2%.1 The major clinical picture of this patient was acute ataxia, ophthalmoplegia, and areflexia associated with increased cerebrospinal fluid protein and high titres of antineuropil antibodies (anti-GQ1b antibodies in the context of relapsing Hodgkin's disease, which suggests an autoimmune mediated neurological disorder. To our knowledge this is the first report on a patient with MFS evolving during a relapse of Hodgkin's disease. GBS and MFS occur in relation with conditions marked by autoimmune or paraneoplastic phenomena. Such situations are commonplace, and yet only a tiny proportion is complicated by GBS or MFS. This suggests that a special set of circumstances must prevail for MFS and GBS to occur. Vielmetter et al.17 however, not only are MFS and GBS disorders that can occur in the presence of partial immunosuppression, but also the immunosuppression may be involved in the pathogenesis of the syndromes. One must ask how an autoimmune, possibly cell mediated reaction can occur in an immunosuppressed patient. Animal models such as the NZB mouse show that depression of cell mediated immunity and the T cell system is associated with an increase in autoantibodies and autoimmune diseases, even though this increase is more often humorally mediated.18 Lisak et al.19 described three patients with GBS and Hodgkin's disease, postulating that selective depression of cell mediated immunity from whatever cause may allow the development of autoimmunity, either humoral, cellular, or both, directed against peripheral nervous system antigens.

The development of MFS in the context of relapsing Hodgkin's disease, together with the improvement of this syndrome after tumour treatment and intravenous immunoglobulins, supports the theory that partial immunosuppression and the presence of IgG anti-GQ1b are possible pathogenic mechanisms.

E Rubio-Nazabal, J Marey-Lopez, J P Torres-Carrete, P Alvarez-Perez, P Rey Del Corral

Departments of Neurology and Haematology, Hospital Juan Canalejo, La Coruña, Spain

Competing interests: none declared

Correspondence to: Dr E Rubio-Nazabal, Servicio de Neurología, Hospital Juan Canalejo, As Aubias sn, 15006 La Coruña, Spain; ejrnare@telefonica.net

References

Neuromyotonia and myasthenia gravis without thymoma

Neuromyotonia is a syndrome characterized by motor unit hyperactivity leading to muscle cramps, fasciculations, muscle stiffness, and persistent muscle contraction. In most neuromyotonia patients, the disorder is acquired. Acquired myasthenia or paraneoplastic origin is common.2 Myasthenia gravis, thyrotoxicosis, systemic sclerosis, inflammatory demyelinating neuropathies, thymoma, bronchial carcinoma, and small cell lung cancer may be associated. Here, we report a patient with neuromyotonia, associated with myasthenia gravis and anti-voltage-gated potassium channels (VGKC) and anti-acetylcholine receptor (AChR) antibodies without thymoma.

A 58 year old man of Portuguese descent presented at our neuromuscular clinic with dysesthesia and hyperesthesia in the first three fingers of the right hand. Symptoms had started nine years before and had been attributed to cervical radiculopathy. Over the years, the symptoms had been fluctuating but for the past two months they had become debilitating. Therefore, the patient sought a second opinion with a neurologist. Although right hand pain was his main complaint, for many years his hands and feet were swollen and red. There was stiffness and loss of dexterity of all fingers. He had difficulty writing, using scissors, and using a handheld...
computer. Frequent cramps occurred in the fingers and toes. There was painful tension in the calves, the feet, and the hands. The patient also complained of excessive sweating. These symptoms had progressively worsened. One year before presenting to us, he developed ptosis of the right upper eyelid, rapidly followed by vertical and horizontal diplopia. These symptoms were fluctuating with worsening in the evening. Repetitive stimulation of the facial nerve showed a decremental response. Symptoms and signs disappeared after injection of prostigmine, and anti-AChR antibodies were found. It was concluded that the patient had ocular myasthenia and the patient was treated with oral methylprednisolone. Improvement was rapid and after a few weeks treatment was stopped. Two weeks before presentation, the patient again complained of right palpebral ptosis and diplopia. The symptoms were responsive to pyridostigmine bromide. The medical history was remarkable for ophthalmical migraine, arterial hypertension, myasthenia gravis, and myasthenic syndrome, facial myokymia.

In a significant number of patients with myasthenia gravis, symptoms respond well to treatment with pyridostigmine. However, some patients may experience side effects such as nausea, vomiting, dysarthria, and diarrhea. Other treatment options include intravenous immunoglobulin, plasmapheresis, and corticosteroids. In severe cases, surgical interventions such as thymectomy may be considered. It is important to monitor patients closely for any adverse effects of treatment and adjust doses accordingly. Early detection and management of complications are crucial in improving the quality of life for patients with myasthenia gravis.
and GAD-Abs. Patients with progressive cerebellar ataxia are comparable to previous findings for the presence of organ specific autoantibodies. GAD-Abs titre, intrathecal GAD-Ab synthesis, have type I diabetes mellitus, the high serum coarse nystagmus. Although she does not the posterior pharyngeal wall and asymmetry in several systemic and neurological inflammatory diseases. Recently, it was suggested that an inflammatory reaction is responsible for receptor-mediated inhibition in the nucleus ambiguous motoneuron. Neuroscience 1997;79:1079–88. 5 Silvess Smitt P, Kinoshita A, De Leeuw B, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000;342:21–7.

References
sVCAM-1 (p < 0.01). However, the concentrations of adhesion molecules in serum did not differ significantly (non-surviving: 444 (132) ng/ml for sICAM-1, 1422 (463) ng/ml for sVCAM-1; surviving: 463 (110) ng/ml for sICAM-1, 1147 (382) ng/ml for sVCAM-1).

This is the first study to investigate soluble adhesion molecules in CSF and serum in patients with ICH with ventricular drainage. Moreover, we found more than threefold increases of sICAM-1 and of sVCAM-1 in the CSF of patients with lethal outcome as compared with CSF concentrations from patients with multiple sclerosis (sICAM-1: 2.8 ng/ml, range 0.9–12.7; sVCAM-1: 4.2 ng/ml, range 0–21.5) and from healthy donors (sICAM-1: 5.2 (2.2) ng/ml) as determined in our laboratory by identical test systems.† The finding that the soluble adhesion molecules were increased in CSF but not in serum may indicate that the process leading to poor outcome occurs predominately in the brain. There are two possible explanations for the origin of increased CSF concentrations of soluble adhesion molecules. Firstly, brain tissue destruction may lead primarly to the release of adhesion molecules due to necrotic destruction. Secondly, ICH may initiate an inflammatory process leading to secondary brain damage, as has been suggested in human ischaemic stroke, as well as for experimental ICH and subarachnoid haemorrhage in animal models.‡ With regard to the second hypothesis, it would be interesting to investigate the effects of early anti-inflammatory treatment in patients with ICH and an initially high increased concentration of adhesion molecules in their ventricular CSF samples. In this condition, early application of corticosteroids may be useful to suppress the developing inflammatory reaction. The blockage of ICAM-1 and VCAM-1 by systemic treatment with monoclonal antibodies would probably not be helpful, as the pathogenetic concept is to block the migration of inflammatory cells into the central nervous system, as well as for experimental ICH and subarachnoid haemorrhage in animal models.‡ With regard to the second hypothesis, it would be interesting to investigate the effects of early anti-inflammatory treatment in patients with ICH and an initially high increased concentration of adhesion molecules in their ventricular CSF samples. In this condition, early application of corticosteroids may be useful to suppress the developing inflammatory reaction. The blockage of ICAM-1 and VCAM-1 by systemic treatment with monoclonal antibodies would probably not be helpful, as the pathogenetic concept is to block the migration of inflammatory cells into the central nervous system, as well as for experimental ICH and subarachnoid haemorrhage in animal models.‡ With regard to the second hypothesis, it would be interesting to investigate the effects of early anti-inflammatory treatment in patients with ICH and an initially high increased concentration of adhesion molecules in their ventricular CSF samples.

With these data of only 10 patients, it cannot finally be concluded whether the increased soluble adhesion molecules in CSF are indicators of the fatal process or are responsible for the initiation of secondary brain damage.

Acknowledgements
Dr B Engelhardt is gratefully acknowledged for critically discussing the manuscript.

References

Ondine’s curse with a woman with Leber’s hereditary optic neuropathy
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited disease of mitochondrial DNA. Several mutation sites have been described. All have been associated with visual loss, but mutations at nucleotide position 11778, 3460, and recently 14484, have also been associated with a multiple sclerosis (MS)-like disease.³⁴

We report a woman with undiagnosed LHON who presented with life threatening ventilatory failure. A 39 year old woman who had had bilateral synchronous severe visual loss to perception of light some two years earlier (see below), was admitted after a two week illness with a purulent cough. She was confined to bed and had received oral antibiotics from her general practitioner. She had a history of chronic headaches but reported no change in their frequency before presentation. On admission she was obtunded with a Glasgow Coma Scale (GCS) score of 3/15. She was hypoxaemic, with a severe respiratory acidosis. Arterial blood gas (ABG) showed pH 7.04, Po2, 40.9 kPa, Pco2, 16.2 kPa, and bicarbonate 22 mmol/l. She was admitted to an intensive care unit and ventilated with later tracheostomy. She was weaned from the ventilator after 31 days and transferred to a ward. Five days later she had a second respiratory arrest requiring further ventilatory support. She was transferred to another unit 73 days after admission for consideration of long term non-invasive ventilation. This patient had consumed alcohol to excess and had been admitted previously for benzodiazepine overdose and complications of alcoholic liver disease. Two years earlier she had presented to an ophthalmologist complaining of two months of painless visual loss. Visual acuity was counting fingers bilaterally with central scotomata and absent pupil reactions. Fundoscopy showed bilateral disc oedema, dilated capillaries around the disc margins, and venous pulsations. A CT brain scan was normal, but the patient declined further investigation and a diagnosis of possible toxic amblyopia was made. She had a family history of visual loss. She had three siblings in their 30s, and three children aged 9–12 years who were well.

On examination after transfer (two months after her first respiratory arrest), she was alert, oriented, and breathing room air spontaneously. She was unable to stand and had globally wasted limbs consistent with profound illness. She could just perceive light bilaterally and both optic discs looked pale and the pupils were mid-dilated and unreactive. She had a divergent gaze in the primary position with coarse gait and dysmetria in all directions. A jaw jerk was present and she had a mild facial diplegia with intact sensation. She could speak and swallow adequately and was able to cough and hold her breath to command. She had a spastic quadriparesis with grade 4/5 power in the arms and grade 3/5 in the legs and a flicker of movement only at the toes. Anterior abdominal motion during breathing while lying was preserved. Reflexes were brisk throughout and plantar responses were extensor. There was a subjective sensory abnormality to light touch to the mid-thighs and joint position sense was severely impaired in the fingers. Breath sounds were quiet and chest excursion limited. She had a distended abdomen with a four finger breadth liver edge palpable and shifting dullness consistent with ascites. The ABG on air showed pH 7.31, Po2, 6.8 kPa, Pco2, 10.5 kPa, and bicarbonate 34.8 mmol/l. Four hours later she became drowsy with a GCS of 8/15. Further ABG revealed pH 7.19, Pao2, 5.5 kPa, Pco2, 12.8 kPa, and bicarbonate 28.3 mmol/l. After four hours of non-invasive intermittent positive pressure ventilation (NIPPV); ABG on two litres of entrained oxygen showed pH 7.4, Pao2, 16.4 kPa, Pco2, 5.2 kPa, HC03 27.4 mmol/l. She was subsequently transferred to a ward and treated with NIPPV, on room air, at a pressure of 14 cm H2O overnight and during daytime naps.

An MRI scan of her brain showed symmetrical high signal lesions in the brainstem in the floor of the fourth ventricle at the level of the pons and in the medulla and upper cervical cord (fig 1). The remainder of the brain was spared and in particular there were no lesions suggestive of central pontine myelinolysis or alcoholic damage. CSF examination was unremarkable except for a marginally increased protein at 0.48 g/l. CSF and
some patients had received more than one vaccine.

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>GBS Patients</th>
<th>Relapses</th>
<th>CIDP Patients</th>
<th>Relapses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influenza</td>
<td>211</td>
<td>8 (3.8%)</td>
<td>46</td>
<td>2 (4.3%)</td>
</tr>
<tr>
<td>Tetanus</td>
<td>105</td>
<td>6 (5.7%)</td>
<td>23</td>
<td>2 (8.7%)</td>
</tr>
<tr>
<td>Typhoid</td>
<td>50</td>
<td>3 (6.0%)</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Polio</td>
<td>42</td>
<td>4 (9.5%)</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>37</td>
<td>3 (8.1%)</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>20</td>
<td>1 (5.0%)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rabies</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pneumococcus</td>
<td>15</td>
<td>6 (33.3%)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>BCG</td>
<td>8</td>
<td>2 (25.0%)</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>12</td>
<td>2 (16.7%)</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Meningococcus</td>
<td>16</td>
<td>1 (6.2%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cholera</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rubella</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>5</td>
<td>2 (40.0%)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Measles</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Smallpox</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mumps</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Frequency of relapse of Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) following various immunisations.

The Guillain-Barré Syndrome Support Group, a British patient organisation, posted 3000 questionnaires to its members, asking them to identify their illness, record all immunisations administered after their illness, and describe any symptoms within six weeks of immunisation suggestive of recurrence of GBS or worsening of CIDP.

All but one of the patients who reported neurological symptoms after immunisation were contacted by telephone to confirm their history and to grade their symptoms using the modified Rankin scale.8 For the patient who could not be contacted by telephone, the patient’s consultant neurologist provided the information. Questionnaires were sent to the general practitioner for each patient who reported a “relapse” to confirm which vaccine had been administered.

A total of 1141 patients (37.1%) completed the questionnaires, of whom 927 had had GBS, 179 had CIDP, and eight were excluded because they had other diseases. Of the 927 patients with GBS, 311 had received immunisations since having GBS. Eleven (3.5%, 95% confidence limits (CL) 1.8%, 6.2%) reported symptoms including increased fatigue, weakness, numbness, and paraesthesiae, but these were usually mild and no patient required hospitalisation or treatment. In the cases symptoms came on within 24 hours of immunisation and all but one developed symptoms within one week of immunisation. One patient reported symptoms rendering him unable to walk unaided in the six weeks, which increased his modified Rankin scale score from grade 2 to 4.

Influenza, tetanus, and typhoid were the most common immunisations associated with a relapse after GBS but the number of patients who reported symptoms was small compared with the total numbers receiving each of these vaccines (table 1). Although the results suggest that some vaccines that are administered less frequently (such as diphtheria) may be associated with a higher relapse risk, the numbers were small and most of these vaccines were administered at the same time as other vaccines.

Of the 311 patients with GBS who had received vaccines after having GBS, 29 had also received a vaccine in the six weeks before the onset of their initial illness. Two of these patients (6.9%, 95% confidence limits (CL) 0.85%, 22.8%) had a recurrence of symptoms after a second, different, vaccine was subsequently administered. Of the 179 patients with CIDP, 65 had been immunised after disease onset. Five reported worsening of neurological symptoms following immunisation. In three the symptoms were similar to a typical relapse of their CIDP, but only one of these patients required treatment within two months of immunisation. The other two patients with CIDP were immunised when already experiencing mild neurological symptoms, which then worsened, so that their modified Rankin scale score increased from grade 4 to 4 and they became dependent on a walking stick and unable to drive.

Of the patients with CIDP who experienced a relapse after immunisation, two relapses occurred among 23 patients who received the tetanus vaccine, giving a risk of relapse of 8.7%. Two of 46 (4.3%) patients with CIDP had relapses after influenza vaccine, of whom one had simultaneous pneumococcal symptoms and the other one had simultaneous pneumococcal and typhoid vaccine. Fourteen patients with CIDP had no symptoms of relapse following immunisation with typhoid vaccine. Between one and seven patients with CIDP had no...
Hypoglycaemia induced by phenytoin treatment for partial status epilepticus

A 22 year old woman was admitted at our epilepsy unit in status epilepticus. On examination, seizures were characterised by a confusional state with little response to external stimuli, and recurrent, brief, tonic motor manifestations lateralised to the left side. Family history was negative for epilepsy and metabolic disorders. Full term birth was uncomplicated and first psychomotor developments were normal. In the past medical history there was no sign of any metabolic diseases and no reports of cognitive dysfunction or personality disturbances. At the age of 16, the patient presented with epilepsy, which was characterised by two types of seizures: general tonic seizures, which occurred several episodes of loss of consciousness after any other manifestations, which were rare. The patient was treated for many years with 20 mg of clobazam twice daily. The awake EEGs that were performed routinely during the years of treatment with clobazam showed normal background rhythm with rare epileptiform discharges, characterised by irregular 2–3 Hz spike and wave complexes localised over both frontal-central regions. Magnetic resonance imaging of the brain, which was performed at the age of 18 years, showed no abnormalities. On the day of admission at the epilepsy unit, the patient had an urgent EEG that revealed continuous, rhythmic spikes or spike and wave complexes over both frontal-central regions with right predominance. Emergency drug treatment with intravenous lorazepam 4 mg was performed twice with a 15 minute interval, but there was no change in the clinical status. Therefore, after 30 minutes, intravenous phenytoin 1000 mg was given by infusion over a period of 20 minutes, and then an infusion of 750 mg of phenytoin was set up for a period of 24 hours. Clinical symptoms and EEG abnormalities rapidly improved and completely resolved after 40 minutes from the start of the administration of phenytoin.

Nine hours later, while the medical observation was still ongoing, the patient developed an episode of profound loss of consciousness, which was preceded by prodromal symptoms, including tachycardia, sweating, light headness, and irritability. On examination, there was reduction of alertness, confusion, and tachycardia. There were signs of intermediated size diameter and reactive to the light. No focal neurological signs were observed. EEG monitoring did not show any abnormalities. Emergency blood tests revealed severe hypoglycaemia (<20 mg/dl). Prompt correction of the hypoglycaemia was obtained by the intravenous infusion of 50 ml of 50% glucose, and a consequent recovery of consciousness occurred. Phenytoin infusion was then withdrawn and oxcarbazepine was titrated. In the following days no further episodes of hypoglycaemia were noticed. The patient was therefore investigated with the oral glucose tolerance test, which showed normal levels of plasma glucose, immunoreactive insulin, and immunoreactive insulin/plasma glucose, and with a subnephrin CT scan, which did not show evidence of pancreatic insulinaemia.

Comment

We have described a patient who experienced a severe episode of hypoglycaemia induced by intravenous phenytoin, which was administered at the doses recommended for the treatment of status epilepticus. It is known that phenytoin interferes with glucose metabolism. Indeed, it may inhibit the release of glucose stimulated insulin and induce a consequent hyperglycaemia. The ability of phenytoin to induce hypoglycaemia, in particular, a possible effect on glycaemia induced by status epilepticus, has been considered not relevant, because the status epilepticus was partial and resolved nine hours before the onset of hypoglycaemia. However, we can hypothesise that hypoglycaemia when a therapeutic dose of phenytoin, and, to our knowledge, this is the first case of severe hypoglycaemia during treatment with phenytoin for status epilepticus. In this case we have indeed excluded a different aetiology of the hypoglycaemia. In particular, a possible effect on glycaemia produced by status epilepticus, has been considered not relevant, because the epilepsy was partial and resolved nine hours before the onset of hypoglycaemia.

References

4. Colanza, A Mascia, F Mari, M Manfredi IRCCS “NEUROMED”. Pozzilli [8], Italy and Department of Neurological Sciences, University of Rome “La Sapienza”, Rome, Italy

Correspondence to: Dr G Di Gennaro, IRCCS Neuromed, via Atinense, no 18, 86077, Pozzilli [8], Italy, gdi@neuromed.it
Meta-analysis of α-synuclein/NACP polymorphism in Parkinson's disease in Japan

α-Synuclein is a presynaptic protein highly and broadly expressed in the brain but its normal function is unknown. The protein is also termed non-amyloid β component precursor (NACP) because of its localization in amyloid plaques of Alzheimer's disease. However, subsequent studies failed to confirm α-synuclein as a component of the amyloid plaque. α-Synuclein/NACP is now known to be a major component of Lewy bodies in Parkinson's disease (PD). Point mutations of the α-synuclein gene found in three independent PD families suggest that α-synuclein may participate in the actiology of sporadic PD. To address this possibility, several groups reported case-control studies using a dinucleotide repeat polymorphism in the promoter region of the gene. The previous Japanese study by Izumi et al. found a tendency of a lower frequency of allele 1 in Japanese PD patients than in controls. To examine the trend of association, we performed a similar analysis in 165 PD patients and 155 healthy controls in Japan.

The patients with sporadic PD (97 women and 68 men, mean (SD) age 64 (9.6) years, mean age at onset 56 (11) years) had been under treatment at the neurological clinic of Utano National Hospital. The control group was matched for age (mean 63.0 (8.6) years), sex ratio (97 women and 58 men), and birth place (Kyoto and Osaka prefectures) with the PD patients. The controls were selected from the annual health examination at a city clinic. All participants were Japanese. The institutional ethics committees approved the study protocol and informed consent was obtained from each participant. The dinucleotide repeat polymorphism was analysed as reported. We identified five polymerase chain reaction products with different lengths and termed them according to Xia et al. as follows: 253 bp, allele 0; 257 bp, allele 1; 261 bp, allele 2; and 263 bp, allele 3. Statistical analysis was performed by χ² test. The corrected p value (pc) was obtained by multiplying the p value by the number of alleles. As table 1 shows, in our study allele 1 tended to be less frequent in patients with PD than in controls (p = 0.042 for allele distribution and p = 0.012 for genotype distribution), although the difference was insignificant after correction by the number of alleles (pc = 0.21 for allele distribution and pc = 0.072 for genotype distribution). This result was similar to the previous Japanese work. To increase the power of the Japanese PD control analysis, we combined our data with those of Izumi et al. (table 1). The meta-analysis showed a significantly lower frequency of the allele 1 positive genotype in patients with PD than in controls even after correction (pc = 0.0044, odds ratio 0.61, 95% CI 0.45 to 0.81). These results suggest a negative association of allele 1 with PD in Japanese.

As reviewed by Farrer et al., results of studies of white populations have varied—some suggested a significant difference between patients with PD and controls and others did not. We did not combine Japanese data with data from white populations because of the difference in allele distribution between them: the frequencies of alleles 0, 1, and 2 in Japanese are 40%, 33%, and 25%, respectively (table 1), while the frequencies of alleles 0, 1, and 2 range from 22–32%, 58–72%, and 3–9%, respectively, in white studies. The relation between dinucleotide repeat polymorphism and the functional aspects of α-synuclein remains unknown. Lee et al. recently reported that overexpression of α-synuclein in human neuroblastoma cell line retards cell death induced by serum withdrawal or hydrogen peroxide. This suggests that the dose of α-synuclein may influence neuronal viability. Thus, in Japanese, allele 1 may be associated with high expression or low degradation of α-synuclein.

Acknowledgements

This work was supported in part by grants in aid from the Ministry of Health and Welfare of Japan (Health Science Research Grants, Research on Brain Science, and a grant in aid for Neurodegenerative Disorders).

I Mizuta, *M Nishimura, E Mizuta, S Yamasaki, **M Ohta, S Kuno Clinical Research Centre, Utano National Hospital, Kyoto 616-8255, Japan
*Also the Department of Clinical Neuroscience, Tokushima University Hospital, Tokushima 770-8503, Japan
**Also the Department of Clinical Chemistry, Kobe Pharmaceutical University, Kobe 658-8585, Japan

Competing interests: none declared

Correspondence to: Dr S Kuno, Clinical Research Centre, Utano National Hospital, Kyoto 616-8255, Japan; yakuri@alles.or.jp

References

Hypoglycaemia induced by phenytoin treatment for partial status epilepticus

G Di Gennaro, P P Quarato, G B Colazza, A Mascia, F Mari and M Manfredi

J Neurol Neurosurg Psychiatry 2002 73: 349-350
doi: 10.1136/jnnp.73.3.349

Updated information and services can be found at:
http://jnnp.bmj.com/content/73/3/349

References

This article cites 4 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/73/3/349#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/