Relapsing herpes simplex encephalitis: pathological confirmation of viral reactivation
S Yamada, T Kameyama, S Nagaya, Y Hashizume, M Yoshida

This case is reported to raise awareness of herpes simplex encephalitis as a persisting brain disorder. A 66 year old immunocompetent man developed status epilepticus and died of pneumonia in the course of progressive hemiparesis, cognitive decline, and atrophy of the brain over a five year period after herpes simplex encephalitis. In addition to a completely destroyed left temporal lobe, necropsy revealed active encephalitis consisting of necrosis and lymphocyte infiltration with a large number of intranuclear inclusions in the neurones and glial cells in the markedly oedematous parenchyma of the right frontal and parietal lobes. Herpes simplex virus type 1 (HSV-1) antigen was detected by immunohistochemistry, HSV-1 DNA by in situ hybridisation, and herpes simplex virus nucleocapsids by electronmicroscopy. These clinical and pathological findings suggest that direct viral reactivation might result in a relapse of herpes simplex encephalitis, causing progressive clinical deterioration associated with the persistence of HSV-1 in the brain. This is the first case report demonstrating HSV-1 antigen, HSV-1 DNA, and herpes simplex virus nucleocapsids in a case of relapsing herpes simplex encephalitis.

CASE REPORT
A 61 year old man with a 10 year history of pneumoconiosis presented at our hospital with high fever and confusion. Three days later, he was admitted to our department because of a tonic-clonic seizure. On admission, he had global aphasia with no limb weakness or sensory disturbance. The initial diagnosis of herpes simplex encephalitis was made by the presence of intrathecal synthesis of antibodies specific to HSV-1 and the presence of HSV-1 DNA in the cerebrospinal fluid detected by polymerase chain reaction (PCR). Brain computed tomography (CT) and magnetic resonance imaging on the day of admission were normal, but single photon emission computed...
However, gliosis and mineralisation were not observed in those regions. HSV-1 antigen was detected immunohistochemically and HSV-1 DNA was demonstrated by in situ hybridisation within the nucleus and cytoplasm of both neurones and glial cells in the right frontal and parietal lobes (fig 2B and C). Herpes simplex virus nucleocapsids were also observed by electron microscopy within the nucleus and cytoplasm of these cells (fig 2D). No anoxic changes were seen in any of the brain regions.

DISCUSSION

This report contributes two important clinical and pathological insights to our knowledge and understanding of herpes simplex encephalitis.

First, the persistence of the virus in the brain following herpes simplex virus encephalitis may be associated with progressive neurological deterioration. Thus long term follow up of neurological sequelae is important. It is not unusual to find a persistent inflammatory process in patients who have survived herpes simplex encephalitis for months or years. However, its contribution to the clinical picture has not so far been determined. Two large prospective studies reported that 18% and 42% of survivors of herpes simplex encephalitis treated with acyclovir have severe neurological deficits. However, the period of follow up in these studies was inadequate. There have been few studies on adult patients with progressive clinical deterioration over a period of years following herpes simplex encephalitis. According to one long term prospective study of the cognitive sequelae of herpes simplex encephalitis, one of eight adult patients with this disease experienced progressive clinical deterioration. In children, there are reports describing progressive mental and behavioural deterioration for many years following herpes simplex encephalitis. Most of these patients developed intractable seizures, slowly progressive hemiparesis, and cognitive decline some years after contracting the disease. Neuropathological studies of these patients showed chronic active encephalitis, consisting of meningeal and perivascular infiltration of lymphocytes with severe gliosis and mineralisation. In those brain tissues, herpes simplex virus expression

Figure 2  (A) Coronal section at the level of the basal ganglia showing destruction of the left temporal lobe and swelling of the right parietal lobe. (B) Immunohistochemical photomicrograph of the right parietal lobe showing HSV-1 antigens within the cytoplasm and the nucleus of neurones (magnification ×230). (C) Positive HSV-1 DNA in cells in the right parietal lobe, in situ hybridisation for HSV-1 (ENZO; HSV BioProbe labelled probe; magnification ×168). (D) Electron photomicrograph showing herpes-type nucleocapsids within the nucleus of a neurone in the right parietal lobe (magnification ×24 730).
could not be detected by immunohistochemical methods, though specific viral DNA was demonstrated by PCR. These observations suggested that persistence of the virus after herpes simplex encephalitis may be associated with chronic inflammation, resulting in neurological problems in paediatric patients. In a similar manner, our patient developed right sided partial and tonic-clonic seizures, showed insidious development of weakness in the right arm and leg, and experienced progressive deterioration of cognitive function over five years. This clinical deterioration and seizure pattern, together with the progressive brain atrophy observed on brain CT, is compatible with a chronic encephalitis. To our knowledge, no pathological study of an adult patient with herpes simplex encephalitis has been reported before.

Second, patients may suffer from relapsing herpes simplex encephalitis many years after the initial infection, possibly because of reactivation of the virus. The neuropathology described here in the right frontal and parietal lobes, consisting of many inflammatory cells and necrosis with severe oedema and congestion, without gliosis or mineralisation, is suggestive of acute rather than chronic active encephalitis. We think that our patient experienced a fulminant reactivation of the disease—that is, relapsing herpes simplex encephalitis—in the course of a chronic infection with the virus. Although the pathogenesis of relapsing herpes simplex encephalitis remains unclear, previous studies have suggested that it may be caused either by reactivation of the virus or by immune mediated encephalopathy. This is the first report to show HSV-1 antigens, HSV-1 DNA (by in situ hybridisation), and herpes simplex virus nucleocapsids in relapsing herpes simplex encephalitis. These findings strongly support the hypothesis of direct involvement of the virus in relapsing herpes simplex encephalitis. Many patients experience relapses of encephalitis, even after acyclovir treatment for the initial infection. In most cases, the relapse occurs early, within weeks of the initial encephalitis. When our patient developed status epilepticus five years after his initial episode of herpes simplex encephalitis, without any prodromal symptoms, we did not suspect that the cause was relapsing encephalitis. It has been suggested that the likelihood of a relapse is related to an inadequate duration of antiviral treatment, and a longer period of treatment is now recommended. The progressive neurological deterioration and relapse observed in this case might reflect the failure of a 14 day course of acyclovir to eradicate the initial infection completely. Acyclovir is a synthetic acyclic purine nucleoside analogue that selectively inhibits herpes simplex virus replication. Thus any virus that is not in a replication cycle might survive the acyclovir treatment. Nevertheless, even with an expanded treatment period the possibility that the virus might persist in the brain after herpes simplex encephalitis and could then cause chronic infection or relapsing encephalitis cannot be excluded. Periodic courses of acyclovir over several years may be indicated.

Conclusions

We believe that the prevalence of relapsing herpes simplex encephalitis may be underestimated and the condition misdiagnosed. As occurred in our patient, the first manifestation of relapsing encephalitis may be the development of status epilepticus, which is difficult to distinguish from secondary epilepsy. Thus when encountering a patient with epilepsy who has experienced herpes simplex encephalitis in the past, it is important to remember that the patient may be experiencing a relapse of the encephalitis, and antiviral treatment should be considered.

Authors’ affiliations

S Yamada, T Kameyama, Department of Neurology, Gifu Prefectural Tajimi Hospital, Gifu, Japan
S Nagaya, Second Department of Pathology, Nagoya City University, Aichi, Japan
Y Hashizume, M Yoshida, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan

Competing interests: none declared

Received 8 April 2002
In revised form 30 October 2002
Accepted 9 November 2002

REFERENCES

Relapsing herpes simplex encephalitis: pathological confirmation of viral reactivation

S Yamada, T Kameyama, S Nagaya, Y Hashizume and M Yoshida

J Neurol Neurosurg Psychiatry 2003 74: 262-264
doi: 10.1136/jnnp.74.2.262

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/2/262

These include:

References
This article cites 10 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/74/2/262#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Infection (neurology) (494)
- Epilepsy and seizures (846)
- Memory disorders (psychiatry) (1390)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/