LETTERS

Increased serum concentrations of tissue plasminogen activator correlate with an adverse clinical outcome in patients with bacterial meningitis

Bacterial meningitis is the most common serious infection of the central nervous system. It is still characterised by high mortality and morbidity in adults. In this disease extensive perpetuated inflammation with leucocyte invasion into the central nervous system (CNS) results in breakdown of the blood–brain barrier and promotes neuronal damage.1 Tissue type plasminogen activator (tPA) has been shown to have various biological effects that could have an impact on the pathophysiological changes observed in bacterial meningitis. In the CNS, endothelial cells, microglia, astrocytes, and neurons can produce the 70 kDa protein tPA, which normally does not cross the blood–brain barrier.2 Raised tPA levels in the cerebrospinal fluid (CSF) have previously been reported for certain CNS diseases such as multiple sclerosis, leukemia, and encephalitis,3 and raised serum tPA levels for patients with sepsis.4 tPA converts plasminogen into plasmin, a fibrinolytic enzyme that degrades fibrin, fibrinogen, and other plasma proteins.5 Further, tPA has been shown to be involved in the processing of growth factors and cytokines.6 tPA converts plasminogen into plasmin, a fibrinolytic enzyme that degrades fibrin, fibrinogen, and other plasma proteins.7 tPA has been shown to be involved in the processing of growth factors and cytokines.8 tPA converts plasminogen into plasmin, a fibrinolytic enzyme that degrades fibrin, fibrinogen, and other plasma proteins.9

Blood–brain barrier disturbances in healthy patients are of particular importance to the in the light of earlier studies in rodent models, in which systemic infusion of tPA or plasmin resulted in blood–brain barrier disturbances in healthy control animals or in cerebral ischaemia.10 Disruption of the blood–brain barrier is an important pathophysiological alteration in bacterial meningitis, which contributes to CNS complications such as cerebral oedema and increased intracranial pressure.11 This may explain the additional correlation we found between high serum tPA levels and an adverse clinical outcome. A similar correlation was seen in patients with severe sepsis, a disease typically associated with increased vascular permeability, in which serum tPA activity increased and was associated with mortality.6

Acknowledgement

This study was supported by grants from the Förderprogramm Forschung und Lehre der Ludwig-Maximilians University Munich (to FW) and from the Wilhelm Sander-Stiftung (to HWP). We thank Ms S Walter and B Angele for technical assistance and Ms J Biensson for copy editing the manuscript.

F Winkler, S Kastenbauer, U Koedel, H W Pfister
Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians University, Marchioninistr 15, D-81377 Munich, Germany

Competing interests: none declared.

Correspondence to: Dr H W Pfister; pfister@neuro.med.un-muenchen.de

References

Figure 1

A Concentrations of tissue type plasminogen activator (tPA) in the cerebrospinal fluid (CSF) of control patients (controls, mean (SD): 1.54 (0.15) ng/ml), patients with bacterial meningitis (2.42 (1.59) ng/ml), and patients with Guillain-Barré syndrome (GBS, 1.50 (0.02) ng/ml). B Concentrations of tPA in the serum of controls (9.71 (6.92) ng/ml), patients with bacterial meningitis (22.51 (13.84) ng/ml), and patients with GBS (13.28 (8.74) ng/ml). *p < 0.025 vs control patients, t_p < 0.025 vs patients with GBS. Dotted line: detection limit of the assay.

www.jnnp.com
Amelioration of spinal myoclonus with levetiracetam

Spinal myoclonus has been associated with various spinal cord insults, including mass lesions, ischaemia, infection, and as part of a pattern of the syndrome. It has been postulated that it occurs as a result of deficient inhibitory glycinergic transmission in the spinal cord and subsequent “release” of synchronous motor neurone oscillations within segments of the spinal cord. Levetiracetam (UCB Pharma, Smyrna, Georgia, USA) is a new antiepileptic drug that has been shown recently to reduce the effect of glycinergic inhibitors. We describe three patients whose spinal myoclonus was markedly ameliorated by levetiracetam.

Case reports

Patient 1: spinal epidural compression

A 62 year old woman with known diffuse large cell lymphoma presented to her oncologist with progressive back pain accompanied by a band-like sensation around her waist. In the preceding four weeks, she had also been treated with continuous intravenous analgesic and sedation, no side effects were experienced. On examination, she had brief, irregular, extensor movements of her thoracic spine, occurring every 10–30 seconds. An EEG was normal. MRI of the thoracic spine was precluded because of her pacemaker. The patient was started on levetiracetam at a dose of 250 mg twice a day. Within 24 hours of starting this treatment, the myoclonic movements completely ceased. Two months later, she began to have clusters of repetitive movements once or twice daily for periods of 20–60 minutes. Her dose of levetiracetam was increased to 500 mg twice a day. The movements again ceased, but because of sedation and dizziness at this higher dose, the dosage was stopped. At this point, she was well tolerated, she has been having brief clusters of myoclonic movements two or three times a week.

Patient 2: zoster myelitis

A 12 year old boy presented with a three month history of rhythmic spasms of his right thigh. One month before this symptom, he had had onset of bilateral leg weakness and incontinence. On examination, he had constant, semi-rhythmic myoclonus of his right quadriceps, with patellar fixation, but did improve slightly with intravenous lorazepam (as often as 2 mg every 4 hours) and of his right hamstrings. These jerks could not be suppressed voluntarily and made walking difficult. Cerebrospinal fluid analysis and an MRI of the spinal cord were normal. An EEG did not show any epileptiform activity. Sodium valproate (1000 mg/d), phenytoin (300 mg/d), and intravenous lorazepam (as often as 2 mg every 4 hours) failed to relieve the constant myoclonus. A trial of botulinum toxin A injections into the right quadriceps did not ameliorate the movements.

On examination, he had constant, semi-rhythmic myoclonus of his right quadriceps at 120–150 beats/minute. This postulate is based on studies of animal models of spinal cord transection, and it has been postulated that deficient inhibitory glycinergic transmission in the spinal cord and hence a myoclonic phenomenon in the spinal cord. This postulate is based on studies of animal models of myoclonus and an in vitro model of spinal myoclonus. The latter study showed that blockade of glycine receptors in isolated spinal cord preparations from neonatal rats enhanced a central pattern generator responsible for 5 to 15 Hz synchronous motor neurone oscillations. Interestingly, these oscillations—generated from as few as two isolated segments—were synchronised over at least six spinal cord segments, suggesting extensive excitatory commissural connections. It is possible that the effectiveness of levetiracetam in our patients may be related to these glycinergic mechanisms. Levetiracetam has been shown to reduce inhibitory glycinergic transmission in the spinal cord and thus dampening down myoclonic focality.

In a recent open labelled trial of levetiracetam in eight patients with chronic myoclonus, three of five patients with chronic myoclonus experienced reduction in their myoclonus severity, as assessed by the unified myoclonus rating scale. The one patient in this study with spinal myoclonus showed no improvement with levetiracetam. In our study, the average duration of symptoms in these patients was 7.6 years, ranging from one to 17 years, in contrast to our three patients whose symptoms were one to three months in duration before levetiracetam treatment. It is therefore possible that the differential responsiveness to levetiracetam was because the aforementioned non-responder had a chronic condition whereas our responders had subacute evolving spinal cord injuries.

In a recently published study, levetiracetam was used successfully to treat three patients with posthypoxic and postencephalitic myoclonus, two of whom had failed to respond to valproic acid and clonazepam. Add-on therapy with levetiracetam was shown to suppress disabling post-hypoxic cortical reflex myoclonus in a 16 year old boy. In another study, levetiracetam was used successfully to treat three patients whose posthypoxic and postencephalitic myoclonus was unresponsive to valproic acid and clonazepam. In our cases, as well as the aforementioned reports of suppression of post-hypoxic and postencephalitic myoclonus with levetiracetam, suggest that this agent is promising for the treatment of both non-cortical and cortical myoclonus. These observations need to be confirmed in additional patients. Furthermore, the proportion of responders needs to be determined in a larger group of patients, ideally in the setting of a randomised, double blind, placebo controlled trial.

C Hagerty
Neurology Specialists, Columbia, Maryland, USA

Competing interests: GLK is a paid consultant to UCB Pharma. The terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies. The other authors declare no competing interests.

Correspondence to: Dr G L Krauss; gkrauss@jhmi.edu

References

www.jnnp.com
Hyperthyroidism with increased factor VIII procoagulant protein as a predisposing factor for cerebral venous thrombosis

Cerebral venous thrombosis (CVT) is a rare disorder, with an incidence of approximately 4–10000 per year, occurring more frequently in women than in men (ratio of 1:2–1:10). CVT is a multifactorial condition, known predisposing factors include venous stasis, hypercoagulability, vasculitis, systemic lupus erythematosus, and trauma. Morality after CVT ranges from 5% to 30%. The optimal treatment consists of anticoagulation for six months and should only be maintained beyond this time if known risk factors for CVT persist. Treatment should not be discontinued in case of an asymptomatic haemorrhagic transformation of the associated venous infarct.

In recent years, a few thyrotoxic patients with CVT have been reported. An association between hyperthyroidism and increase of FVIII has also been described, and recent data suggest an increased incidence of venous thrombosis in patients with hyperthyroidism and high FVIII levels. Here we report a patient with increased FVIII levels and an autoimmune hyperthyroidism, who developed a CVT complicated by venous infarction.

Case report
A 39 year old woman was admitted to the emergency room after a brief episode of convulsions, preceded by a short period of perseveration, verbal aggressiveness, and disorientation. Four days before admission, she had developed a sudden, pulsatile left sided headache, which was unresponsive to paracetamol and ibuprofen. Personal and family medical histories were unremarkable. She had been taking oral contraceptive pills for several years and smoked two cigarettes a day. Neurological examination was normal, except for a temporary confusional state that lasted less than 24 hours. Electroencephalography demonstrated a slow arrhythmia in the left temporal region, without epileptic activity. Brain computed tomography revealed a left temporal hypodense lesion, with moderate contrast enhancement. Magnetic resonance imaging of the brain performed 24 hours later, showed a non-specific hypointense lesion on the T1 weighted images. The magnetic resonance venography (fig 1) revealed an extensive thrombosis of the left lateral sinus with involvement of the distal part of the jugular vein. The diagnosis of a temporal venous infarct was made. Treatment with unfractionated heparin was started promptly and maintained for one week, followed by oral anticoagulation with an INR between 2 and 3. Oral contraceptive treatment was discontinued and the patient was advised to stop smoking. Extensive screening for coagulopathies including antiphospholipid syndrome, dysfibrinogenemia and mutations in antithrombin, protein C and S, and hyperhomocysteinaemia, and activated protein C resistance revealed no abnormalities. The G20210A prothrombin gene mutation was absent. Autoimmune tests including ANF, ANCA, complement and rheumatoid factors were negative. Further analysis revealed a state of hyperthyroidism with a TSH value below 0.015 mIU/l (normal levels: 0.35–4.5 mIU/l), free triiodothyronin of 12.1 ng/ml (normal: 9.3–18.0 ng/ml), and an increased free thyroxin of 28.8 ng/ml (normal: 9.3–18.0 ng/ml). Anti-TSH receptor antibodies were found consistent with Graves-Basedow’s disease. The patient was treated with thiamazole (3×10 mg/day), followed by the administration of radioactive iodine (9 mCi). One month after discontinuation of oral contraceptives, thyroid tests remained increased. FVIII procoagulant protein showed a marked increase: 1680 IU/I (normal levels: 500–1500 IU/I) and remained slightly raised five weeks later. Meanwhile the patient developed a hypothyroidism, necessitating a substitution treatment with LT4. After a further six months both thyroid tests and FVIII levels normalised and anticoagulants were stopped.

Discussion
Increase of clotting FVIII occurs in several conditions such as strenuous exercise, fever, pregnancy, renal failure, adrenaline (epinephrine) infusion, prednisone treatment, and intravascular haemolysis. Hyperthyroidism, whatever its origin, also induces a significant increase in FVIII levels, with a comparatively short activated partial thromboplastin time, while other clotting factors remain within normal limits. Moreover, correction of thyroid function results in normalisation of FVIII levels. In patients with recurrent hyperthyroidism, levels of FVIII are known to fluctuate with thyroid function. The physiopathological mechanism involved remains unclear. Excessive adrenergic activity occurring in hyperthyroid patients could have a direct effect on the production of FVIII. The fact that the administration of propanolol inhibits the increase of FVIII in patients with hyperthyroidism supports this theory.

References

Coma with focal neurological signs caused by Datura stramonium intoxication in a young man

Intoxication with Datura stramonium, which contains a variety of tropine alkaloids, produces atropine-like effects. The seeds of D stramonium (semen stramonii) in particular contain hyoscyamine, scopolamine, and atropine. Symptoms include agitation, disorientation, hallucination, flushed skin, dilatation of...
pupils, urine retention, seizures, and respiratory depression. D stramonium is voluntarily used for its hallucinogenic properties. Its anticholinergic compounds are likely to produce delirium and stupor but rarely cause deep coma.

Coma is an important diagnostic error is to mistake coma resulting from brainstem infarction, supratentorial mass lesions, metabolic disorders, or hypoxia for coma resulting from poisoning. The initial distinction of these conditions may be difficult. We report an unusual case of D stramonium intoxication in a patient who initially presented with deep coma, focal neurological signs, and decorticate posture.

A 30 year old male patient was admitted for ethanol poisoning. The initial neurological examination was performed one and a half hours after the sudden onset of symptoms. There was no evidence of trauma. Vital signs, such as cardiolpummary function, body temperature, and blood oxygenation, were normal. Initial laboratory testing for electrolyte disorders, renal or hepatic failure, and hypoglycaemia or hyperglycaemia found no major pathology. Blood alcohol concentration was 1.1‰. He presented in a decorticate posture. The upper limbs were in a paratonic flexor position with increase of flexion tonus to noxious stimuli, which was more pronounced on the right side. The lower extremities did not respond to noxious stimuli and remained in an extensor position, which was also slightly more pronounced on the right side. Both the upper and the lower extremities greatly resisted passive motion. The eyeballs were divergent. Corneal responses were bilaterally absent. The horizontal oculococephalic response, however, was intact, while the vertical response was minimal. Swallowing reflex was present. Respiratory patterns were regular. Deep tendon reflexes could not be evaluated because of the massive increased muscle tone. Plantar response was extensor, bilaterally, more prominent on the right side. Tachycardia and retention of urine were also present. Initially the patient scored four on the Glasgow coma scale.

Magnetic resonance imaging of the brain was performed to detect brainstem infarction or supratentorial mass lesions. There were no pathological findings. Common metabolic disorders were excluded. Hyperglycaemia, hepatic or renal failure, electrolyte disorders, disorders of systemic acid-base balance, and hyperthyroidism were excluded by laboratory examinations. Urine samples for benzodiazepines and morphines were negative. Analysis of cerebrospinal fluid to exclude subarachnoidal haemorrhage or infectious disease showed normal cell count, protein concentration, and cytology. Possible status epilepticus was also considered. However, administration of 10 mg diazepam had no effect.

The next neurological examination was performed four hours later. Vital signs were stable. The upper limbs were still in a flexor position and the lower limbs were still extensor; however, the increased muscle tone began to decrease and was less resistant to passive motion. He withdrew abnormally from painful stimuli. Plantar response was extensor on the right side. The pupils were still dilated and not reactive to light but both corneal reflexes were intact. No verbal responses could be obtained. He was transferred to the intensive care unit for acute loss of consciousness. Over the next hours, the patient's neurological signs subsided gradually.

Finally, we were informed about the intake of D stramonium seeds. Analysis of blood samples found increased concentrations of alkaloids. Treatment during the clinical course was supportive with continuous cardiovascular monitoring. Thirty six hours after admission the patient was discharged in good clinical condition, without neurological deficits except amnesia regarding the acute toxic episode.

Our patient presented with coma in a decorticate posture. Initially a severe multifocal brainstem infarction or supratentorial mass lesions were suggested. However, the discrepancies between ethanol and D stramonium poisoning were noted. Corneal reflexes and non-reactive dilated pupils, and, on the other hand, the intact oculocephalic and swallow reflexes such as corneal reflexes and non-reactive dilated pupils, and, on the other hand, the intact oculocephalic and swallowing reflexes, especially the regular respiratory patterns made the findings inconclusive and a toxicological cause probable. Moreover, vital signs were stable and magnetic resonance imaging of the brain, cerebrospinal fluid, and laboratory examinations showed no major pathological findings.

D stramonium is misused for its hallucinogenic effects. It can be obtained as a herb, as a powder, and as seeds. The typical anticholinergic effects of D stramonium are well known. Coma with focal neurological signs and decorticate posture is an unusual presentation of D stramonium intoxication. However, the presence of coma in our patient was linked to the atropine effect, described as the central anticholinergic syndrome, which has been reported in the literature.

Phystostigmine, which may reverse anticholinergic toxicity, was not administered because it can produce severe complications such as seizures and cardiac arrhythmia. Moreover, the patient's neurological symptoms subsided gradually.

Regarding this uncommon clinical presentation, the pharmacological interaction between ethanol and D stramonium must also be taken into account. However, as far as we are aware, no clinical or pharmacological interactions between ethanol and D stramonium in humans have been described in the literature.

d stramonium intoxication with the clinical picture of coma, decorticate posture, and focal neurological signs is an important clinical observation, which must be taken into account in other comatose states.

S Oberndorfer, W Grisold
Department Neurology and LBI for Neurooncology, Kaiser Franz Josef Hospital, Kundratstrasse 3, 1100 Vienna, Austria
Hinterholzer, M Rosner
Intensive Care Unit, Kaiser Franz Josef Hospital, Kundratstrasse 3, 1100 Vienna, Austria

Competing interests: none declared
Correspondence to: Dr S Oberndorfer; stefan.oberndorfer@kfn.wien.at

References

Increased serum concentrations of tissue plasminogen activator correlate with an adverse clinical outcome in patients with bacterial meningitis

F Winkler, S Kastenbauer, U Koedel and H W Pfister

J Neurol Neurosurg Psychiatry 2002 73: 456
doi: 10.1136/jnnp.73.4.456

Updated information and services can be found at: http://jnnp.bmj.com/content/73/4/456

These include:

References

This article cites 5 articles, 2 of which you can access for free at: http://jnnp.bmj.com/content/73/4/456#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/