Raised plasma oxidised LDL in acute cerebral infarction

M Uno, K T Kitazato, K Nishi, H Itabe, S Nagahiro

Background: The association between oxidised low density lipoprotein (OxLDL) and cerebral infarction is suspected but not established.

Objectives: To determine whether plasma OxLDL is a useful marker for monitoring oxidative stress in stroke patients.

Methods: Plasma OxLDL concentrations were determined in 56 stroke patients with cerebral infarction (n = 45) or cerebral haemorrhage (n = 11), and in 19 age matched controls, using a novel sandwich enzyme linked immunosorbent assay.

Results: Compared with the controls (0.130 (0.007) ng/µg LDL, mean (SEM), OxLDL was significantly raised in patients with cerebral infarction (0.245 (0.022); p < 0.0001) but not in those with haemorrhage (0.179 (0.023)). Patients with cortical ischaemic infarcts (n = 22) had higher OxLDL levels than either the controls (p < 0.0001) or the patients with non-cortical ischaemic infarcts (n = 23) (p < 0.001). Increased OxLDL concentrations in patients with cortical infarcts persisted until the third day after stroke onset. The National Institutes of Health stroke scales in patients with cortical infarction were higher than in those with non-cortical infarction (p < 0.01).

Conclusions: There is a significant association between raised plasma OxLDL and acute cerebral infarction, especially cortical infarction. Plasma OxLDL may reflect oxidative stress in stroke patients.

METHODS

Subjects

The study population consisted of 56 patients (mean (SEM) age 66.9 (1.5) years, range 35 to 84) who had experienced a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event. There were 32 men and 24 women. The controls were 19 age matched healthy volunteers who had no history of a cerebrovascular event.

All patients underwent brain computed tomography (CT) and magnetic resonance imaging (MRI) on admission. Echocardiography and extracranial duplex ultrasound were undertaken at the discretion of the attending clinician. Stroke was diagnosed on the basis of the results of
the neurosurgeons’ clinical examinations. A National Institutes of Health stroke scale value (NIHSS) was assigned on admission and at 30 days after stroke onset or on discharge. Baseline demographic data (age, sex), a history of conventional vascular risk factors (hypertension, diabetes mellitus, hyperlipidaemia, tobacco use), and a history of previous vascular events (myocardial infarction, atrial fibrillation, angina, intermittent claudication) were obtained. Patients whose pertinent data could not be evaluated at the time of stroke onset were excluded from the study.

Neurosurgeons, blind to the results of the OxLDL level studies, classified the 56 patients into a cerebral infarction group (n = 45) and a cerebral haemorrhage group (n = 11). Determinations were based on the results of clinical evaluations and imaging studies (table 1). More than 45% of the patients were hypertensive, regardless of the stroke subtype. Half the patients with cerebral infarcts had diabetes mellitus. Patients with cerebral infarction had a higher rate of atrial fibrillation and hyperlipidaemia than patients with cerebral haemorrhage. The 45 patients with cerebral infarction were further subdivided into the following groups on the basis of their clinical category: cardioembolic infarction (n = 16), atherothrombotic infarction (n = 17), and lacunar infarction (n = 12). The stroke subtypes were defined according to the TOAST classification system: the cardioembolic infarction group includes patients with clinical and brain imaging findings of either significant stenosis or occlusion of a major brain artery or a branch cortical artery, presumably caused by atherosclerosis; the cardioembolic infarction group includes the patients with arterial occlusion presumably caused by an embolus arising in the heart; the lacunar infarction group includes patients with one of the traditional clinical lacunar syndromes and no evidence of cerebral cortical dysfunction, and also patients whose CT/MRI did not show lesions with a diameter exceeding 1.5 cm.

Using the results of CT or MRI studies, patients with cerebral infarction were further subdivided into two groups according to the site of the infarct: those in whom the infarct was located in cortical regions in the cerebral hemisphere involving the frontal, parietal, and temporal lobe (GI, n = 22), and those whose infarcts resulted in basal ganglia lesions in the anterior circulation (putamen, corona radiata) or in the posterior circulation (occipital lobe, cerebellum, brain stem, and thalamus) (GII, n = 23). MRI or cerebral angiography showed that 19 of the 22 GI patients (86%) had occlusion or stenosis of the internal carotid artery or the horizontal portion of the middle cerebral artery. Of the 23 GII patients, three (13%) had internal carotid artery or middle cerebral artery occlusion or stenosis, and six (26%) had unilateral vertebral artery or posterior cerebral artery occlusion.

Blood sampling

Venous blood samples for the OxLDL assay and other biochemical analyses were obtained on admission (within 24 hours after the stroke onset) and again on the mornings of days 3, 7, 14, and 30 after stroke onset, after an overnight fast of at least 12 hours. To measure plasma OxLDL concentrations, blood was drawn into tubes containing EDTA-2Na. These were chilled on ice, centrifuged at 4°C for separation, and stored for a maximum of six days at 4°C until LDL isolation. Other routine chemical laboratory assays were performed according to protocols established by our clinical laboratory department.

Isolation of LDL

LDL isolation was done by potassium bromide stepwise density gradient ultracentrifugation, as described previously. Briefly, plasma was transferred to a 4 PC tube (Hitachi Inc, Tokyo, Japan) and overlaid with 0.14 M NaCl/0.01 M phosphate buffered saline (PBS, pH 7.4), using one third of the plasma sample. The tubes were centrifuged at 350 000 g for 10 minutes at 4°C in a CS 120 ultracentrifuge, using an AT 80 rotor (Hitachi). The creamy layer at the top was discarded and the remaining sample was overlain with PBS and centrifuged again at 350 000 g for 3.5 hours at 4°C. After discarding the top layer, 0.5 g/ml KBr was added to the bottom layer, using one fifth of the sample volume (d = 1.063). This was followed by centrifuging at 350 000 g for 3.5 hours at 4°C, and the fraction with a density 1.019–1.063 was collected by pipetting. The isolated LDL fraction was dialysed at 4°C overnight against PBS (pH 7.4) containing 0.1% EDTA to remove any remaining KBr. The protein content of the LDL fraction was determined using the BCA protein assay kit (Pierce, Rockford, Illinois, USA). Standard OxLDL was prepared by incubation of LDL with 5 μM CuSO4 at 37°C for three hours, and anti-OxLDL monoclonal antibody was prepared as described previously.

Determination of plasma OxLDL concentration

The plasma OxLDL concentration was determined by a competition ELISA assay, a modification of a sandwich ELISA procedure for OxLDL determination. Briefly, microtitre wells precoated with DLH3 monoclonal antibody (5 μg/ml in PBS, 100 μl/well) were blocked with 1% bovine serum albumin (BSA) in 50 mM Tris buffered saline, pH 8.0. To the wells were added 100 μl of appropriately diluted samples and standards of OxLDL. The microtitre plates were then left at 4°C overnight. After washing with Tris buffered saline containing 0.05% Tween 20, the remaining OxLDL was detected with 100 μl of sheep anti-human apoB IgG antibody (Boehringer, Mannheim, Germany) and 100 μl of alkaline phosphatase conjugated donkey anti-sheep IgG antibody (Chemicon, Temecula, California, USA). The reactivity of alkaline phosphatase was measured by

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cerebral infarction</th>
<th>Cerebral haemorrhage</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>45</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Age (years)</td>
<td>35 to 84</td>
<td>45 to 78</td>
<td>34 to 74</td>
</tr>
<tr>
<td>Range</td>
<td>67.4 (1.5)</td>
<td>64.4 (3.3)</td>
<td>61.2 (2.4)</td>
</tr>
<tr>
<td>Male/female</td>
<td>24/21</td>
<td>7/4</td>
<td>9/10</td>
</tr>
<tr>
<td>Hypertension</td>
<td>22 (49%)</td>
<td>7</td>
<td>–</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>22 (49%)</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>10 (22%)</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>12 (27%)</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>NIH stroke scale</td>
<td>7.7 (1.1)</td>
<td>7.6 (1.4)</td>
<td>–</td>
</tr>
<tr>
<td>OxLDL (ng/μl LDL)</td>
<td>0.245 (0.022)*</td>
<td>0.179 (0.023)</td>
<td>0.130 (0.007)*</td>
</tr>
<tr>
<td>Total cholesterol (mmol/l)</td>
<td>5.07 (0.18)</td>
<td>5.06 (0.58)</td>
<td>5.51 (0.12)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/l)</td>
<td>1.24 (0.05)</td>
<td>1.31 (0.06)</td>
<td>1.43 (0.38)</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/l)</td>
<td>3.40 (0.17)</td>
<td>3.48 (0.31)</td>
<td>3.36 (0.16)</td>
</tr>
<tr>
<td>Triglyceride (mmol/l)</td>
<td>1.17 (0.08)</td>
<td>1.48 (0.22)</td>
<td>1.56 (0.26)</td>
</tr>
</tbody>
</table>

Values are n (%) or mean (SEM). *p < 0.01 v control by analysis of variance followed by Scheffé’s test. HDL, high density lipoprotein; LDL, low density lipoprotein; NIH, National Institutes of Health; OxLDL, oxidised low density lipoprotein.

Table 1 Demographic characteristics of the patients
incubating washed plates for an appropriate length of time at 37°C with 100 μl substrate solution containing 1 mg/ml of disodium p-nitrophenyl-phosphate hexahydrate (Wako, Osaka, Japan). Absorbance at 405 nm was measured using a microplate reader for comparison with a standard curve obtained under the same assay conditions. Simultaneously, a parallel ELISA was run to determine amounts of apo B in the same lipoprotein fractions using anti-apoB monoclonal antibody (OEM, Toms River, New Jersey, USA). The OxLDL levels were expressed as amount of OxLDL per μg of apoB protein (LDL) and recorded at stroke onset and sequentially at appropriate intervals during the follow up period.

Statistics
Sequentially obtained data, expressed as the mean (SEM), were analysed using the Mann–Whitney U test for a two group comparison; analysis of variance followed by Scheffé’s test was used for comparisons of three groups or more. The correlations between OxLDL levels and other clinical chemistry assays or NIHSS score were examined by the Spearman rank correlation test. GI to GII ratios were compared using the χ² test. Statistical analyses were done on a Macintosh computer running statistical software (Stat View 4.0). Statistical significance was assumed at a probability (p) value of < 0.05.

RESULTS
Plasma OxLDL in acute cerebral infarction
At stroke onset, patients with cerebral infarction had a 1.9 times higher concentration of OxLDL than the controls: 0.245 (0.022) v 0.130 (0.007) ng/μg LDL (p < 0.01) (table 1). There was no difference in OxLDL between patients with cerebral haemorrhage (0.179 (0.023) ng/μg LDL) and the controls. The sex of the subjects did not affect the OxLDL concentration in the patients with cerebral infarction (men, 0.232 (0.021) ng/μg LDL; women, 0.264 (0.045) ng/μg LDL).

Relations between subtypes of cerebral infarction, NIHSS, and plasma OxLDL
Next we investigated whether the stroke subtype and the location of the infarct affected the plasma concentration of OxLDL. We found that patients with cardioembolic infarcts (0.273 (0.043) ng/μg LDL, p < 0.01) and atherothrombotic infarcts (0.244 (0.029) ng/μg LDL, p < 0.05) had significantly higher OxLDL values than the controls. The OxLDL concentrations did not differ between patients with lacunar infarcts (0.182 (0.022) ng/μg LDL) and the controls. Of the patients with cerebral infarction, those in group GI showed markedly higher OxLDL concentrations (0.304 (0.033) ng/μg LDL) than either the controls or the patients in group GII (0.169 (0.012) ng/μg LDL) (p < 0.0001 and p < 0.001, respectively) (fig 1). Half the GI patients had cardioembolic infarcts while the other half had atherothrombotic infarcts. Figure 2 shows the relation between plasma OxLDL and the NIHSS. Although the plasma OxLDL concentration was not correlated with NIHSS, in GI patients the NIHSS was significantly higher than in GII patients, at 11.6 (2.0) v 3.5 (0.6) (p < 0.01), reflecting their markedly increased OxLDL levels.

Effect of age and risk factors on plasma OxLDL
As shown in fig 3, among patients with ischaemic stroke OxLDL was significantly higher than in stratified age matched controls (p < 0.05). Furthermore, patients older than 70 years also had higher OxLDL levels than patients younger than 55 years (p < 0.05). The incidence of cortical infarction in the cerebral hemisphere tended to increase with age, patients
older than 70 years in GI having a markedly high rate (81.8%) compared with patients in GII (26.1%) (p < 0.01) (fig 3B). This latter finding is likely to be linked to the elevation of plasma OxLDL, suggesting that elderly individuals are at greater risk of severe infarcts than younger persons. On the other hand, we found no significant correlation in our 56 stroke patients between plasma OxLDL and other risk factors such as hypertension, diabetes mellitus, and hyperlipidaemia. As most subjects in this study were smokers, we could not assess the effect of smoking. There were only two patients in our study population who had a history of coronary heart disease; their plasma OxLDL values were 0.236 and 0.211/µg LDL, respectively, and were thus slightly high.

Longitudinal changes of plasma OxLDL after ischaemic stroke

The changes in OxLDL levels over time during follow up period are shown in fig 4. Of 45 patients with cerebral infarction, four in group GI died on days 0, 3, 6, and 14 days after suffering the insult. Others were transferred to other hospitals and some were discharged or lost to follow up. Thus on the 30th post-event day, 10 GI patients and 11 GII patients were available for determination of plasma OxLDL. Their OxLDL time course is shown in fig 4. In the GI group, plasma OxLDL remained at peak level until the third day after stroke onset. It was markedly higher in the GI patients than in the GII patients, at 0.328 (0.039) v 0.197 (0.033) ng/µg LDL (p < 0.01), and it gradually decreased to within the normal range by day 30 (considered a chronic phase). However, in three of 10 GI patients, OxLDL remained elevated even in the chronic phase. While the plasma OxLDL in GII patients was significantly higher than in the controls on day 3 and day 14 after stroke onset, on day 7 and day 30 there was no difference between GI patients and the controls.

DISCUSSION

In a previous study, Polidori *et al* reported the involvement of free radicals and lipid peroxidation in human stroke. However, to our knowledge, this is the first study to demonstrate the association of plasma OxLDL and ischaemic stroke by direct quantitative analysis using monoclonal antibody against oxidised phosphatidylcholine (DLH3).

We showed that patients with cerebral infarction but not those with cerebral haemorrhage had on average almost a two-fold increase in OxLDL concentrations compared with controls. In particular, plasma OxLDL was markedly increased in patients with cortical lesions in the cerebral hemisphere (the GI group). This increase peaked on the third day after stroke onset and gradually decreased to within the normal range in the chronic stage. From these findings, it appears that patients with cortical cerebral infarction undergo severe oxidative stress, and plasma OxLDL may be a useful marker for detecting and monitoring the oxidative status of the brain. Of 22 patients with cortical lesions in the cerebral hemisphere, 19 (86%) had main artery occlusion or stenosis. Our results suggest that the oxidative damage may be extensive. Unfortunately, we did not assess the infarct volume in this study, but our results warrant further studies to explore the relation between plasma OxLDL level and the volume of infarction.

The question arises as to why OxLDL level is raised in cerebral and especially cortical infarction. Ehara *et al* reported that OxLDL was raised in patients with unstable angina pectoris and acute myocardial infarction who have atherosclerotic lesions. It is thus possible that a high OxLDL concentration in plasma

Figure 3 (A) Relation between plasma oxidised LDL (OxLDL) and age in patients with cerebral infarction. Columns and bars indicate the mean and SEM. The Mann–Whitney U test was used for comparisons with the controls (*p < 0.05), and Scheffé’s test for multiple comparisons (†p < 0.05). (B) OxLDL values in GI infarcts (cortical lesion in cerebral hemisphere) and GII infarcts (lesion in other regions). OxLDL values between GI and GII were compared using the χ² test.

Figure 4 Longitudinal change in the plasma oxidised LDL (OxLDL) level after ischaemic stroke. GI, cortical lesion in the cerebral hemispheres; GII, infarction in other regions. Data points are means, error bars = SEM. ***p < 0.0001; **p < 0.01; *p < 0.05 v control by analysis of variance followed by Scheffe’s test.
reflects release from the atheromatous plaque. In this study, however, the 22 GI patients were evenly split into those with atherothrombotic and other cerebrovascular events. Plasma Ox-LDL in patients with emboli tended to be higher than in those with atherothrombotic events, and patients with embolic strokes usually do not have severe atheromatous plaques in the cerebral main artery. In a previous study, we found that plasma Ox-LDL concentrations in patients with carotid severe stenosis were significantly higher than in controls, but their plasma Ox-LDL was not as high as in patients with acute cerebral infarction.26,27 These findings suggest another explanation for the elevation of plasma Ox-LDL in patients with cerebral infarction: it is reported that lipolysis is increased in brain regions subjected to cerebral plasma OxLDL in patients with cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction, it is reported that lipolysis is increased in brain regions subjected to cerebral infarction.28,29 The source of Ox-LDL detected by DLH3, recognising oxidised phosphatidylcholine, may in part therefore be oxidised phospholipids released from brain tissue into the circulation.

Another factor to take into account was that Ox-LDL was significantly higher in stroke patients than in age matched controls, and it continued to increase with age. Patients older than 70 years also had a markedly high incidence of cortical infarcts which may otherwise be silent if the lesions are not in eloquent areas. These findings suggest that plasma OxLDL may be a risk factor for cerebral infarction, and may supplement other biochemical variables tested did not differ between the patients in the GI and GI groups (data not shown). The possible association between cholesterol levels and stroke risk remains controversial, and a meta-analysis has produced no evidence for such an association.30 Until an association is demonstrated, raised plasma Ox-LDL in patients with ischaemic stroke appears to be a more specific biological marker than conventional risk factors.

Conclusions
Our study showed a significant association between plasma Ox-LDL and acute cerebral infarction, especially severe cortical infarction. The findings suggest that a raised Ox-LDL level reflects oxidative stress in stroke patients and is a useful independent marker of ischaemic stroke.

Authors’ affiliations
M Uno, K T Kitazato, K Nishi, S Nagahiro, Department of Neurosurgery, School of Medicine, The University of Tokushima, Tokushima, Japan
H Itabe, Department of Microbiology and Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan

Competing interests: none declared

REFERENCES
Raised plasma oxidised LDL in acute cerebral infarction

M Uno, K T Kitazato, K Nishi, H Itabe and S Nagahiro

J Neurol Neurosurg Psychiatry 2003 74: 312-316
doi: 10.1136/jnnp.74.3.312

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/3/312

References

These include:

This article cites 26 articles, 15 of which you can access for free at:
http://jnnp.bmj.com/content/74/3/312#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Stroke (1449)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/