Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy

A Tsunoda, H Mitsuoka, H Bandai, T Endo, H Arai, K Sato

Objective: To investigate intracranial cerebrospinal fluid (CSF) distribution in patients with a clinical diagnosis of idiopathic normal pressure hydrocephalus (INPH).

Methods: 24 patients with a clinical diagnosis of INPH were studied. Control groups comprised 17 patients with secondary normal pressure hydrocephalus (SNPH), 21 patients with brain atrophy, and 18 healthy volunteers. Ventricular volume (VV) and intracranial CSF volume (ICV) were measured using a magnetic resonance based method and the VV/ICV ratio was calculated.

Results: The SNPH group showed a marked increase in the VV/ICV ratio compared with the healthy volunteers (37.8% v 15.6%, p < 0.0001). The brain atrophy group showed a significant increase in ICV compared with the healthy volunteers (284.4 ml v 194.7 ml, p = 0.0002). The INPH group showed an increase in ICV (281.2 ml, p = 0.0002) and an increase in the VV/ICV ratio (38.0%, p < 0.0001). Fifteen of 24 INPH patients underwent shunting; 11 improved and four did not.

Conclusions: The results suggest that INPH patients have brain atrophy in addition to hydrocephalic features. This may help to explain the difficulties encountered in the diagnosis and the unpredictable response rate to shunt surgery in INPH patients.
and head trauma in three. They all showed panventriculomegaly and were presumed to have communicating hydrocephalus.

The brain atrophy group included 21 outpatients clinically diagnosed as having Alzheimer's disease or vascular dementia (12 men and nine women; mean age 72.6 years; range 60 to 86 years).

The healthy volunteer group included 18 healthy subjects (seven men and 11 women; mean age 67.5 years; range 55 to 81 years) with no history of neurological disease, who were thought to be free of any severe cerebrovascular, neurological, or psychiatric disorders.

The three control groups were age matched with the INPH group.

MR imaging and assessment

Magnetic resonance (MR) images were acquired using a 1.5 T MR system (Visart, Toshiba Corporation, Tokyo, Japan). The imaging parameters employed were the three dimensional asymmetric spin echo (3D-FASE) imaging method with a repetition time of 6000 ms, an echo time of 250 ms, a matrix of $256 \times 256 \times 96–106$, and a slice thickness of 1.5 mm. The imaging area was set to include all the subarachnoid space above the superior margin of the atlas, with the anteroposterior and superoinferior directions adjusted by the field of view and the lateral direction adjusted by the number of imaging slices. Before 3D-FASE imaging, routine T1 and T2 weighted axial images were also acquired.

Images were processed using an SGI Indigo workstation and universal image processing software (AVS version 5.02). The region growing method, developed as a module of the AVS, was used to extract the CSF from the 3D-FASE images. As details of this method have been described in our previous reports, we present only a brief description here. In the region growing method, starting from a user specified voxel inside the region of interest (ROI), each adjacent voxel is tested to determine whether it satisfies the conditions for inclusion in the ROI. Those that satisfy the conditions are classified as valid voxels and are used as new seeds; otherwise, they are considered to be a part of the background and are excluded from further processing. The processing is repeated until no more valid voxels are found.

A typical test is the signal intensity difference between pairs of voxels. First, the user excludes extracranial long T2 areas, such as the eyeballs, by manual operation. Next, the first seed point is selected—for example, a point in the cerebral ventricles—and the region growing method program is executed for segmentation. Finally the CSF volume is obtained as the signal intensity weighted sum of the voxels inside the ROI.

In our subjects, the intracranial CSF volume (ICV) and intraventricular CSF volume (VV) were measured separately, and the VV/ICV ratio was then calculated. Intergroup differences were analysed statistically using analysis of variance (ANOVA) followed by Scheffé's test. We attempted to identify characteristic features in the INPH group compared with other three groups from the viewpoint of the intracranial CSF distribution and to interpret the pathological implications.

RESULTS

The distributions of intraventricular and intracranial CSF volume values and the VV/ICV ratios in each group are shown in fig 1, with statistical analysis of intergroup comparisons. The

![Figure 1](http://jnnp.bmj.com/)

Figure 1 Distribution of ventricular volume (VV), intracranial CSF volume (ICV), and VV/ICV ratio in each group. The differences between groups were assessed by one way analysis of variance (VV: $F = 20.616$, $p < 0.0001$; ICV: $F = 14.390$, $p < 0.0001$; VV/ICV ratio: $F = 36.664$, $p < 0.0001$) and Scheffé’s test ($p < 0.001$). BA, brain atrophy; HV, healthy volunteer; INPH, idiopathic normal pressure hydrocephalus; SNPH, secondary normal pressure hydrocephalus.
mean and standard deviation of these values are shown in table 1, and statistical analyses in table 2. All three parameters were found to be significant by one way analysis of variance (VV: F = 20.616, p < 0.0001, ICV: F = 14.390, p < 0.0001, VV/ICV ratio: F = 36.664, p < 0.0001).

The differences between groups were assessed by one way analysis of variance. The mean VV/ICV ratios were increased in the INPH and SNPH groups, whereas those in the BA group were markedly increased compared with those in the healthy volunteer group. The brain atrophy group had significantly higher mean ventricular volumes than the healthy volunteer group. Furthermore, the ventricular volumes in the INPH group were markedly increased compared with those in the brain atrophy and SNPH groups.

The mean intracranial CSF volumes in the INPH and brain atrophy groups were increased compared with those in the healthy volunteer group, and the differences were statistically significant (p < 0.001), whereas those in the SNPH group were hardly increased at all (p = 0.997). With regard to mean intracranial CSF volumes, the difference between the INPH and SNPH groups was statistically significant (p < 0.001), but that between the INPH and brain atrophy groups was not (p = 0.998).

The mean VV/ICV ratios were increased in the INPH and SNPH groups compared with the healthy volunteer group and the differences were statistically significant. The VV/ICV ratios in the brain atrophy group were slightly increased, but were not significantly different from those in the healthy volunteer group.

There were no obvious differences in any of the variables between the 11 shunt responsive and the four shunt non-responsive patients.

Table 1 Mean and standard deviation of each variable in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>VV (ml)</th>
<th>ICV (ml)</th>
<th>VV/ICV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPH</td>
<td>109.3 (50.7)</td>
<td>281.2 (73.1)</td>
<td>38.0 (9.5)</td>
</tr>
<tr>
<td>SNPH</td>
<td>71.3 (18.2)</td>
<td>196.9 (46.5)</td>
<td>37.3 (8.9)</td>
</tr>
<tr>
<td>BA</td>
<td>64.9 (25.3)</td>
<td>284.4 (54.5)</td>
<td>22.8 (7.7)</td>
</tr>
<tr>
<td>HV</td>
<td>30.8 (13.2)</td>
<td>194.7 (51.6)</td>
<td>15.6 (5.0)</td>
</tr>
</tbody>
</table>

Table 2 Comparison of volume parameters between each diagnostic group

<table>
<thead>
<tr>
<th>p Value</th>
<th>VV</th>
<th>ICV</th>
<th>VV/ICV</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPH v SNPH</td>
<td>0.0055</td>
<td><0.001</td>
<td>0.9928</td>
</tr>
<tr>
<td>INPH v BA</td>
<td><0.001</td>
<td>0.9984</td>
<td><0.001</td>
</tr>
<tr>
<td>INPH v HV</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>SNPH v BA</td>
<td>0.9468</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>SNPH v HV</td>
<td>0.0055</td>
<td>0.9996</td>
<td><0.001</td>
</tr>
<tr>
<td>BA v HV</td>
<td>0.0177</td>
<td><0.001</td>
<td>0.0644</td>
</tr>
</tbody>
</table>

These findings suggest that the diagnosis of INPH implies both a CSF circulatory disorder and some degree of associated brain atrophy. It is possible that the degree of cerebral atrophy could be estimated by measuring the increase in the total intracranial CSF volume—that is, the ICV value. In the present series, patients in the brain atrophy group showed a marked increase in the ICV compared with the control group. In addition, we have reported that the degree of increase in the ICV in such patients is excessive compared with the physiological changes observed in healthy elderly subjects. A diagnosis of patho-genic brain atrophy can be established by measuring the ICV; however, we cannot specify a strict cut off value at present.

Some researchers have suggested that sulcal dilatation is a predictor of an unfavourable shunt outcome in suspected INPH. As the VV/ICV ratio is a quantitative variable that indicates the degree of sulcal dilatation, it could be a useful parameter. We can presume that the CSF distribution seen in the SNPH patients, who were thought to be healthy before the onset of their illness, reflects a relatively pure CSF circulatory disorder. We conclude that the characteristic feature of hydrocephalus from the viewpoint of intracranial CSF distribution is not an increase in the ICV but an increase in the VV/ICV ratio.

Hence, our data suggest that patients with suspected INPH are suffering from two different pathogenic processes: a disorder of the CSF circulation and brain atrophy. It appears that the two variables employed in the present study—that is, the VV/ICV ratio and the ICV—faithfully reflect each pathogenic process. An increase in the VV/ICV ratio indicates a disorder of the CSF circulation and suggests that a shunt operation is required. On the other hand, an increased ICV value reflects the presence and degree of brain atrophy secondary to concomitant conditions and may imply an unfavourable shunt outcome. We know that, in general, patients with SNPH have a more favourable shunt outcome than patients with INPH. The difference between these patients might be explained by the ICV values, which indicate the degree of brain atrophy. It is not known whether we can assess the severity of concomitant conditions such as Alzheimer’s disease or cerebrovascular disease by measuring the ICV.

Without a large prospective study it is difficult to establish either the sensitivity and specificity of our technique or definite criteria for selecting candidates for shunt surgery using our MR measures of ventricular volume and intracranial CSF volume. Unfortunately, in the present study there were no obvious differences in CSF distribution between the shunt responsive and shunt non-responsive groups.

Authors’ affiliations
A Tsunoda, Department of Neurosurgery, Koshigaya Municipal Hospital, Koshigaya City, Saitama, Japan
H Mitsuoka, H Bandai, J Endo, H Arai, K Sato, Department of Neurosurgery, Juntendo University, Tokyo, Japan

REFERENCES
Intracranial CSF measurement of idiopathic normal pressure hydrocephalus

New JNNP online submission and review system

The Editors of JNNP are pleased to inform authors and reviewers of its new online submission and review system. Bench>Press is a fully integrated electronic system which uses the internet to allow rapid and efficient submission of manuscripts, plus the entire peer review process to be conducted online.

Authors can submit their manuscript in any standard word processing software. Graphic formats acceptable are: .jpg, .tiff, .gif, and eps. Text and graphic files are automatically converted to PDF for ease of distribution and reviewing purposes. Authors are asked to approve their submission before it formally enters the reviewing process.

To access the system click on “SUBMIT YOUR MANUSCRIPT HERE” on the JNNP homepage: http://www.jnnpjnl.com/, or you can access Bench>Press directly at http://submit-jnnp.bmjjournals.com/. We are very excited with this new development and we would encourage authors and reviewers to use the on-line system where possible. It really is simple to use and should be a big improvement on the current peer review process. Full instructions can be found on Bench>Press http://submit-jnnp.bmjjournals.com/, and JNNP online at http://www.jnnpjnl.com/. Please contact Natalie Davies, Project Manager, ndavies@bmjjgroup.com for further information.

PRE-REGISTER WITH THE SYSTEM

We would be grateful if all JNNP authors and reviewers pre-registered with the system. This will give you the opportunity to update your contact and expertise data, allowing us to provide you with a more efficient service.

Instructions for registering
1. Enter http://submit-jnnp.bmjjournals.com
2. Click on “Create a New Account” in the upper left hand side of the Bench>Press homepage
3. Enter your email address in the space provided.
4. Please be sure to enter the email address that you received this email message at. You will be given the opportunity to change this once you have created an account.
5. Choose a password for yourself and enter it in the spaces provided.
6. Complete the question of your choice to be used in the event you cannot remember your password at a later time.
7. Click on the “Save” button at the bottom of the screen.
8. Check the e-mail account you registered under. An email will be sent to you with a verification number and URL.
9. Once you receive this verification number, click on the URL hyperlink and enter the verification number in the relevant field. This is for security reasons and to check that your account is not being used fraudulently.
10. Enter/amend your contact information, and update your expertise data.
Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy

A Tsunoda, H Mitsuoka, H Bandai, T Endo, H Arai and K Sato

J Neurol Neurosurg Psychiatry 2002 73: 552-555
doi: 10.1136/jnnp.73.5.552

Updated information and services can be found at:
http://jnnp.bmj.com/content/73/5/552

These include:

References
This article cites 15 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/73/5/552#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Hydrocephalus (134)
- Radiology (1747)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/