LETTERS

Acute rotatory vertigo caused by a small haemorrhage of the vestibular cortex

Central rotatory vertigo is in most cases caused by a lesion of the cerebellum or brain stem. We describe a patient with acute rotatory vertigo following a small haemorrhage in the left medial temporal gyrus, which probably injured the vestibular cortex.

Case history

A 53 year old woman suddenly experienced leftwards directed rotatory vertigo in the yawn plane and nausea without vomiting. She felt unsteady and had short lasting slurring of her speech. She had no hearing loss or tinnitus. On examination, she could stand unaided but tended to fall after a short while, without a directional preponderance. Gait was severely unsteady and she could not walk unaided. The rotatory vertigo was worse when she was sitting upright than when lying down in bed. Vertigo was also increased by head movements.

Examination of the cranial nerves showed no abnormalities; specifically there was no nystagmus or hearing loss and the eye movements were normal. Neurological examination of the limbs (motor and sensory function, coordination, and reflexes) was normal. Electroencephalography showed no abnormalities, supporting a non-epileptic cause of the vertigo.

Magnetic resonance imaging (MRI) on sagittal T1 weighted and transverse T2 weighted spin echo and FLAIR images showed a small (2.0 × 1.5 cm) haemorrhage in the left medial temporal gyrus, adjacent to the supramarginal and angular gyri (fig 1). There were no lesions of the brain stem or cerebellum. The appearance of the temporal lesion was consistent with haemorrhage from a superficial cortical vessel.

Vertebrobasilar insufficiency was ruled out as an “experiment of nature”: a small cortical vessel that seems to be very much engaged in an important function could be injured as a result of the daily activities of a normal 53 year old woman. The lesion was confined to a particular brain structure, enabling precise localisation of an area in the cortex that seems to be very much engaged with the vestibular system.

The exact location of the vestibular cortex in humans has not yet been established. Primate studies have shown a well defined vestibular cortical system.1 In all likelihood, a similar system probably also exists in humans, including, as in primates, several cortical areas.2–4 However, one has to be careful in extrapolating results from primates to humans: so human studies are important to further elucidate the existence and location of the human vestibular cortical system.

The vestibular cortical system seems to be distributed among several multisensory areas in the parietal and temporal cortex, and is integrated in a larger network for spatial attention and sensory-motor control. The parieto-insular cortex is postulated to be the core region within the vestibular cortical system; representation is bilateral, with a right hemispheric dominance.5 Recent research seems to indicate that there might be no specific vestibular cortex, contrary to the visual and auditory systems. Electrophysiological recordings of vestibular cortical neurones, positron emission tomography, and MRI brain activation studies during caloric and galvanic stimulation all confirm the multisensory character of cortical areas that receive a substantial vestibular input.5–7 One can understand this when one realises that during motion not only the labyrinths but also the visual and proprioceptive systems will be stimulated. This could make a unimodal vestibular cortex unnecessary.

We are aware of one other reported patient with rotatory vertigo and a cortical lesion on MRI.8 That patient, however, had two cortical lesions: the main lesion was an infant located in the right posterior insula involving the long insular and transverse temporal gyri; the other lesion was in the right parietal cortex. We believe that our patient is the first reported case of rotatory vertigo resulting from a lesion (haemorrhage) of the medial temporal gyrus, adjacent to the superior temporal sulcus. Functional brain studies have shown that the human vestibular cortical system may be located in the superior temporal region posterior to the auditory area, probably in the superior temporal gyrus.4–6 The results of functional brain studies, the previously reported patient,2 and our own patient indicate that the human vestibular cortical system is located in several adjacent cortical areas: the superior temporal gyrus, the long insular and transverse temporal gyri, and the medial temporal gyrus.

J Boiten
Department of Neurology, St Anna Hospital, PO Box 90, NL-5660 AB Geldrop, Netherlands

J Wilimink
Department of Radiology, University Hospital Maastricht, Maastricht, Netherlands

H Kingma
Department of ORL and Head and Neck Surgery, University Hospital Maastricht

Correspondence to: Dr Jelis Boiten; jelis.boiten@stanna.nl

References

Coexistent Lewy body disease in a case of “visual variant of Alzheimer’s disease”

Posterior cortical atrophy or the “visual variant” of Alzheimer’s disease is a clinical syndrome with visual agnosia, some or all of the cortical features of Balint’s syndrome, transpiri- cal sensory aphasia, and Gerstmann’s syndrome. Although pathologically heterogeneous, several necropsy studies on patients with posterior cortical atrophy have shown Alzheimer’s disease pathology. We report a patient who presented with the features of posterior cortical atrophy who later developed mild parkinsonism, visual hallucinations, and dementia. Neuropathological evaluation revealed coexistent Alzheimer’s disease and Lewy body disease.

Case report
A right handed retired diesel mechanic, with 12 years of formal education, was referred for evaluation of an “unusual dementia.” His difficulties started at the age of 58 with the insidious onset of visuospatial dysfunction. Initially he was not able to fill out bank deposit slips or write numbers correctly. He had been an avid reader but had to re-read material in order to comprehend it, and unsuccessfully used a card to keep his eyes focused when reading. He was not able to locate the refrigerator door handle until he groped over the surface to find it. His wife revealed that when he was 61 he was having difficulties working as a mechanic. Also, he could not see other cars and obstacles while driving, and he stopped driving at the age of 63 after being involved in two motor vehicle accidents. He developed progressive difficulties with performing calculations, writing, receptive language, and recent memory. Despite the cognitive difficulties, he retained insight in his disorder.

When he was 62, his wife noted that he moved in a stiff manner, did not swing his left arm, and acted “like a little old man.” At age 67, he developed well formed visual hallucinations (he would see bugs, spiders, and people) and paranoid delusions (he expressed concern that people were tearing away his home). He developed personality changes and at times was confrontational. He became en-vious of his wife and complained of alienation and loss of control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months. There were no spontaneous movements without the control of her left arm for six months.

The initial neurological evaluation at the Mayo Clinic when he was 67 revealed a complete Balint’s syndrome, a partial Gerstmann’s syndrome, and impairment on visuospatial tasks and recall. On language examination he had paraphasic errors and neologisms. He also showed bradykinesia, a slow wide based gait with reduced arm swing bilaterally, mild generalised rigidity, postural but not resting tremor, and right limb apraxia. He had limited upgaze but preserved downward and horizontal gaze. Visual acuity was 20/80 and 20/100 in the right and left eye, respectively. There was no alien limb phenomenon, dystonia, or myoclonus.

Neuropsychological testing showed impairment in verbal skills and verbal memory and the inability to complete the visual tasks. Magnetic resonance imaging and single photon emission computed tomography of the brain showed, respectively, marked asymmetrical (left more than right) parietal-occipital cortical atrophy and hypoperfusion.

Towards the end of his life, he became wheelchair bound and was transferred to a chronic care facility. He developed more behavioural problems, declining vision, and persistent visual hallucinations and delusions. He was unable to recognise family members by sight or sound. He died at 71 years of age.

His past medical history was only significant for a total thyroidectomy for cancer, for which he was on thyroid replacement. There was no family history of any neurodegenerative disorder.

At necropsy examination, standard brain fixation and dissection was undertaken. Tissue sections were cut and stained with haematoxylin and eosin, Bielschowsky silver stain, and immunohistochemically with anti-bodies to tau (Endogen-AT8), amyloid protein, and synuclein (Zined-LB309).

The brain weighed 1136 g. Focal, asymmetrical (left greater than right) parieto-occipital cortical atrophy and mild pallor of the substantia nigra were observed. The basal ganglia, thalamus, and cerebellum appeared normal. Microscopically, moderate to frequent diffuse and neuritic plaques and frequent neurofibrillary tangles were seen in limbic structures. Accented neuronal loss and increased neurofibrillary tangle density were noted in the primary visual cortices. The findings satisfied criteria for Alzheimer’s disease by Braak and Braak staging (stage V/VI) and by the National Institute on Aging and Reagan Institute working group on diagnostic criteria for the neuropathological assessment of Alzheimer’s disease (high likelihood).1 In addition, synuclein positive Lewy bodies, pale bodies, and Lewy neurites were found in the substantia nigra, amygdala, entorhinal cortex, and cingulate gyrus; however, the substantia nigra was less affected than the limbic structures, where synuclein pathology was severe. These findings are consistent with a diagnosis of transitional Lewy body disease.2

Comment
The clinical syndrome of posterior cortical atrophy is characterised by prominent dysfunction of the neuronal networks in the biparietal and occipital cortices and does not imply an underlying pathology; neuropathological examination in most cases shows neurofibrillary tangles and neuritic plaques characteristic of Alzheimer’s disease, but with a higher concentration of the pathology located in the primary visual cortex and visual association areas.1 The predominant features of posterior cortical atrophy are followed by dementia more typical of Alzheimer’s disease. Visual hallucinations and parkinsonism are distinctly uncommon but are recognised features, in addition to fluctuations in cognition that are considered characteristic of dementia with Lewy bodies.1 Pathologically, the latter is characterised by the presence of Lewy body disease, with limbic or neocortical Lewy bodies.1

Our case presented with the typical features of posterior cortical atrophy, and findings of Alzheimer’s disease and Lewy body disease were revealed on neuropathological examination. To our knowledge, there have been no previous pathological reports of cases of posterior cortical atrophy with coexisting Lewy body disease. The visual hallucinations and parkinsonism in our patient were consistent with dementia with Lewy bodies, and there was evidence of transitional Lewy body disease at necropsy. The other major features of posterior cortical atrophy would be consistent with the prominent Alzheimer’s pathology in occipito-parietal cortices.

Interestingly, few patients with posterior cortical atrophy experience visual hallucina-
be sure of its movement. On examination she was alert, fully oriented, and cooperative. Snout and palmolmental reflexes were positive. There was no visual, somatosensory, or auditory extinction. Motor examination revealed a mild left sided facial droop and a left sided pronator drift but strength was full and symmetric and there was no lack of spontaneous movement in the left upper limb. The plantar response was extensor on the left. Gait was slow, unsteady, and wide based. The steps were short with reduced step height. Neuro-psychological assessment showed fluent speech without dysarthria. Comprehension and reading were intact. Performance in verbal and non-verbal fluency tasks was diminished, and colour-word interference was slightly increased. Long term memory was slightly deficient for verbal and non-verbal material. Visuo-constructive abilities were normal and there was no spatial neglect. There was no apraxia of the left hand for gestures neither on command nor for imitation. Also, there was no agraphia or tactile anoma of the left hand. She could perform bimanual tasks without evidence of intermanual conflict. She did not exhibit grasp reflex in either upper limb, and there was no compulsive manipulation of objects.

There was, however, an inability of one hand to imitate the posture of the opposite hand when visual cues were removed. Furthermore, there was an inability to distinguish the left hand from an examiner’s hand when these were placed in the patient’s right hand behind the back, which is known as “strange hand” sign (or “signe de la main étrangère”). Additionally, an inability to cross locate touch of the fingers was found: the patient was blindfolded and touched by the examiner on one finger either of the left or the right hand. Then she was asked to point to the location of touch with the contralateral hand. The accuracy was impaired for both directions but especially for right to left pointing. However, she was correct when asked to point to the location of touch on the face or trunk.

Magnetic resonance imaging showed internal hydrocephalus (fig 1A) and an old lacunar ischaemic lesion in the right anterior limb of the internal capsule. Transcallosal inhibition was assessed by transcranial magnetic stimulation (TMS) as described previously and showed a deficient inhibition particularly from left to right (upper panels “left A” in fig 1B). Cerebrospinal fluid (CSF) pressure was normal during lumbar puncture. After removal of 50 cc CSF the alienation of the left arm, the “signe de la main étrangère” and the impaired cross replication of hand postures...
References

Trigeminal autonomic cephalalgia-tic-like syndrome associated with a pontine tumour in a one year old girl

The so called trigeminal autonomic cephalalgia (TAC) include episodic and chronic paroxysmal hemicrania (CPH), short lasting unilateral neuralgiform headache with conjunctival injection and tearing (SUNCT), and cluster headache (CH). Combinations of cluster headache and chronic paroxysmal hemicrania with trigeminal neuralgina have also been described and have been called cluster-tic syndrome or CPH-tic syndrome. In order to diagnose TACs, it is essential to record the case history carefully. Only rarely have intracranial lesions such as aneurysms or tumours been observed in association with TACs. In the majority of cases, no brain abnormalities are found using conventional imaging.

We describe a three year old girl who suffered attacks of severe right sided temporal pain and autonomic disturbances and in addition neuralgic shooting pains associated with a pilocytic astrocytoma in the pons and medulla oblongata, extending to the upper cervical cord. The attacks disappeared once the tumour had been debulked.

Case report

A three year old girl presented with a history of extremely painful right sided temporal headache attacks since the age of one year. During these attacks she would grab her right ear and cry intensely. Her eyelids were slightly swollen and tear production increased. Her pupils were slightly dilated, with rhinorrhoea on the right side. It seemed that she was in continuous pain, with superimposed paroxysms of very intense pain, lasting seconds, during which she rocked back and forth (the video recording is available at the JNNP website: www.jnnp.com). These attacks occurred spontaneously at any time of day or night with no particular regularity or trigger points. Magnetic resonance imaging (MRI) of the brain revealed a tumour in the pons, extending to the medulla oblongata and cerebral medullum (fig 1A), with a synrinx in the cerebral medullum. On the transverse slide, the tumour extended to the cerebropontine cistern on the right side (fig 1B). Repeated physical examinations after six weeks showed hyperreflexia of the right arm and leg and positive Babinski reflexes on both sides. After debulking the tumour, the attacks resolved completely and neurological examination normalised. Pathological examination of the tumour revealed a pilocytic astrocytoma. The patient has remained headache-free following neurosurgery during two years of follow up. Neurological examination has remained normal during this period.

Comment

The diagnosis of primary headaches associated with autonomic symptoms, such as cluster headache or chronic paroxysmal hemicrania, is based on the patients’ history, because diagnostic tests are not available. As shown here, a video recording of the attacks may be very helpful when patients are unable to describe the attacks in detail themselves. In this case the autonomic symptoms during the headache and the sudden additional shooting pains were recognised by the parents and the physician after studying these video recordings. Although the attacks lasted 12 to 24 hours, the combined headaches best resembled a combination of a TAC-like syndrome in association with trigeminal neuralgia or idiopathic stabbing headache (ISH). It is difficult to distinguish trigeminal neuralgia from ISH in this case, as both headaches only last seconds, may occur many times per day, and

Figure 1 [A] T1 weighted sagittal magnetic resonance image (MRI) scan of the brain after gadolinium contrast, showing a space occupying lesion in the pons, extending to the medulla oblongata. Below the tumour a synrinx is present in the cerebral medullum. (B) T2 weighted transverse MRI scan, showing extension of the tumour to the right cerebropontine angle.
References to trigeminal neuralgia.

A causal relation between the symptoms and the lesions was not established in all cases, but involvement of the intracranial lesions with trigeminal structures was suggested. One patient with an upper cervical meningo-oma had cluster headache attacks, possibly caused by direct compression of the C1–C3 root by the basilar artery entering deep into the cerebellopontine cistern was suggested. ISH is often described in this case, direct compression of the trigeminal root could precipitate the condition or exacerbate subclinical disease. During cardiac surgery there is damage to the atrophic thymic remnants that are present in the anterior mediastinal fat. The thymus contains muscle-like cells, called myoid cells, which express whole AChR molecules. Release of thymic AChR could increase an existing subclinical antibody response, or allow AChR to be presented de novo to the immune system; the lack of postoperative difficulties, which are commonly encountered in undiagnosed MG, suggests that the second hypothesis is most probable. The AChR is very immunogenic; for instance, in mice, intraperitoneal injection of purified murine AChR without adjuvants can result in the typical antibodies and clinical expression of the disease. Further studies should investigate the presence of muscle weakness and positive titres of acetylcholine receptor antibodies after cardiac surgery, and could compare with similar measurements after other forms of major surgery in this age group. Equally, as other autoantigens are also expressed in the thymus, the presence of other autoantibodies or signs of other autoimmune diseases should be sought.

Competing interests: none declared.

A Scoppezza, P Onorati, F Fusi E Dcimento di Fisiologia umana e Farmacologia, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy

C Scoppezza, P Onorati, F Fusi, M Fini Dipartimento di Scienze internistiche, Ospedale San Raffaele Pisana, Tosiinvest Santini, Rome, Italy

A Evoli Istituto di Neurologia, Università Cattolica, Rome, Italy

A Vincent Department of Clinical Neurology, University of Oxford, Oxford, UK

Correspondence to: Professor C Scoppezza; ciriaco.scoppetta@uniroma1.it

References

Table 1

Clinical and laboratory features of three patients with autoimmune myasthenia

<table>
<thead>
<tr>
<th>Sex, age at the onset of MG</th>
<th>Heart surgery</th>
<th>Time since surgery to onset of MG</th>
<th>Presenting features; (Osserman group at onset)</th>
<th>Clinical diagnosis</th>
<th>AChR antibodies normal value >0.8 nmol</th>
<th>Treatment and response</th>
<th>Follow up and evolution AChR-ab present titre</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, 57</td>
<td>Tripe aorta-coronaric bypass surgery</td>
<td>3 weeks</td>
<td>Ptosis, double vision; (I)</td>
<td>Response to iv neostigmine and oral pyridostigmine</td>
<td>Decrease of repetitive stimulation, response to iv edrophonium</td>
<td>Cholinesterase inhibitors: good</td>
<td>6 years, fluctuating oral MG</td>
</tr>
<tr>
<td>M, 58</td>
<td>Double aorta-coronaric bypass surgery</td>
<td>10 weeks</td>
<td>Dysarthria, dysphagia and arm weakness; (IIb)</td>
<td>Decrease of repetitive stimulation, response to iv edrophonium</td>
<td>Cholinesterase inhibitors: mild</td>
<td>7 years, fluctuating generalised MG</td>
<td></td>
</tr>
<tr>
<td>M, 65</td>
<td>Triple aorta-coronaric bypass surgery</td>
<td>10 weeks</td>
<td>Double vision, dysphagia and dysarthria; (IIb)</td>
<td>Decrease of repetitive stimulation, response to iv neostigmine and oral pyridostigmine</td>
<td>Cholinesterase inhibitors: mild</td>
<td>8 months, mild generalised MG</td>
<td></td>
</tr>
</tbody>
</table>

Chiari I malformation mimicking myasthenia gravis

Chiari I malformation is accompanied by a variety of symptoms and signs suggesting brain stem, cerebellar, or cervical spinal cord lesions. The most common symptoms include headache, cranial pain, sensory loss, and ataxia. 1 Dysphagia occurs in 5–15% of the patients and it may be the only presenting symptom. 2 Progressive dysphagia caused by Chiari I malformation, mimicking myasthenia gravis, has been reported in this journal in 1996 and 2002. 2, 3 Dysphonia may occur rarely, but it has not been described as an early symptom. 3 Pain and stiffness in the posterior neck is a common feature, but severe neck pain leading to dropped head syndrome has not so far been reported in Chiari I malformation.

Case report

A 13 year old girl was admitted to our department of neurology four weeks after adenoidectomy under general anaesthesia, because of progressive difficulty in lifting her chin from her chest, together with dysphagia and dysphonia. There was no pain or stiffness in the posterior neck. Computed tomography of the head was reported as normal. There was mild fluctuation of the dysphagia and dysphonia during the day, with worsening of the dysphonia after prolonged conversation or after reading in a loud voice. There was no sleep disturbance.

Neurological examination revealed an incoordination of the cranial tendons in all four limbs. Routine serum biochemistry and blood count were unremarkable.

On the basis of the history and clinical data, myasthenia gravis was suspected, so electromyography of proximal and distal muscles was undertaken. The anaesthesia and operative procedure were uncomplicated. Two days after the operation, the dysphagia and dysphonia improved and one month later there had been a remarkable improvement in the neck extensor muscle weakness.

Comment

Dropped head may be a part of a generalised neuromuscular disorder, such as myasthenia, polynysitis, amyotrophic lateral sclerosis, adult onset nemaline myopathy, or chronic inflammatory demyelinating polyneuropathy. Our patient had a dropped head “plus” syndrome secondary to Chiari I malformation. Strangely, the neck pain and stiffness were not referred. This case report suggests that one should suspect Chiari I malformation in patients with neck extensor muscle weakness, especially if it is associated with lower cranial nerve impairment. We postulate that the symptomatology in this girl may have been the result of brain stem dysfunction secondary to the compression caused by the malformation. Dysfunction of the lower cranial nerves and the higher cervicospinal roots by a retrograde effect of the compression may be the pathogenic explanatory mechanism. The rapid disappearance of the symptoms after posterior fossa decompression supports this hypothesis. Fluctuations of dysphonia and dysphagia may, on the other hand, reflect variations in intracranial pressure. Recently, a presentation of a previously asymptomatic Chiari I malformation was reported following a flexion injury to the neck by a trivial car accident. 4 In our patient, it is possible that slight cervical trauma during anaesthesia for her adenoidectomy may have brought to light the underlying congenital abnormality.

Moorby et al have reported eight cases, initially diagnosed as ocular myasthenia on the basis of clinical features and response of anticholinesterase agents, in which an intracranial mass lesion instead of or in addition to myasthenia gravis was later found. 5 Patients with dropped head and lower cranial nerve involvement, although presenting with a clinical history strongly suggestive of myasthenia, should be carefully evaluated and the diagnosis of Chiari I malformation considered. A response to anticholinesterase agents observed clinically or recorded electrically has been reported in a variety of disorders, including Eaton–Lambert syndrome, botulism, and transverse myelitis, and even in patients with intracranial mass lesions. The partial response to anticholinesterase drugs in our case reinforces the view that it is unwise to base the diagnosis of myasthenia gravis purely on a positive pharmacological test.

Expanding cerebral cysts (lacunae): a treatable cause of progressive midbrain syndrome

A progressive motor defect presenting in adulthood is an ominous sign, being often associated with either neoplasia or neurodegenerative diseases. Notable if very rare exceptions to this poor prognosis are cerebral expanding lacunae or, as they are sometimes called, benign intraparenchymal brain cysts. 6 These are intraparenchymal cavities without an epithelial lining, filled with cerebrospinal fluid (CSF), located in the thalamo-mesencephalic arterial territory. 7 Their expanding nature is demonstrated by their progressive clinical course and by the frequent complication of aqueduct stenosis and triventricular hydrocephalus. 6 We present a case of progressive midbrain syndrome associated with expanding cysts, which was successfully treated by neuroendoscopy.
enlarged. A search for cystic lesions elsewhere in the body was negative.

In the following year disturbance in posture and diplopia in the right lateral gaze became apparent. The tremor resolved spontaneously, but the left hemiparesis worsened. She was referred for neurological evaluation.

At admission, objective findings were a left hemiparesis (leg worse than arm), hemirigidity, severely reduced automatic movements and left bradykinesia, brisk tendon jerks on the left, diplopia on rightward gaze, and Pari- naud syndrome. The patient was alert and oriented, with intact gross cognition.

A preoperative brain MRI showed multiple large cystic lesions occupying the right parietal ponto-mesencephalic region and smaller lesions in the right thalamus (fig 1, panels A and B). CSF flow sequences revealed aqueductal stenosis and slight triventricular hydrocephalus.

Surgical procedure
The patient underwent a surgical endoscopic procedure. A flexible 2.5 mm neuroendoscope (Storz) was inserted through a burr hole, and the third ventricle was incannulated with a 3.9 peel away. The floor of the ventricle posterior to the mammillary bodies appeared severely deformed by a large cystic mass that did not allow access to the aqueduct. The cystic mass was coagulated and opened into the third ventricle. A fragment of the cyst wall was taken for pathology, which showed normal neuroglia with few amilaceaous bodies, no epithelial lining, and no signs of old or recent haemorrhage.

Once opened, the inside of the cyst revealed a multilobular structure. The flux of fluid towards the cyst opening was observed, indicating multiple intercommunicating lesions under moderate pressure. The last surgical procedure was a third ventriculocisternostomy 3.5 mm anterior to the mammillary bodies.

After the operation there was a transitory disturbance of convergence and limitation of lateral eye deviation, which resolved spontaneously on day 3.

Follow up
At three months the patient showed a remarkable improvement in motor performance but there was reappearance of a modest resting tremor in the left hand. MRI documented a mild reduction in cyst volume and moderate reduction in ventricular size (fig 1, panels C and D). At 18 months the patient was neurologically normal except for the mild resting tremor of the left hand. She had resumed all her premorbid activities, including dancing.

Comment
A progressive disorder of cognition and hydrocephalus caused by expanding cerebral lacunae in the thalamus and midbrain was first described in 1983.3 These lesions consist of multiple grape-like CSF filled cavities, usually located bilaterally in the rostral brain stem. Their incidence is extremely rare (seven to 15 cases).4 Differentiation from the expanding nature of the lesions and the progressive clinical worsening justify surgical management. Treatment of the hydrocephalus (shunting, cisternostomy) has seldom been rewarding.5 Opening and draining the cysts, while carrying a higher morbidity risk, seems to give a better clinical outcome, although the cyst volume is not significantly modified by the procedures.6 In our case, the use of an endoscopic approach to both the hydrocephalus and the opening of the cysts minimised operative risks and led to an excellent clinical result. The values of endoscopic neurosurgery in expanding cerebral lacunae has been emphasised by others.7

While the neuropathology of the lesions and their location supports the interpretation that the cystic spaces are dilated Virchow–Robin spaces, the precise mechanism leading to the dilatation remains unknown. The absence of vasculitis or systemic hypertension in all reported cases reinforces the hypothesis of a localised disturbance in vascular permeability and interstitial fluid reabsorption.7

In conclusion we draw attention to this very unusual neuropathological entity. An endoscopic microneurosurgical approach to this type of lesion has the advantage of a good risk to benefit ratio. As the term “lacuna” is usually associated with a small static vascular lesion, and the term “benign cyst” overlooks the expanding nature of the lesion, we suggest that these lesions should be called “benign expanding cerebral cysts.”

References
Acute rotatory vertigo caused by a small haemorrhage of the vestibular cortex

J Boiten, J Wilmink and H Kingma

J Neurol Neurosurg Psychiatry 2003 74: 388
doi: 10.1136/jnnp.74.3.388

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/3/388

These include:

References
This article cites 8 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/74/3/388#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/